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Abstract: COVID-19 syndrome has extensively escalated worldwide with the induction of the year
2020 and has resulted in the illness of millions of people. COVID-19 patients bear an elevated risk
once the symptoms deteriorate. Hence, early recognition of diseased patients can facilitate early
intervention and avoid disease succession. This article intends to develop a hybrid deep neural
networks (HDNNs), using computed tomography (CT) and X-ray imaging, to predict the risk of the
onset of disease in patients suffering from COVID-19. To be precise, the subjects were classified into
3 categories namely normal, Pneumonia, and COVID-19. Initially, the CT and chest X-ray images,
denoted as ‘hybrid images’ (with resolution 1080 × 1080) were collected from different sources,
including GitHub, COVID-19 radiography database, Kaggle, COVID-19 image data collection, and
Actual Med COVID-19 Chest X-ray Dataset, which are open source and publicly available data
repositories. The 80% hybrid images were used to train the hybrid deep neural network model and
the remaining 20% were used for the testing purpose. The capability and prediction accuracy of the
HDNNs were calculated using the confusion matrix. The hybrid deep neural network showed a 99%
classification accuracy on the test set data.

Keywords: hybrid deep neural network (HDNNs); computed tomography (CT-scan); long short-term
memory (LSTM); COVID-19

1. Introduction

The COVID-19 disease continues to have a shattering influence on the health and
well-being of the global population, caused by infection in people with a critical respiratory
condition. In this regard, the World Health Organization (WHO) declared an outbreak on
30 January 2020 as a “public health emergency of global concern” [1]. A critical phase in
the fight against COVID-19 is the effective and optimal screening of the infected patients,
so that these patients can receive instant care and treatment, as well as be quarantined to
alleviate the spread of infection.

The leading COVID-19 detection and patient screening methods include antibody
detection against the SARS-CoV-2 [2], reverse transcriptase-polymerase chain reaction
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(RT-PCR) [3] analysis, and artificial intelligence-based detection approaches [4]. These
approaches are able to identify SARS-CoV-2 RNA from respirational samples collected
by a variety of resources, such as oropharyngeal or nasopharyngeal modes. Although
RT-PCR testing is an industry standard and an extremely precise test. It is, however, a very
time-consuming, complex, and labor-intensive process that is limited in its application.
Moreover, RT-PCR sensitivity of analysis is highly inconstant and is not stated in a perfect
and reliable manner [5].

Real-time RT-PCR greatly improves the detection of SARS-CoV-2, due to its simple
qualitative analysis and accuracy. However, this approach is used mostly in cases where
the infection of diseases like (COVID) are needed to be detected in early stages, for early
infection. It is also used in cases where RT-PCR is considered to be the main method for
detecting COVID-19 and SARS-CoV, respectively. In addition to all these relevant facts,
the important issue associated with real-time RT-PCR test is the risk of eliciting false-
negative and positive results [5,6]. For example, it was observed that many ‘suspected’
cases with typical clinical characteristics of COVID-19 and identical specific CT images
are not diagnosed [6–11]. Therefore, the negative results are intentionally excluded for
the possibility of a COVID-19 infection and it should not be used as the only criterion
that is considered for treatment and patient management decisions. Consequently, it is
reported that the combination of real-time PCR with clinical features, which could possibly
help manage SARS-CoV-2 and COVID-19 outbreak. Moreover, there are many factors
highlighted for these reasons that are mentioned in [12–15].

Recently, neural networks gained excessive achievements in the field of medical
imaging, due to their self-learning capabilities and high aptitude for automatic feature
extraction [16]. Especially, deep neural networks can distinguish infectious and virus-
related pneumonia for chest radiographs [17–21]. Therefore, in this article, we introduce a
hybrid deep neural network (HDDNs) for the diagnosis of COVID-19, using CT and X-ray
images. This network classifies CT images for healthy and COVID patients, and determines
the infection possibility of COVID-19. These outcomes might significantly contribute to the
primary screening of COVID-19 patients.

