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Abstract: With the development of unstable footwear, more research has focused on the advantages
of this type of shoe. This type of shoe could improve the muscle function of the lower limb and
prevent injury risks in dynamic situations. Therefore, the purpose of this study was to investigate
differences in lower-limb kinetics and kinematics based on single-leg landing (SLL) using normal
shoes (NS) and bionic shoes (BS). The study used 15 male subject volunteers (age 23.4 ± 1.14 years,
height 177.6 ± 4.83cm, body weight (BW) 73.6 ± 7.02 kg). To ensure the subject standardization
of the participants, there were several inclusion criteria used for selection. There were two kinds
of experimental shoes used in the landing experiment to detect the change of lower limbs when a
landing task was performed. Kinetics and kinematic data were collected during an SLL task, and
statistical parametric mapping (SPM) analysis was used to evaluate the differences between NS and
BS. We found that the flexion and extension angles of the knee (p = 0.004) and hip (p = 0.046, p = 0.018)
joints, and the dorsiflexion and plantarflexion of ankle (p = 0.031) moment were significantly different
in the sagittal planes. In the frontal plane, the eversion and inversion of the ankle (p = 0.016), and the
abduction and adduction of knee (p = 0.017, p = 0.007) angle were found significant differences. In the
horizontal plane, the external and internal rotation of hip (p = 0.036) and knee (p < 0.001, p = 0.029)
moment were found significant differences, and knee angle (p = 0.043) also. According to our results,
we conclude that using BS can cause bigger knee and hip flexion than NS. Also, this finding indicates
that BS might be considered to reduce lower-limb injury risk during the SLL phase.

Keywords: landing task; bionic shoes; landing injury; statistical parametric mapping

1. Introduction

In the early stages of development, humans did not use any kind of footwear in their
daily activities. There is a record of the earliest footwear use from the United States, which
could date back to 8300 years ago [1]. About 30,000 years ago, the gracilization of pedal
phalanges was found in certain populations, which from the perspective of biomechanics
and anatomy can be indirectly explained by the use of shoes [2]. However, Kenya and
Ileret, in their research on fossil footprints, have provided at least three instances of direct
evidence that humans walked without any shoes 1.52 million years ago [3,4]. In other
places, for example South Africa, Tanzania, and Australia, there is stronger evidence for the
earliest human beings walking barefoot [5–8]. Even in the present day, certain indigenous
populations use barefoot walking or running in their daily life [9–12]. These evidences
indicate that barefoot is the most primitive human condition, and maybe shoes were not so
important in human development.

Barefoot is an unstable structure, based on this situation, which indirectly presents
that barefoot walking might have been needed originally by the human structure. Tradi-
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tionally, shoes have been used for protecting the foot and providing functional support [13].
Normal footwear that provides stability and support functions for the foot could result
in overprotection. Consequences of this overprotection may include influence on, and
reduced function of, lower limbs [14,15]. For example, this overprotection could reduce
muscle strength, Nigg and Sousa further proved that this overprotection could lead to
potential injuries when performing exercise [16,17]. Based on these considerations, many
studies started focused on unstable shoes, such as RC (reflex control) shoes and MBT (Masai
Barefoot Technology) [18]. Moreover, previous studies have suggested using footwear to
help people stimulate their balance, thereby reducing impact and improving the cushioning
effect [19,20]. The unstable soles of these shoes aim to stimulate human proprioceptive
ability and to try to get more muscles involved in the movement and to better distribute
the impact of the movement.

