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Abstract: A better understanding of the clinical characteristics of coronavirus disease 2019 (COVID-
19) is urgently required to address this health crisis. Numerous researchers and pharmaceutical
companies are working on developing vaccines and treatments; however, a clear solution has yet
to be found. The current study proposes the use of artificial intelligence methods to comprehend
biomedical knowledge and infer the characteristics of COVID-19. A biomedical knowledge base was
established via FastText, a word embedding technique, using PubMed literature from the past decade.
Subsequently, a new knowledge base was created using recently published COVID-19 articles. Using
this newly constructed knowledge base from the word embedding model, a list of anti-infective
drugs and proteins of either human or coronavirus origin were inferred to be related, because they are
located close to COVID-19 on the knowledge base. This study attempted to form a method to quickly
infer related information about COVID-19 using the existing knowledge base, before sufficient
knowledge about COVID-19 is accumulated. With COVID-19 not completely overcome, machine
learning-based research in the PubMed literature will provide a broad guideline for researchers and
pharmaceutical companies working on treatments for COVID-19.

Keywords: word embedding; machine learning; COVID-19; PubMed literature; drug repurposing;
medical subject headings; substance name

1. Introduction

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), was first identified in Wuhan, China, in December 2019 [1]. The
rapid spread of COVID-19 has caused a severe health crisis worldwide and gravely im-
pacted human life and society [2]. The urgent need to develop effective therapeutics and
vaccines against COVID-19 is driving numerous clinical studies worldwide. Efforts by
several scientists have led to the designing of effective antiviral agents based on an un-
derstanding of the SARS-CoV-2′s [3,4] viral genome structure and pathogenicity [5,6], as
well as the body’s host response and its protein–protein interactions [7–9]. Currently, a
few vaccines have been developed. Still safety issues remain in doubt and the supply is
insufficient. A therapeutic agent showing a definite effect has not been developed [10].

In addition to clinical-based novel drug development studies, such as antibody ther-
apeutics and plasma therapy, drug repurposing is receiving considerable attention as an
alternative for developing COVID-19 treatments [11–13]. Several computational drug
repurposing studies, including network-based or machine learning-based studies, were
conducted to predict drug–target interactions by understanding or utilizing the structural
properties of SARS-CoV-2, such as in silico docking and analysis [14], network proximity
analysis of drug targets and coronavirus–host interactions in the human interactome [15],
and therapeutic target-based virtual ligand screening [16].

Bibliometrics has played a large role as a tool for knowledge discovery. Although tradi-
tional bibliometric techniques based on statistics and citation analysis are still widely used
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for measuring and visualizing the impact of knowledge from the scientific literature [17],
new techniques are being developed that have a better effect in inferring knowledge. With
the confluence of recently advanced deep learning technologies, bibliometrics has been
reborn as a new data mining technology with enhanced inferring ability to discover new
knowledge from a latent knowledge base.

Knowledge graph, a graph-based machine-readable data structure, was originally
developed to describe interactions between entities and has recently been used as a network-
based knowledge discovery tool for understanding COVID-19 and finding a therapy for
the disease [18–21].

Most existing studies extract the structure of the knowledge contained in accumulated
databases. Therefore, for their results to become accurate, a significant quantity of data has
to be accumulated. In this study, we try to determine a way to infer the characteristics of
COVID-19 using the biomedical knowledge base accumulated so far without waiting for
further knowledge to be significantly accumulated.

Word embedding techniques, one of the machine learning techniques, can extract knowl-
edge by processing text and keywords, or obtain suggestions for new knowledge using relational
reasoning and inference between keywords. This is because word embedding projects key-
words onto space and expresses them as vectors [22]. Therefore, inference and analogy between
keywords such as France − Paris = Korea − Seoul, or France − Paris + Seoul = Korea becomes
possible mathematically. If we have information on France, Paris, and Seoul, it becomes
possible to find Korea via word embedding. Using these characteristics, many studies on
the use of word embedding are being conducted in each field. Word embedding is also
widely used to understand biomedical entities [23].