There are numerous benefits to leveraging computed tomography images for COVID-
19 screening for the universal COVID-19 epidemic. These benefits are even more relevant,
specifically in remote and highly affected areas and are discussed as follows. (1) Fast
triaging—computed tomography imaging facilitates fast triaging of patients doubted of
COVID-19, and can be accomplished in parallel epidemiological testing, which is time
consuming to provide assistance to great volumes of patients in highly affected areas.
Moreover, computed tomography imaging can be quite efficient for triaging in geographical
regions where patients are educated to stay home until the inception of radical symptoms.
Meanwhile, anomalies are frequently seen at the time of demonstration when patients
suspect that the COVID-19 reached clinical sites. (2) Accessibility and user-friendly—
computed tomography imaging is available in many clinical sites and imaging centers,
as it is an ordinary imaging tool in most healthcare structures and is much more readily
accessible in developed countries as a cost-effective product. (3) Flexibility—the presence
of flexible CT scan systems means that imaging can be executed within a quarantine room,
which in turn decreases the risk of COVID-19 spread.

The fast spread and late diagnosis of COVID-19 stunned the world and influenced
the lives of billions of people, from both a safety and an economic perspective. Existing
testing kits are limited in number and can test only a few patients. Additionally, usage
of fake testing kits in medical industry is also quite common, which not only results in
waste of money but also incorrect test results. Hence, designing an automated diagnosis
system is essential for providing an efficient and reliable solution. The proposed hybrid
technique provides an automated detection for COVID-19 patients that can save billions of
people’s lives and medical professional’s valuable time, which they invest for examining
chest X-rays, to form an opinion.
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The major contributions of this study that makes it unique over traditional machine-
learning or deep-learning techniques are given below.

1. State-of-the-art hybrid COVID-19 detection by using a multi-model and multi-data
approach [22–24]. Including multi model and multi data has its own cost, as we need
more data and complex models for performing the classification task. However, they
add to the efficacy of the model, as the model can exploit more rich information for
the classification task. Particularly, the data from different modalities complement
each other. Therefore, it can be said that this is a general phenomenon, which is also
evident in many earlier studies, involving multi-model/multi-data studies [25,26].

2. Multimodal dataset (CT and X-rays images), which provides more accurate and
reliable results in comparison to the single CT image data set or single X-ray datasets.

3. The hybrid deep neural network model is a mixture of two deep-learning models
(LSTM + CNN) and is capable of accurately classifying COVID Patients. The proposed
CNN- and LSTM-based layer arrangements show a noteworthy performance, as
compared to previous deep neural network architectures, by automatically learning
the patterns in the COVID-19 data, which is fruitful for the classification of COVID
patients from healthy controls.

4. The automatic feature extraction mechanism better learns the features compared to
previous COVID studies.

5. To the best of our knowledge, it is the first COVID-19 detection technique that si-
multaneously works on the multi-model and multi-data approach and gives higher
accuracy in comparison to the existing COVID-19 detection techniques.

The performance comparison of the proposed HDDNs with existing COVID-19 detec-
tion techniques is shown in Table 1.

Table 1. Performance comparison of existing COVID-19 detection techniques with HDDNs, in which the shaded area
represents the chest X-rays-based techniques that are used as a benchmark for this study.

Authors Published Technique Summary Performance

Xiao, L., et al. [27] 31 July 2020 Artificial intelligence-assisted tool using computed
tomography (CT) imaging to predict disease severity. Accuracy: 81.9%

Li et al. [28] 19 March 2020 Artificial intelligence approach with chest X-ray Per-scan sensitivity and
specificity: 87% and 92%

Dansana, D. et al. [29] 28 August 2020 CNN based methods using CT and X-ray images Validation accuracy: (91%)

Chen, J., et al. [30] 1 March 2020 Deep Learning and CT images based method for COVID
detection Accuracy: 95.24%,

Zhang et al. [31] 28 June 2020 Deep learning with chest X-ray Accuracy: 83.61% and
sensitivity: 71.70%

Zhang, K., et al. [32] 3 September 2020 AI system to diagnose COVID-19 pneumonia using
CT scans Accuracy: 80%

Narin, et al. [33] 12 July 2020 deep CNN using X-ray images Accuracy: 98%

Acar, E., et al. [34] 14 June 2020 Deep learning-based models for detecting COVID-19 from
computed tomography (CT) images Accuracy: 98.8%

Ozturk et al. [35] 18 June 2020 Deep Neural network with X-ray images
Accuracy: 98.08% and 87.02%
for binary and multi-classes,

respectively

Soares, L., et al. [36] 2 July 2020 Automatic Detection of COVID-19 Cases on X-ray images
Using Convolutional Neural Networks Accuracy 81%