“Barefoot shoes” is the original idea of creating unstable shoes. After years of evo-
lution, the cuticle of the human foot has gradually degraded, so protection of the foot is
still quite necessary. However, we also want to restore the most primitive state of human
beings. Based on these two necessary factors, we design bionic shoes (BS) by combining
the functions of barefoot and shoe protection. BS are shoes customized for individuals
based on the shape of the soles of their feet. The soles of the feet are scanned to copy the
dimensions of each person’s foot shape exactly. Turbanski et al. and Lohrer et al. have
suggested that the less contact area between the sole of the shoe and the ground, the greater
the sense of movement stimulation [18,21]. The biggest difference between bionic shoes
and other unstable shoes is that their instability is only designed according to the posture or
motion state of the human body when walking. However, our bionic shoes combine their
advantages and add the barefoot form, which more truly reflect and restore the state of
barefoot walking. Recently, more and more research has been focused on the development
of this type of shoe [22–27], such as minimal footwear, which was an important previous
study for footwear development [28,29]. These studies focused on basic walking and run-
ning performance, and stance also. What we trying to do is to use BS to help athletes who
play specific sports reduce injury, or discover some underlying mechanism that we don’t
know about. Most of the damage has been caused as a result of landing from heights, and
examples of this include basketball, soccer, and volleyball [30–33]. Athletes have suffered
landing injuries for many years, such as knee and ankle injuries, and anterior cruciate liga-
ment injuries. These types of landing injuries can reduce the performances of athletes and
could have a detrimental effect on their athletic careers. As a result, research investigating
how to minimize injury risks for athletes and how to improve their performance potential
during games is very important [34].

In previous studies, landing techniques have been explored by researchers to help
athletes avoid landing injuries. One successful technique previously used that has mini-
mized injury has been attempting to land softly. This technique can modify knee loading
and increase knee and hip flexion while reducing impact forces [35,36]. Soft landing
has been proven to be an effective method used for double-leg landing [37–39]. Yeow
et al. suggested that individual landing techniques can impact different magnitudes of
kinematics, kinetics, and energetics during landing [40]. Cortes et al. demonstrated that
there were significantly lower forces during knee flexion angles during the double-leg
landing phase than during the single-leg landing (SLL) phase at initial contact [41]. SLL
is one of the most basic techniques used in the sport. Previous studies have shown that
SLL seems to be more prone to injury risk than double-leg landing. SLL is more directly
related to traumatic knee injuries during sports performance [34]. Donohue et al. and Yeow
et al. demonstrated that SLL included greater lower extremity loading when compared to
landings using double legs [42,43]. Donohue et al. also suggested that the SLL phase is
approximately 20–30 degrees less, compared to the double-leg landing phase at peak knee
flexion angles [42].

The specific function of BS has not yet been fully understood, nor has the inner
mechanism, including its principle, been discovered, according to previous studies. BS can
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help a lot in injury prevention, and through this study we can better explore the deeper
mechanisms of the lower limbs, and better use BS to help athletes to reduce sports injuries.
BS could help people to stimulate more muscles, and in doing so engage their motivation—
based on this idea, we would like to use BS to decrease the rate of injuries in landing tasks.
Probably, this is an important goal of future shoe development. To our knowledge, there
are no studies that have investigated BS when performing landing phases in sport and
athletic situations. The objective of this study was to investigate possible differences in the
lower-limb kinetics and kinematics based on SLL when using NS and BS. We hypothesized
that BS will result in higher knee-joint angles and moments, compared with NS during
an SLL phase. We also suggested that the angle of the hip joint may vary more in the
frontal plane.

2. Materials and Methods
2.1. Study Design

For our purpose, the subjects were asked to stand on a platform 40 cm high and
perform repeated descending movements. All study information was contained and
provided on a consent form that was signed by all participants. The study was approved
by the Ethics Committee of Ningbo University (protocol code RAGH 20200106).

2.2. Participants

From 10 May to 10 June, 15 Chinese male subjects from Ningbo university volun-
teered for the study (Age 23.4 ± 1.14 years, height 177.6 ± 4.83 cm, body weight (BW)
73.6 ± 7.02 kg). A power analysis from previous research evaluating lower extremity
biomechanics between conditions revealed that to achieve 80% power at an alpha criterion
level of 0.05, a minimum of 11 participants were required for comparison [34]. To ensure
the subject standardization of the participants, there were several inclusion criteria used for
selection. These included: (1) All the participants were young amateur athletes. (2) Every
participant engaged in sports three times a week (at least). (3) There had been no prior
surgery performed on the lower limbs. (4) There were no injuries of any kind on the lower
limbs in the last six months, and there were no medical issues that could impact the experi-
mental results. Prior to experimental data collection, all participants were informed about
testing, including the purpose, procedures, requirements, and conditions of the study.