When COVID-19 was first discovered, there was little knowledge about it, but studies
on similar viruses, such as other coronaviruses and RNA viruses, have been accumulated.
Using this knowledge to infer the characteristics of COVID-19, it may be possible to
accelerate the discovery of solutions for COVID-19.

In this study, we use word embedding and PubMed literature as the knowledge base
(Figure 1). Over the past decades, a huge number of studies on viruses, drugs, proteins,
and biological entities have been accumulated in PubMed. We try to apply inference
of word embedding to the PubMed knowledge base to interpret the characteristics of
COVID-19, even when knowledge of COVID-19 is still insufficient. For this, we strive to
establish a knowledge base that fully represents the biomedical knowledge collection of
the 2010s, that is, a balanced knowledge base, not biased towards a specific area. Then, a
modified knowledge base is built by adding a small initial collection of early COVID-19-
related articles (new thing). The knowledge base and the modified knowledge base are
built into the pretrained model and final model through the word embedding technique.
If the pretrained model expresses the knowledge base well, the modified knowledge
base, inferring the relationship between the new term and pre-existing words, will be
meaningful for understanding the characteristics of the new thing, i.e., COVID-19. To
infer characteristics about COVID-19, we analyze the relationship between COVID-19
and two biomedical entities, namely drugs (chemicals), and proteins interacting with
COVID-19. Where limited studies on COVID-19 and SARS-CoV-2 have been reported, we
attempt to enhance our understanding of the virus using the existing knowledge stock
on coronaviruses based on a modified knowledge base. This study aims to examine the
potential of drug repurposing by applying word embedding to the PubMed literature. The
relationship between COVID-19 and drugs as well as COVID-19 and proteins can then be
deduced by the trained model.
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mation sources that can be analyzed by extracting the subject keywords of publications. 
Using all the sentences included in the abstract of a given publication for the construction 
of the word embedding model, it would be possible to extract more keywords and rela-
tionships between keywords in text contents. However, if so, significant noise removal 
and keyword refinement are required, and this will take a long time. It is a matter of choice 
as to whether to secure a richer keyword dictionary or a refined keyword dictionary with-
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The analyzed dataset included 7,804,687 articles from PubMed published between 
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teristics of COVID-19, all COVID-19-related articles published before March 18, 2020, 
were downloaded from PubMed. COVID-19-related articles that were not tagged with 
MeSH or SN terms were included using the Other Term (OT) field, which refers to the 
author keyword field. Unlike MeSH or SN terms, the OT category does not have a con-
trolled vocabulary; thus, we further cleaned the terms. Keywords referring to COVID-19, 
such as “SARS-COV-19,” “2019 Novel Coronavirus,” and “Corona Virus disease 2019,” 
were all combined as COVID-19. The rest of the Other Terms were also appropriately re-
fined. A total of 539 COVID-19-related articles were included in the analysis using OT. 

2.1.1. Medical Subject Headings (MeSH) 
Each article on PubMed has several MeSH tags that represent the nature of the arti-

cle’s subject. MeSH terms have 16 large categories: (a) Anatomy, (b) Organisms, (c) Dis-
eases, (d) Chemicals and Drugs, (e) Analytical, Diagnostics and Therapeutic Techniques, 
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Named Groups; (n) Health Care; (o) Publication Characteristics; and (p) Geographical. 
Articles, each of which can have as few as one or as many as 40 or more tags. If two MeSH 

Figure 1. Conceptual diagram of research design.