Goel, C., et al. [37] 17 August 2020 Deep Network Architecture for COVID-19 Detection Using
Computed Tomography Images Accuracy 96.78%

Afshar, P., et al. [38] 28 September 2020 COVID-19 Computed Tomography (CT) Scan using
Machine Learning and Deep Learning Accuracy 91%

Song, Y., et al. [39] 25 February 2020 Deep learning-based CT diagnosis system Accuracy: 0.99 and sensitivity:
0.96

Shah, V., et al. [40] 11 July 2020. Diagnosis of COVID-19 using CT scan images and deep
learning techniques Accuracy: 94.52%

Our Study 10 January 2021 Hybrid Deep Neural Networks (HDNNs), CT images and
Chest X-rays for the detection of COVID-19 Classification accuracy: 99%
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The rest of the paper is organized as follows. Section 2 describes the methodology,
which is further subdivided into experimental data acquisition, preprocessing, and the
hybrid deep neural network (HDNNs) architecture. Section 3 describes the experimental
results of the proposed technique that further elaborates the quantitative, qualitative
analysis, and comparison of the proposed HDNNs model, with the existing techniques.
In the end, the conclusion section reveals the potential of the hybrid deep neural network
(HDNNs), by concluding the different performance parameters and accuracy comparison.

2. Methodology and Deliverables
2.1. Experimental Data Acquisition

In this study, the chest X-ray images dataset that we refer to as “Hybrid-COVID” with
dimensions of (1080 × 1080 pixels) was used to test and train our hybrid deep neural
network architecture (HDNNs). This was designed by extracting the COVID-19 data from
five different sources—GitHub [41], COVID-19 radiography database [42], Kaggle [43],
COVID-19 image data collection [44], and Actual Med COVID-19 Chest X-ray Dataset [45],
which are open-source and publicly available data repositories.

Before further usage, we combined all 5 datasets into a single dataset that consisted
of 5000 patients (57% male, 32% female), containing 3500 infected and 1500 healthy con-
trols, with an age group of 38–55 years. The selection of these five databases to create
“Hybrid-COVID” was directed by the fact that all these five databases are open source and
fully available to the clinicians, research community, and general public, and fulfills the
diagnostic criteria of COVID-19, defined by the World Health Organization (WHO).

2.2. Preprocessing

Noise always exists in digital images and it is most challenging to remove noise
without previous knowledge of filtering techniques. The acquired COVID-19 data were
polluted with different types of noise. This noise occurred due to many reasons, including
monitoring devices, patient movement, and device error. It is necessary to sanitize these
data from noise because it affects the classification accuracy of the model. To remove these
lower quality data from actual images, we analyzed the results of several researchers. An
iterative mean filter for image denoising was used in [46], which was based on the LMS
(least mean squares) algorithm and decreased the noise in digital image processing. Rai
et al. [47] endorsed the use of a hybrid adaptive algorithm, based on wavelet transform and
independent component analysis for denoising of MRI images, and for efficient suppression
of the interference in images. A general model for noise contamination can be described by
Equation (1).

P (n) = Q (n) + T (r) (1)

where P (n) and Q (n) are samples of the COVID data, including and excluding noise,
respectively; r represents the source inference, and T is an unknown transfer function.

The Kalman filter [9] is an efficient recursive data processing algorithm, which was
extensively used in many applications, such as industrial control systems, radar tracking,
aero-engine analysis, and intellectual robots. Kalman filter works well in reducing noise,
while preserving the underlying structure of an image, when compared to the other said
filter. We used it in our study because the Kalman filtering method recursively uses past
data and gives more accurate results than a filtering method based only on incoming
measurements. In comparison to [48,49], which used deep-learning approach to denoise
the CT images and is well-developed for medical image denoising, we used the Kalman
filter in our article due to the multi-imaging data, recursive data processing, prior predicted
value observation, and polluted region detection, which gives acceptable performance
using the Kalman filter. In the Kalman filter derivation formula, joins an Adaptive Predictor
Filter (APF) and Discrete Wavelet Transformation (DWT) to identify pure noise. Moreover,
our other approaches like [50–53] also support our words.