2.3. Shoes

Figure 1 shows that there were two kinds of experimental shoes used in the landing
experiment. (1) NS: these test shoes were produced by Ningbo Jiangbei Feibu Sports
Goods Co., Ltd. (Ningbo, China). (2) BS: these shoes were customized for each participant
based on their individual foot characteristics. A foot-scanning machine was used (VAS-39,
Orthobaltic, Lithuania) to scan individual foot shape, then using a 3D print (Dragon(L)
3D Printer, Winbo, China). Based on the data from the foot scanner, a plastic foot model
was developed. This scanned data was then given to the shoe factory (Ningbo Jiangbei
Feibu Sports Goods Co., Ltd., Ningbo, China), who developed the shoe tree and then
manufactured the shoe. The stiffness and materials of both types of shoe were identical [22].

2.4. Experiment Protocol

All tests were performed at the Ningbo University Research Academy of Grand Health
(Sports Biomechanics Laboratory). A Vicon motion capture system (Oxford Metrics Ltd.,
Oxford, UK) with eight cameras was used to capture the motion patterns of participants
moving during the landing task. The sampling frequency was set at 200 Hz. All participants
were required to wear tight shorts and pants. According to previous studies, 20 reflective
markers (diameter: 12.5 mm) were secured onto the participants for the identification of
movement patterns during the trial. Figure 2 displays the marker placement. The marker
locations included: right and left anterior superior iliac spine, left and right posterior
superior iliac spine, medial and lateral condyle, medial and lateral malleolus, first and fifth
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metatarsal heads, distal interphalangeal joint of the second toe. Tracking clusters were
placed on the middle and lateral thigh, shank, and right heel [44].
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2.5. Procedure

Participants were required to perform stretching exercises following a warm-up of
10 min at a speed of 8 km/h on the treadmill. Participants wore the same tight shirts and
shoes as required for the formal experiment. Familiarization consisted of three practical
trials. Further full testing including experimental familiarization was also performed by
each participant following warm-up. Figure 3 displays participants positioned themselves
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10 cm away from the force plate at a height of 40 cm on a rigid box. A methodology
developed for a single-leg drop landing was then used to capture data. Each participant
needed to perform the landing task when they heard an audio signal. When they heard
the signal, participants jumped onto the force plate, landing on a single leg, using the
standardized protocol. Participants were asked to maintain balance on landing for five
seconds on the force plate following completion of the full landing phase.
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Figure 3. Experimental design for capturing the kinetic and kinematic data during the single-leg landing (SLL) phase for
both normal shoes (NS) and bionic shoes (BS).

The subjects were asked to choose a shoe at random without knowing which pair of
test shoes it was. During the landing task, if participants experienced any kind of loss of
balance—for example, the body swinging side to side or trying to touch the ground with
the hands, the experiment was recorded as a failure. The dominant leg was used to collect
10 successful data sets, which equated to a total of 20 data sets for each participant using
both types of shoes. A 30-s break between each landing task was observed to avoid undue
fatigue of participants caused by continuous drop landing. Individual subject fatigue could
lead to inaccuracies in data collection.

2.6. Data Collection and Processing

This study focused on kinetic and kinematic changes based on different shoes when
performing an SLL. Visual 3D (c-motion Inc., Germantown, MD, USA) is customized
functional software used to calculate and process kinetic and kinematic variables in the
sagittal, frontal, and horizontal planes of the ankle, knee, and hip joint angles and moments
using C3D files generated from Vicon Nexus Software. The initial contact point was defined
as the vertical surface reaction force exceeding 10N [45]. Data collection was separated into



Int. J. Environ. Res. Public Health 2021, 18, 3223 6 of 16

two stages; the first stage was 2 s before initial contact with the ground, the second stage
was 3 s after contact with the ground. The description of the frequency of the filter used,
was designed in accordance with Winter [46]. The residual analysis of vertical ground
reaction force (VGRF) was put into effect in the subsets to determine which was the most
appropriate signal-to-noise ratio. The data of VGRF and kinematics were filtered by 10 and
20 Hz fourth-order zero-phase lag Butterworth low-pass filters. The data were imported
into MATLAB R2019a (The MathWorks, Teaneck, MA, USA), and an edited code was
applied to further analyze the data. The initial ground contact to the maximum knee
flexion was defined as the landing phase.