2. Materials and Methods
2.1. Data: PubMed Literature

SARS-CoV-2 is a novel coronavirus, and the detrimental impact of the disease is too
great to wait until enough research has been conducted to find a solution. Our aim is to
determine information on SARS-CoV-2 using accumulated knowledge on known viruses,
particularly coronaviruses, on PubMed, which is the largest and most updated literature
database for research in the fields of biomedical and life sciences. The PubMed literature has
a plethora of information on various subjects, which can be identified using the Medical
Subject Headings (MeSH) and Substance Name (SN) of Unique Ingredient Identifiers
(UNII), and the Chemical Abstracts Service (CAS) fields. MeSH and SN provide information
sources that can be analyzed by extracting the subject keywords of publications. Using
all the sentences included in the abstract of a given publication for the construction of the
word embedding model, it would be possible to extract more keywords and relationships
between keywords in text contents. However, if so, significant noise removal and keyword
refinement are required, and this will take a long time. It is a matter of choice as to whether
to secure a richer keyword dictionary or a refined keyword dictionary without noise, and
we chose the latter for accurate inferring. To block data contamination fundamentally
and to efficiently process and analyze data, we only used a controlled subject vocabulary
from MeSH and SN. Regarding the PubMed literature pertaining to these two fields, we
attempted to identify associations between COVID-19 and drugs as well as COVID-19
and proteins.

The analyzed dataset included 7,804,687 articles from PubMed published between
2010 and 2019; these articles were tagged with MeSH and SN terms. To infer the character-
istics of COVID-19, all COVID-19-related articles published before 18 March 2020, were
downloaded from PubMed. COVID-19-related articles that were not tagged with MeSH
or SN terms were included using the Other Term (OT) field, which refers to the author
keyword field. Unlike MeSH or SN terms, the OT category does not have a controlled
vocabulary; thus, we further cleaned the terms. Keywords referring to COVID-19, such as
“SARS-COV-19,” “2019 Novel Coronavirus,” and “Corona Virus disease 2019,” were all
combined as COVID-19. The rest of the Other Terms were also appropriately refined. A
total of 539 COVID-19-related articles were included in the analysis using OT.

2.1.1. Medical Subject Headings (MeSH)

Each article on PubMed has several MeSH tags that represent the nature of the article’s
subject. MeSH terms have 16 large categories: (a) Anatomy, (b) Organisms, (c) Diseases,
(d) Chemicals and Drugs, (e) Analytical, Diagnostics and Therapeutic Techniques, and
Equipment, (f) Psychiatry and Psychology, (g) Phenomena and Processes, (h) Disciplines
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and Occupations, (i) Anthropology, Education, Sociology, and Social Phenomena; (j) Tech-
nology, Industry, and Agriculture; (k) Humanities; (l) Information Science; (m) Named
Groups; (n) Health Care; (o) Publication Characteristics; and (p) Geographical. Articles,
each of which can have as few as one or as many as 40 or more tags. If two MeSH terms are
tagged in the same article, the two MeSH terms are defined as being associated with one an-
other. MeSH terms with a known pharmacological action are indexed as Pharmacological
Action terms in the MeSH vocabulary system.

2.1.2. Substance Name (SN)

When an article on PubMed literature mentions substances registered in the Unique
Ingredient Identifier (UNII) and the Chemical Abstracts Service (CAS), the substance name
becomes tagged in the Registry Number/EC Number and Substance Name fields. Registry
Number and EC Number are codes registered in UNII and CAS, respectively, whereas
Substance Name refers to the identification of the substance. Each article may have more
than 20 substances tagged. If two substances are tagged in the same article, they are
assumed to be associated with one another. Substance Names sometimes overlap with
MeSH, but this rarely occurs. Of note, protein names are listed as broad terms in the MeSH
vocabulary system, whereas they are listed in detail, along with the source, such as human,
mouse, rat, or virus, in the Substance Name system.