The noise removal model proposed in the present study included the following
steps—(1) image decomposition, (2) noise detection (RA) region detection, (3) polluted
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parts prediction, and (4) image renovation. The DWT was used to decompose the images
and identify the regions. The DWT decomposition finds the low-frequency parts and
nonstationary time-series, which are then divided into several approximate stationary
time-series. The actual image is predicted by the decomposed images, by applying the
conventional Kalman filter. The adaptive filter is applied to improve prediction and to
estimate future values based on the previous one.

We used the following Kalman discrete-time model to remove the noise with the state
Equation (2).

Pk+1 = Qk pk +sk (2)

and the analysis equation
mk = RkPk + uk (3)

where pk+1 is the state variable, mk is the analysis variable, Qk and Rk are matrices with
n number of rows and m number of columns, sk is the modeling error noise and uk is the
analysis error noise, respectively.

We only focus on the sk, which is Gaussian noise, and uk, which is a non-Gaussian noise.
By considering Equations (2) and (3), the Kalman filtering model supposes that sk and

uk are both Gaussians, with the following covariance matrix:

E Jsi skT K =
{

Sk f or i = k
0, f or i 6= k

(4)

E Jui ukT K =
{

Tk f or i = k
0, f or i 6= k

(5)

Let −pk be the priority estimation, which is the approximation of pk from m0, m1, · · · ,
mk−1, and let pk be the posterior estimation, which is the approximation of pk from m0,
m1, · · · , mk.

E{−pk } = E{pk} (6)

and where E signifies expectation and Qk is from (2)

−pk +1 = Qk pk
o

(7)

The Kalman filter supposes that the posterior estimation is expressed as the prior
estimate corrected by the measurement data:

pk
o
= −pk + Kk (mk − Rk pk

o

)
(8)

for n rows and m columns matrix Kk represents the Kalman gain.
Note that Rk is from (3).
The Kalman gain Kk is resolved by decreasing E (pko − pk)2
Note that

E
(

pk
o
−pk ) T

(
pk

o
−pk ) = Tr{Zk} (9)

where Tr signifies the trace operator and the n cross n covariance matrix Zk is presented
as follows

−Zk = E (pk −(−pk ))( pk − (−pk )T) (10)

Putting (9) into (10), we get

Zk = (I − Kk Rk ) − Zk (I − Kk Rk ) T + (Kk Rk Kk )T (11)

By (10) and (12), Zk can be simplified as

Zk = (I − Kk Rk ) − Zk (12)
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Combining (9), (10), and (11), thus, we filter the image from the conventional Kalman filter.
Finally, noise that had a high effect on the chest X-ray-based COVID data, was removed

from the raw images, and the data were ready for further processing.

2.3. Proposed Hybrid Deep Neural Network Architecture (HDNNs)

In this study, a hybrid deep neural network architecture based on a convolutional
neural network (CNN) and LSTM (Long short-term memory) for COVID detection is pro-
posed. These two models are deep learning-based models, which is a sub-field of artificial
intelligence. The two deep learning models are well-suited to classifying, processing, and
making predictions, which resulted in extraordinary performance in automatic feature
extraction from images datasets [23,26]. We picked the CNN model, because of their au-
tomated feature learning, and used LSTM to deal with the vanishing gradient problem,
which occurs when training neural networks. The proposed HDNN architecture is based
on the three distinctive arrangements of diverse layers (convolutional layers, pooing layers,
and dropout layers), and one LSTM layer that was assessed on the COVID-19 datasets used
in this article. The convolutional layer was the major building block of CNN and was used
to filter out the discriminating features from the original images. The pooling layer was
utilized to reduce the dimensionality of the data by using the sliding window approach,
which is based on the size of the window. The dropout layer was used to prevent a model
from over-fitting.

The proposed layer arrangements showed a noteworthy performance, as compared to
the previous deep neural network architectures, by automatically learning the patterns in
COVID-19 data that is fruitful for the classification of COVID patients from healthy controls.

The mathematical representation of the proposed model and their layer combination
is stated below.