2.7. Statistical Analysis

Before statistical analysis, all data were subjected to the Shapiro–Wilk normality test.
The Wilcoxon matched-pairs signed-rank test was conducted for non-parametric data if
nonconformity was observed. Paired t-tests assessed differences in kinetic and kinematic
variables between different shoes and SLL.

For SPM analysis, all kinematic and kinetic data of the landing phase were extracted,
and the data points were expanded into a time series curve of 101 data points (represent-
ing 0–100% of the landing phase) with a custom MATLAB script. Then, the open-source
SPM1d script of paired-samples t-tests was used for the statistical analysis, and the signif-
icance threshold was set at 0.05 [47,48]. All SPM analyses were conducted in MATLAB
R2019a using the open-source software package spm1D 0.4 (www.spm1d.org (accessed on
27 November 2019)).

For the traditional discrete variable analysis, a MATLAB script was written to extract
the peak VGRF and peak angle points of the knee, hip, and ankle joints in the sagittal,
frontal, and transverse planes during the landing stage. All traditional discrete variable
analyses were carried out using SPSS 25.0 for Windows™ software (IBM, Armonk, NY,
USA). The level of statistical significance was set at p <0.05.

3. Results

Tables 1 and 2 show the significant differences between NS and BS at the SLL phase
analyzed using paired T-tests for the joints of the lower-limb kinetic and kinematic parame-
ters. Table 3 shows the analysis using the paired t-test between NS and BS at the SLL phase
on peak VGRF and peak posterior ground reaction force (PGRF). The duration of all the
actions in the landing phase is between 323 and 496 ms.

There were significant differences in peak ankle angle inversion (p = 0.02), peak hip
angle extension (p = 0.009), peak knee angle extension (p = 0.005), and peak knee abduction
(p = 0.002) between NS and BS in the kinematics of the lower limb during the SLL phase. For
kinetic parameters, peak ankle moment eversion (p = 0.048), peak ankle moment inversion
(p = 0.042), and knee moment external rotation (p = 0.006) showed significant differences
between NS and BS in the lower limb during the SLL phase.

The SPM analysis using paired t-tests in Figures 4–8 show the significant differences
between the NS and BS during the SLL phase.

www.spm1d.org
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Table 1. Comparison of all kinematic variables between NS and BS during the SLL phase when jumping from 40 cm heights.

Joint Kinematics NS Mean ± SD BS Mean ± SD p Value

Ankle Angle

Dorsiflexion 28.62(6.089) 28.35(3.72) 0.774
Plantarflexion −23.93(8.33) −24.4(6.9) 0.763

Eversion −5.33(2.49) −6.14(3.41) 0.257
Inversion −10.94(1.12) −12.56(1.81) 0.020 *

External Rotation 0.99(4.2) 0.06(4.13) 0.401
Internal Rotation −10.75(2.91) −11.65(2.58) 0.301

Hip Angle

Extension −17.27(3.76) −20.17(3.69) 0.009 *
Flexion −50.77(9.48) −53.42(8.58) 0.105

Abduction 12.18(6.54) 13.66(7.46) 0.200
Adduction −1.91(5.03) −2.54(3.97) 0.481

External Rotation 5.43(4.73) 5.64(6.85) 0.861
Internal Rotation −4.42(3.88) −3.91(4.1) 0.615

Knee Angle

Extension −11.17(2.24) −16.5(5.06) 0.005 *
Flexion −75.8(4.74) −79.02(6.92) 0.129

Abduction 3.89(2.03) 2.59(2.37) 0.002 *
Adduction −4.37(2.28) −4.97(2.21) 0.179

External Rotation 8.03(4.55) 8.38(4.76) 0.512
Internal Rotation −3.65(5.81) −3.08(4.79) 0.472

Note: “*” indicates the significant difference of kinematics variables between different shoes at SLL phase from 40 cm heights in the
dominant leg (p < 0.05). NS: normal shoes; BS: bionic shoes; SD: standard deviation.

Table 2. Comparison of all kinetic variables between NS and BS during the SLL phase when jumping from 40 cm heights.