2.1.3. Vocabulary Combing MeSH, SN, and OT Terms

In the present study, a knowledge base was established using literature from PubMed.
COVID-19-related articles were used to extract the relationship between COVID-19 and
drugs and COVID-19 and proteins. The MeSH and SN terms, which efficiently express the
subject of the article with little noise, were used to structure the knowledge base. For each
article, the MeSH and SN terms were merged to create the combined vocabulary. The word-
embedding model, a machine-learning technique, was then generated using co-occurrence
relation information. To build the final model from the COVID-19-related article set, the
OT terms of the COVID-19-related articles were added to expand the vocabulary further.

2.2. Model: Word Embedding with FastText

To broaden our understanding of COVID-19 and to infer new information about
this disease, a new knowledge base needs to be established using existing knowledge
bases. This study aims to produce a word-embedding model using an already established
knowledge base, and to create a new knowledge base that allows the effective comparison
and inference of the relationship between newly added information and the existing
information. Knowledge base refers to the stock of knowledge that has been accumulated
by researchers over the years. As COVID-19 is a novel issue, we aimed to build a knowledge
base using the PubMed literature from the past ten years. Using the word-embedding
model, every term within the knowledge base can be expressed as a vector; consequently,
the relationship between terms can be calculated by vector computation.

Word embedding converts the sparse matrix that expresses relationships among
numerous keywords (as the number of dimensions equals the number of keywords) into a
dense matrix that condenses the number of dimensions (i.e., 100–200 dimensions). This
allows the expression of keyword characteristics as vectors. All keywords within the
vocabulary are expressed as vectors with appropriate dimensions, enabling the analysis
of relationships among keywords using vector algebra. In addition, keyword analogy
becomes possible, allowing a more efficient display of keyword relationships.

Common word-embedding models include Word2Vec [24] and FastText [25] for word-
level embedding, and BERT (bidirectional encoder representations for transformers) [26]
for sentence-level embedding. In this study, word-level embedding was used to embed
biomedical terminology tagged in articles, such as MeSH and SN terms, with minimal
noise and without requiring natural language processing or named entity recognition for
sentences. We also tried to build our own pretrained and final models, considering the
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formation of an organic relationship between the two knowledge bases. Word2Vec and
FastText employ very similar embedding methods; however, FastTex was selected for this
study because it has a superior sub word-level analysis and out-of-vocabulary capabilities.
Moreover, FastText can utilize the packages created by Facebook and Python-based Gensim.
For this study, the Gensim package for FastText was used.

2.2.1. Pretrained Model

FastText can use continuous-bag-of-words and skipgram models to infer relationships
between words; in this study, the latter was used. MeSH and SN terms tagged in PubMed
literature between 2010 and 2019 were used as data for FastText. The vocabulary consisted
of 53,216 terms.

The three hyperparameters that have major impacts on the model characteristics in
FastText (vector size, window size, and number of epochs) were tested for model optimiza-
tion, whereas default values were used for other parameters. Vector size, which refers to
the dimension of a word vector, was tested in 100, 150, and 200 settings. Window size,
which describes the size of the context window used in measuring word pair relationships
when building the word-embedding model, can go beyond 60 MeSH and SN terms per
article. Therefore, window size was tested in 40, 50, and 60 settings. The number of epochs
was tested in 10, 15, and 20 settings.