Convolutional Layer:

C(p, q) = (w ∗ z)(p, q) = ∑i ∑j z(i, j)w(p− i), (q− j) (13)

where w = image, z = kernel, p and q are the indices of rows and columns of the resultant matrix.
Equation (14) describes the mathematical functionality of how the feature detector

shifts according to the input.
Convolution function:

(w ∗ z)(t) =
∫ ∝

−∝
w(ᵀ)z(ᵀ− z)dt = (w ∗ z)∆

∫ ∝

−∝
f (t− ᵀ)z(z)dt (14)

where t is the time index and is an integer, w and z are integers.
A common engineering convention is:

w(t) ∗ z(t)∆
∫ ∝

−∝
w(t− ᵀ)g(t− ᵀ)dt (15)

This research was implemented in Python by applying a hybrid deep neural network,
referred to as (HDNNs), at the X-ray and computed tomography (CT) images. CT is a
non-invasive imaging approach that has a capability to capture specific conditions in the
lungs that are associated with COVID-19. Thus, we analyzed it by the most appropri-
ate deep neural network approach, which is an effective tool for the primary analysis of
COVID-19. Artificial intelligence using deep neural networks already attained greater per-
formance in the field of radiology [10]. Past research effectively applied survey-based and
transcriptase-polymerase chain reaction methods, to identify pneumonia in pediatric chest
radiographs, to distinguish pathological and bacteriological pneumonia in 2D pediatric
chest radiographs [11].

In this article, HDNNs is applied to computed tomography (CT) [12], which achieved
a higher classification accuracy than the other existing techniques in the literature. The
framework of HDNNs is shown in Figure 1. This framework was trained by using the
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transfer learning approach that automatically extended from previous training and then
reused it in further diagnosis. The infection probability of COVID-19 was formulated using
two major Python libraries Keras and Tensor Flow. Ultimately, the chest, CT, and HDNNs
provide a consistent and fast methodology for the identification of COVID-19 patients.
The block-level representation of our proposed technique by using the hybrid deep neural
network (HDNNs) and chest X-ray is shown in Figure 2.
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The proposed hybrid deep neural network divides the COVID data with the 1-s
window size and 256 samples, by taking the data as a time-series format. As the sampling
rate was 256 samples per second, every COVID fragment enclosed 256 data points (window
length). Empirical evaluation was done for the selection of window size and it was observed
that a window size of 1 s gave significant results. The input data dimension of COVID
datasets is set to 256 × 64 for every instance of class. Furthermore, the input COVID data
are segmented into a training and testing set, with a ratio of 80 and 20 percent, respectively.
Initially, the training dataset was passed to the hybrid deep neural network models for the
classification of COVID and healthy subjects, and then the testing datasets was applied
to evaluate the classifier performance, using several performance metrics like accuracy,
precision, recall, and F1-score.

Evaluation Criteria

The four different metrics were used to evaluate the proposed method. These metrics
were accuracy, precision, recall, and F1 score.

The mathematical representation of the performance metrics is shown below.

Accuracy = (tn + tp)/(tp + fn + fp + tn) (16)

Precision = tp/(tp + fp) (17)

Recall = tp/(tp + fn) (18)

F1 = 2 × Precision × recall/precision + recall (19)

where “RN” refers to true positive, “tn” shows true negative, “fp” represents false positive,
and “fn” represents false negative.

2.4. Potential Risk Imperial to the Development of Progress & Related Risk Strategy

The potential risks that we faced during development were finding a balance between
sensitivity and specificity, which was an incredible challenge, because infective diseases
like COVID-19 transfer quickly.

The implementation flow of data collection and deliverable is represented in Figure 3.
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3. Experimental Results

To estimate the effectiveness of the proposed HDNNs, we executed both quantitative
and qualitative analysis, to develop a good understanding of its identification and decision-
making behavior.

3.1. Quantitative Analysis

To examine the proposed HDDNs performance in a quantitative manner, we calcu-
lated the test accuracy, as well as a positive predictive value (PPV) and sensitivity for
each type of contamination, on the above-mentioned COVID-19 X-ray dataset. The test
sensitivity and positive predictive value (PPV) ratio for normal, non-COVID (Pneumonia),
and COVID patients, along with the applied architecture, are shown in Tables 2 and 3,
respectively. The results showed that HDDNs attained a good test accuracy (99%) for
detecting COVID-19 patients, consequently emphasizing the effectiveness of leveraging a
human-machine cooperative design scheme for making highly-customized deep neural
network architectures. The performance of the proposed HDDNs model for COVID-19
detection was also evaluated with the help of a confusion matrix, which is often used to
evaluate the accuracy of machine-learning classifiers. It consists of a set of rows and tables
in which each row of the confusion matrix shows the number of instances in the predicted
class, while the columns represent the number of instances in an actual class or vice-versa.