Joint Kinetics NS Mean ± SD BS Mean ± SD p Value

Ankle Moment

Dorsiflexion −0.19(0.16) −0.19(0.16) 0.933
Plantarflexion −1.63(0.31) −1.6(0.21) 0.767

Eversion 0.1(0.2) 0.14(0.21) 0.048 *
Inversion −0.17(0.14) −0.21(0.2) 0.042 *

External Rotation 0.06(0.07) 0.08(0.11) 0.342
Internal Rotation −0.18(0.14) −0.19(0.15) 0.772

Hip Moment

Extension 1.89(0.97) 2.12(0.91) 0.180
Flexion −2.57(0.76) −2.71(0.67) 0.323

Abduction 0.85(0.52) 0.84(0.59) 0.935
Adduction −2.45(0.72) −2.22(0.54) 0.085

External Rotation 0.41(0.17) 0.47(0.26) 0.375
Internal Rotation −0.92(0.37) −0.98(0.42) 0.476

Knee Moment

Extension 3.24(0.3) 3.43(0.43) 0.162
Flexion −0.28(0.53) −0.35(0.35) 0.690

Abduction 0.32(0.23) 0.3(0.28) 0.731
Adduction 0.89(0.39) −0.85(0.27) 0.646

External Rotation 0.5(0.08) 0.69(0.2) 0.006 *
Internal Rotation −0.07(0.11) −0.01(0.03) 0.089

Note: “*” indicates the significant difference of kinetics variables between different shoes at SLL phase from 40 cm heights in the dominant
leg (p < 0.05). NS: normal shoes; BS: bionic shoes; SD: standard deviation.

Table 3. Comparison of all kinetic variables between NS and BS during the SLL phase when jumping
from 40 cm heights.

Ground Reaction Force NS Mean±SD BS Mean±SD p Value

Peak VGRF 3.55(0.34) 3.64(0.36) 0.332
Peak PGRF −0.19(0.08) −0.18(0.13) 0.878

Note: NS: normal shoes; BS: bionic shoes; SD: standard deviation; VGRF: vertical ground reaction force; PGRF:
posterior ground reaction force.
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Figure 4 shows the kinematic differences using NS and BS in ankle angle and moment.
For the ankle angle during eversion and inversion, significant differences (p = 0.017)
between NS and BS were found during the SLL phase. Further significant differences
(p = 0.031) were found in the ankle moment during dorsiflexion and plantarflexion between
NS and BS during the SLL phase.

Figure 5 shows the kinematic differences using NS and BS in hip angle and moment.
Significant differences (p = 0.046, p = 0.018) were found in hip angle extension and flexion
between NS and BS during the SLL phase.

Figure 6 shows the kinematic differences using NS and BS in knee angle and moment.
For the knee angle during extension and flexion, significant differences (p = 0.004) between
NS and BS were found during the SLL phase. Significant differences (p = 0.017, p = 0.007)
were found in the knee angle during abduction and adduction between NS and BS during
the SLL phase. Further significant differences (p = 0.043) were found in the knee angle
during external rotation and internal rotation between NS and BS during the SLL phase.
The moment on the horizontal plane is also significant differences (p < 0.001, p = 0.029)
between NS and BS during the SLL phase.

Figure 7 shows the vertical ground reaction force differences using NS and BS, and
significant differences (p = 0.043) were found between NS and BS during the SLL phase.

Figure 8 shows the anterior and posterior vertical ground reaction force differences
using NS and BS. Figure 9 shows the comparison of the ankle, hip, and knee on the sagittal,
frontal, and horizontal plane range of motion during the SLL phase. There were no further
significant differences found.
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4. Discussion

The purpose of this study was to investigate any differences between NS and BS
when participants performed an SLL. We found that there are significant differences in
biomechanical changes between NS and BS during the SLL phase when jumping from a
40 cm height. One of the most significant findings was that the knee and hip flexion angles
were significantly greater when the shoes were used than when the shoes were used.