As the FastText model building in the present study was an unsupervised training,
the following evaluation methods were applied for the model optimization test. First, the
evaluate_word_pairs method provided by the Gensim package for FastText functions was
utilized to perform plausibility validation of the medical term relation in the model. This
method is similar to the one used by the National Center for Biotechnology Information
(NCBI) of the US National Library of Medicine. According to [27], NCBI builds the
word embedding model of PubMed and MeSH data using FastText; model evaluation
is performed by measuring word pair similarity using Medical Resident Relatedness Set
(UMNSRS) medical term pairs [28] from the University of Minnesota Pharmacy Informatics
Lab. UMNSRS was developed by experts who manually evaluated the relatedness of
588 medical concept pairs. Out of these, the authors selected 145 pairs that were MeSH
terms and used them for pretrained model evaluations. The evaluate_word_pairs method
from Gensim calculates the Pearson correlation coefficient and the Spearman correlation
coefficient between the FastText model and the list of UMNSRS medical term pairs. The
model by [27] at NCBI showed a similarity of 0.660 to UMNSRS medical term pairs. The
similarity to UMNSRS medical term pairs in this study had a Pearson correlation coefficient
of above 0.667 and a Spearman correlation coefficient of above 0.663, as summarized in
Table 1. Second, the country-capital pair list from Google’s question-answer.txt, which is a
widely used list to evaluate word embedding of common words that appeared in PubMed
literature, was also assessed. This method utilizes the analogy between word vectors in
the word-embedding model and measures the agreement accuracy of the country–capital
analogy relationship. As summarized in Table 1, the accuracy was above 0.785. Based on
the two evaluations, the authors determined a vector size of 200, a window size of 50, and
number of epochs of 10 as the optimal settings for the pretrained word-embedding model.
A different model that exhibited higher accuracy in the second evaluation was considered;
however, the results from the first evaluation were considered to be more relevant, as this is
an embedding model for biomedical terms, and the Q-A accuracy of the model was found
to be high (above 0.928).
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Table 1. Word-embedding model evaluation results based on hyperparameter combinations.

No.

Hyperparameters Evaluation_1 Evaluation_2

Vector
Size

Window
Size

Number of
Epochs

Pearson Correlation
Similarity

Spearman Correlation
Similarity Q-A

Accuracy
Coefficient p-Value Coefficient p-Value

1 100 40 10 0.6774 2.13 × 10−20 0.6774 2.10 × 10−20 0.8810
2 100 40 15 0.6708 6.71 × 10−20 0.6776 2.02 × 10−20 0.8095
3 100 40 20 0.6687 9.62 × 10−20 0.6667 1.34 × 10−19 0.8095
4 100 50 10 0.6718 5.61 × 10−20 0.6759 2.77 × 10−20 0.8333
5 100 50 15 0.6634 2.34 × 10−19 0.6632 2.42 × 10−19 0.7857
6 100 50 20 0.6688 9.43 × 10−20 0.6713 6.10 × 10−20 0.8810
7 100 60 10 0.6747 3.41 × 10−20 0.6820 9.25 × 10−21 0.8810
8 100 60 15 0.6715 5.89 × 10−20 0.6736 4.10 × 10−20 0.8810
9 100 60 20 0.6745 3.51 × 10−20 0.6810 1.11 × 10−20 0.8571

10 150 40 10 0.6711 6.38 × 10−20 0.6816 9.99 × 10−21 0.9048
11 150 40 15 0.6749 3.29 × 10−20 0.6864 4.15 × 10−21 0.9762
12 150 40 20 0.6718 5.65 × 10−20 0.6802 1.29 × 10−20 0.9762
13 150 50 10 0.6775 2.07 × 10−20 0.6931 1.21 × 10−21 0.9286
14 150 50 15 0.6781 1.88 × 10−20 0.6914 1.66 × 10−21 0.9524
15 150 50 20 0.6772 2.19 × 10−20 0.6891 2.56 × 10−21 0.9762
16 150 60 10 0.6708 6.70 × 10−20 0.6817 9.79 × 10−21 0.9524
17 150 60 15 0.6780 1.89 × 10−20 0.6928 1.27 × 10−21 0.9762
18 150 60 20 0.6695 8.39 × 10−20 0.6796 1.42 × 10−20 0.9286
19 200 40 10 0.6714 6.05 × 10−20 0.6849 5.52 × 10−21 0.9524
20 200 40 15 0.6718 5.66 × 10−20 0.6856 4.81 × 10−21 0.9524
21 200 40 20 0.6700 7.66 × 10−20 0.6833 7.39 × 10−21 0.9048
22 200 50 10 0.6783 1.81 × 10−20 0.6936 1.09 × 10−21 0.9286
23 200 50 15 0.6761 2.64 × 10−20 0.6908 1.86 × 10−21 0.8810
24 200 50 20 0.6716 5.86 × 10−20 0.6843 6.13 × 10−21 0.9286
25 200 60 10 0.6708 6.65 × 10−20 0.6847 5.71 × 10−21 0.9524
26 200 60 15 0.6755 2.96 × 10−20 0.6875 3.39 × 10−21 1.0000
27 200 60 20 0.6669 1.30 × 10−19 0.6774 2.11 × 10−20 0.9524