Table 2. Sensitivity for Normal, Pneumonia Patient, and COVID Patient.

Sensitivity

Neural Network Architecture No Findings Pneumonia Patient COVID-19 Patient

Recurrent Neural Networks (RNN) 78% 80.5% 81.4%

Deep Belief Networks (DBNs) 82.3% 84% 83.0

Deep Neural Network (DNNs) 81.5% 86.7% 87%

Hybrid Deep Neural Network (HDNNs) 88.1% 99.5% 99%

Table 3. Positive predictive value (PPV) for each infection type.

Positive Predictive Value (PPV)

Neural Network Architecture No Findings Pneumonia Patient COVID-19 Patient

Recurrent Neural Networks (RNN) 68.1% 70.5% 51.4%

Deep Belief Networks (DBNs) 72.3% 74% 75.0

Deep Neural Network (DNNs) 81% 84.7% 86%

Hybrid Deep Neural Network (HDNNs) 89.% 96.5% 98.7%

3.2. Qualitative Analysis

This section presents the detailed data distribution used for the proposed HDDNs
framework, to get a better understanding of how HDDNs make decisions. It authenticates
whether it is making recognition decisions, based on significant information (data) or on
inaccurate information, i.e., biased decisions based on inappropriate data. Such situations
are very problematic and difficult to track. A dataset of over 5000 COVID patients was
used in this study. The data distribution was analyzed to train and test the X-ray and
CT images. The distribution of the X-ray images for COVID-19 detection is shown in the
first half of Table 4. Similarly, the distribution of CT images for COVID-19 detection is
shown in the second half of Table 4. The training and testing images for all 3 categories
(normal, pneumonia, and COVID-19) are shown separately. It can be seen from the table
that almost 80% of the data was used for training and almost 20% of the data was used
for testing. The evaluation of the training performance of the hybrid deep neural network
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for the COVID-19 dataset was also conducted by importing the python library Keras, and
training loss and accuracy of the COVID-19 dataset was also measured for tracking the
training performance. The resultant output of the proposed method is presented in the
form of a confusion matrix in Figure 4.

Table 4. Distribution of X-ray and CT images for different contamination types.

Subject Type Number of Images (X-ray)

Training Testing

Normal 300 200

Pneumonia 800 200

COVID-19 1000 200

Number of Images (CT)

Normal 400 200

Pneumonia 500 200

COVID-19 800 200
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3.3. Comparison of HDNNs with the Existing COVID-19 Detection Techniques

To make a comparison of our state of the art HDDN’s approach with the existing
COVID-19 detection techniques and to prove the originality of our work, we selected
the deep neural network (DNN’s) approach as the benchmark. First, we evaluated both
techniques at the raw CT and X-ray images to calculate the loss that depicts the inaccuracy
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of the model result, and wrongly classifies the presence of disease that does not exist in
reality. The graphical behavior of DNN and HDNNs is shown in Figure 5, against the
number of COVID-19 CT and chest X-ray samples. The classification accuracy of both
the DNN and HDNNs neural network models is analyzed in Figure 6. The hybrid neural
network (HDNNs) model with long short-term memory (LSTM) led the DNN to have a
99% classification accuracy.
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4. Conclusions

This article revealed the potential of a hybrid deep neural network (HDNNs) for
the automatic diagnosis of COVID at computed tomography and chest X-ray data. The
benefit of the proposed HDNNs over the traditional deep learning and machine learning
frameworks is the use of multi model and multi data. After performing the analysis at
the COVID-19 X-ray datasets by using the hybrid deep neural network and computer
tomography (CT), it was concluded that the hybrid deep neural network could accurately
identify COVID-19 and discriminate it from patients with pneumonia. It showed excellent
sensitivity for identification of COVID-19. In comparison to previous techniques used
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for COVID detection, our proposed model HDDNs had a 99% classification accuracy. In
future, we believe that it will prove to be an essential tool for COVID-19 identification in
endemic areas.
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