Previous study has proved that termination movements like stop-jumping, side-
cutting, and landing could be the main risk for anterior cruciate ligament (ACL) injury [49],
and Griffin further suggested that higher trunk, hip, and knee flexion can lead to fewer
injuries. Additionally, there were four further studies that indicate that females have
stiffer postures during these termination movements [50–53]; A stiffer landing position
will cause greater impact when landing, which will result in greater impact on the knee,
thus increasing the risk of knee injury, such as ACL. In our study, BS wearers had higher
hip and knee flexion angles in the sagittal plane when performing an SLL, compared with
NS wearers. This may be the result of BS activating the body’s protective mechanism and
passively increasing trunk flexion angles, and increasing hip and knee flexion angles in the
sagittal plane. It is worth mentioning that the previous study suggested that more trunk
flexion can reduce injuries. Our results indicated larger trunk flexions, which suggests that
the BS can reduce lower-limb injury risks during SLL. It is important to note that although
BS can result in higher hip and knee flexion angles in the sagittal plane, there may also be
influences on other functions of the lower limbs.

We are unaware of any previous study that has investigated the differences between
NS and BS during the SLL phase from 40 cm height; therefore, there might be a limit for
comparison to the previous study. However, there are still several studies consistent with
our results. The results of Jinkyu, Hossein, and Phillis are in agreement with our knee
flexion, hip flexion, and vertical ground reaction force results in a similar drop-landing
task [54–56]. At the beginning of the landing, when the knee begins to enter the flexion
stage, the insertion angle of the patellar tendon with respect to the longitudinal axis of the
tibia decreases [57]. Many of the previous researchers have demonstrated that ACL loading
could be influenced by the effect of the patellar tendon insertion angle [58,59]. Troy further
proved that the greater knee flexion can reduce the impact force on quadriceps/patellar
tendon force, which could reduce the force on ACL [60]. According to previous studies,
this provides further evidence that the bionic shoe used in this experiment can effectively
reduce similar lower-limb injuries to the knee joint.

Regarding BS, there were two studies that may explain why there can be a greater hip
and knee flexion angle during the SLL phase. In one study, Nigg investigates the muscle
activities of standing phase between NS and unstable shoes including the gastrocnemius,
tibialis anterior, biceps femoris, vastus medialis, and for the gluteus medius [16]. However,
there is only the tibialis anterior that shows a significant difference. Benno further demon-
strates that when the body is in a stable condition, the level of muscle activity required is
much lower than when it is in an unstable condition [61]. This suggests that the body does
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not need to use as many muscles to balance when using regular shoes. Conversely, for
example, unstable shoes, the barefoot state, and BS have an unstable condition that could
allow more muscles to be passively involved in activities. Therefore, we can conclude that
these unstable conditions can actually reduce joint impact force by the high-level activity
of muscle.

We combine the barefoot state, which is the original state of humans, and modern
footwear to create a new style of shoe. According to our findings, we suggest that BS
should be a necessity for future development. BS not only protect the fragility caused by
the evolution of the foot, but also present the original status of the foot. If we apply it to
basketball, volleyball, and other sports, it may help more athletes avoid lower-limb injury
caused by landing, so that the level of human sport can be further advanced. Science and
technology change life, and BS use science and technology to protect health. We need to
conduct further exploration on the internal mechanisms of BS. We are also open to making
joint efforts with researchers in other areas that may help.

It is undeniable that our study has some limitations. Firstly, we recruited only healthy
males as our subjects. Females are also an important subject group, and further research
is needed to investigate responses in female subjects. Secondly, the hardness of the BS
needs further exploration. Differences in sole materials will make a difference to the
experimental findings, and we need to investigate further the most suitable hardness for
optimal performance and comfort. Thirdly, we looked only at changes in the dominant legs.
Further investigations should focus on the changes in the muscular skeletal system using
electromyography. Finally, the results were unavoidably influenced by the sample size.

5. Conclusions

In summary, this study compared and analyzed NS and BS by quantifying kinetic and
kinematic changes during the SLL phase when jumping from a 40 cm height. We found
that when using BS in performing an SLL phase, the hip and knee flexion angles have
bigger flexion angles than those observed using NS. Also, we compared our findings with
previous studies and found that BS might be a great method for reduce lower-limb injury
risk during an SLL phase. Further investigations should focus on the changes in muscle
using electromyography and expand the sample size to validate our findings.
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