2.2.2. Final Model

The pretrained model was a word-embedding model using MeSH and SN terms
from PubMed literature between 2010 and 2019. The final model was built by adding
to the pretrained model the set of articles on COVID-19 published in 2020. As the num-
ber of COVID-19 articles tagged with MeSH and SN terms is not large, OT terms were
used instead. The final model is a modified model, where a new thing, in other words,
COVID-19, was added to the pretrained model; the root of this model was the same as
that of the pretrained model. Therefore, vector size and window size among the three
hyperparameters from the pretrained model were applied as fixed parameters in the final
model. For the evaluation of the final model, only the number of epochs was used as
a variable. Further, the final model evaluation requires a different method than the one
used in the evaluation of the pretrained model. This is because the objectives of the two
models are different. The pretrained model aims to build a knowledge base from the
2010s, whereas the final model aims to infer the characteristics of COVID-19. Word pair
evaluation was applied to the pretrained model to structure the biomedical knowledge
base using biomedical terms. In contrast, the final model needed to be evaluated to predict
the characteristics of COVID-19 accurately using the pretrained model. However, in the
early stage of research on COVID-19, there were not many publications on COVID-19;
hence, a model that overfits only a very small part of what humanity has learned about
COVID-19 would not be adequate. One solid basic knowledge about COVID-19 is that it
is caused by RNA viruses. Therefore, we selected the most effective model based on the
measured similarity of the COVID-19 term to RNA virus terms. As summarized in Table 2,
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the number of epochs ranged from 10 to 150, and the similarity between COVID-19 terms
and RNA virus terms were measured. As the number of epochs increases, the learning is re-
peated, building a word embedding model that well describes the data of COVID-19 added
to the final model, but at some point overfitting may occur, which hinders inferring about
COVID-19. Therefore, we have to determine the appropriate number of epochs according
to the evaluation method and build a final model. The average similarity increases as the
number of epochs increases, reaches a maximum value at 110, and then tends to saturate
somewhat. The highest average similarity was found with 110 epochs. Therefore, the final
model used 110 epochs, and its vocabulary ultimately consisted of 53,316 terms, owing
to the addition of the OT terms extracted from the COVID-19 article set to the pretrained
model’s vocabulary.

Table 2. Final model evaluation results based on the number of epochs.

No. Number of Epochs
Evaluation for Final Model

COVID-19 with RNA Virus Term Similarity

1 10 0.4112
2 20 0.4524
3 30 0.4696
4 40 0.4779
5 50 0.4778
6 60 0.4802
7 70 0.4822
8 80 0.4835
9 90 0.4850
10 100 0.4862
11 110 0.4873
12 120 0.4867
13 130 0.4851
14 140 0.4853
15 150 0.4854

3. Results

The following COVID-19-related drugs and proteins were extracted from the final
model. From the list of drugs available, the authors focused on anti-infective drugs. For
MeSH terms, Pharmacological Actions keywords are provided along with the drugs. The
authors selected the following Pharmacological Action drugs to filter for anti-infective
drugs: Anti-Bacterial Agents; Antibiotics, Antifungal; Antibiotics, Antineoplastic; Antibi-
otics, Antitubercular; Anti-Infective Agents; Anti-Infective Agents, Local; Anti-Infective
Agents, Urinary; Antimalarials; Antiprotozoal Agents; Antitubercular Agents; Anti-HIV
Agents; Antiviral Agents; HIV Fusion Inhibitors; HIV Integrase Inhibitors; and HIV Pro-
tease Inhibitors. Using these terms, a total of 401 anti-infective drugs emerged. Within
the final model, the similarity between anti-infective drugs and COVID-19 was measured
to assess for any relationship. Table 3 lists the top 100 out of the 401 anti-infective drugs
that were related to the COVID-19 vaccine or to the treatment drugs currently being devel-
oped. The drugs in Table 3 that are highlighted in gray represent those that showed low
relevance to COVID-19, compared with the top 100 drugs; however, these are currently
being studied as potential vaccines or treatments. Excelra [29], the ReDO Project [30], and
DrugBank [31] summarize the drugs that are being repurposed as potential COVID-19
vaccines or treatments. The authors compared these three drug repurposing databases
and the final model results from the current study, and the comparison results are listed
in Table 3, Reference column. Out of the 401 anti-infective drugs the authors selected,
64 drugs were identified to be in current development as COVID-19 vaccines or treatments.
Based on the relevance to COVID-19, 33 repositioning candidate drugs were identified
in the top 100 drugs. The imipenem and cilastatin drug combination (under the brand
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name Primaxin), which revealed the highest similarity, is a treatment for severe infections
affecting the heart, lungs, bladder, kidney, skin, blood, bones, stomach, and the female
reproductive organs. With the spread of COVID-19, the U.S. FDA approved the antibiotic
combination of imipenem–cilastatin and relbactam (Recarbio) for the treatment of hospital-
acquired bacterial pneumonia and ventilator associated bacterial pneumonia. Oseltamivir
and chloroquine, the two drugs that were most frequently mentioned in the media in
the first half of 2020, also showed a very high relevance to COVID-19. The amoxicillin
and clavulanate potassium combination, more commonly known under the trade name
Augmentin, is an antibiotic that is widely used for sinusitis, bronchitis, pneumonia, ear
infections, and urinary tract and skin infections. Currently, clinical trials utilizing amoxi-
cillin/clavulanate alone or in combination of azithromycin with amoxicillin/clavulanate
are ongoing. The trimethoprim–sulfamethoxazole drug combination (Bactrim), which has
excellent antibacterial activity against gram-negative bacteria and staphylococcus, is also
an antibiotic used for the treatment of ear infections, urinary tract infections, bronchitis,
traveler’s diarrhea, shigellosis, and Pneumocystis jirovecii pneumonia. The drug is currently
in clinical trials for its use with Anakinra, an IL-1 receptor antagonist indicated for the
treatment of the COVID-19-induced hyperimmune respiratory failure (aka cytokine storm).

Table 3. List of drugs extracted from the final model with high relevance to COVID-19.

No
Drug Medical Subject Heading (MeSH) Terms for
Anti-Infective PHARMACOLOGICAL Action
from the Final Model

Original Indication Reference

1 Cilastatin, Imipenem Drug Combination Bacterial infection

2 Oseltamivir Influenza virus infection PMID: 12690091,
NCT04345419 et al., 7 cases

3 Chloroquine Malaria PMID: 32074550,
NCT04286503 et al., 29 cases

4 Amoxicillin-Potassium Clavulanate Combination Bacterial infection NCT04363060

5 Trimethoprim, Sulfamethoxazole Drug Combination Bacterial infection NCT04357366, NCT03489629

6 Emtricitabine, Rilpivirine, Tenofovir Drug Combination HIV/AIDS

7 Colistin Bacterial infection ChiCTR2000032242 (China)

8 Interferons Viral infection, Cancer NCT04379518 et al., 9 cases

9 Artemether, Lumefantrine Drug Combination Malaria

10 Penicillin Bacterial infection

11 Bacteriocins Bacterial infection

12 Amdinocillin Bacterial infection

13 Tigecycline Bacterial infection PMID: 28700943

14 Streptogramins Bacterial infection

15 Teicoplanin Bacterial infection IRCT20161204031229N3 (Iran)

16 Palivizumab Viral infection

17 Aztreonam Bacterial infection

18 Meropenem Bacterial infection

19 Azlocillin Bacterial infection

20 Silver Proteins Antiseptics

21 Imipenem Bacterial infection

22 Ribavirin Viral infection PMID: 22555152, NCT04392427

23 Lincosamides Bacterial infection
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Table 3. Cont.

No
Drug Medical Subject Heading (MeSH) Terms for
Anti-Infective PHARMACOLOGICAL Action
from the Final Model

Original Indication Reference

24 Piperacillin, Tazobactam Drug Combination Bacterial infection NCT02735707

25 Polymyxins Bacterial infection

26 Emtricitabine, Tenofovir Disoproxil Fumarate
Drug Combination HIV/AIDS NCT04329520

27 Mefloquine Malaria NCT04347031

28 Methicillin Bacterial infection

29 Zanamivir Influenza A virus infection PMID: 15200845

30 Rimantadine Influenza A virus infection PMID: 31133031, 15288617

31 Valganciclovir Viral infection

32 Amantadine
Dyskinesia associated with
parkinsonism, influenza
infection

33 Cephalosporins Bacterial infection

34 Ampicillin Bacterial infection

35 Doripenem Bacterial infection

36 Simeprevir HCV infection

37 Lopinavir HIV/AIDS NCT04372628 et al., 37 cases

38 Cefamandole Bacterial infection

39 Ceftriaxone Bacterial infection NCT02735707

40 Thienamycins Bacterial infection

41 Penicillic Acid Bacterial infection

42 Sisomicin Bacterial infection

43 Ganciclovir Cytomegalovirus retinitis PMID: 32166607

44 Primaquine Malaria NCT04349410

45 Sulfalene Bacterial infection

46 Azithromycin Bacterial infection NCT04332107 et al. 67 cases

47 Vancomycin Bacterial infection NCT02667418

48 Spectinomycin Bacterial infection

49 Efavirenz, Emtricitabine, Tenofovir Disoproxil
Fumarate Drug Combination HIV/AIDS

50 Minocycline Bacterial infection NCT03489629

51 Leucomycins Bacterial infection

52 Ticarcillin Bacterial infection

53 Linezolid Bacterial infection PMID: 16127068, 16723564,
22094260

54 Ertapenem Bacterial infection

55 Clindamycin Bacterial infection NCT04349410

56 Chloramphenicol Bacterial infection PMID: 23148581

57 Doxycycline Bacterial infection NCT04370782 et al., 6 cases

58 Hydroxychloroquine Malaria NCT04358068 et al., 177 cases
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Table 3. Cont.

No
Drug Medical Subject Heading (MeSH) Terms for
Anti-Infective PHARMACOLOGICAL Action
from the Final Model

Original Indication Reference

59 Famciclovir viral infection

60 Tyrocidine Bacterial infection

61 Acyclovir viral infection

62 Nisin Bacterial infection

63 Nebramycin Bacterial infection

64 Penicillanic Acid Bacterial infection

65 Elvitegravir, Cobicistat, Emtricitabine, Tenofovir
Disoproxil Fumarate Drug Combination HIV/AIDS

66 Pristinamycin Bacterial infection

67 Nevirapine HIV/AIDS

68 Lamivudine HIV/AIDS

69 Piperacillin Bacterial infection NCT04394182

70 Valacyclovir viral infection

71 Viomycin Bacterial infection

72 Emtricitabine HIV/AIDS NCT04334928

73 Ceftazidime Bacterial infection

74 Artemisinins Malaria

75 Josamycin Bacterial infection

76 Telbivudine viral infection

77 Fidaxomicin Bacterial infection NCT02667418

78 Edeine Bacterial infection

79 Cefoxitin Bacterial infection

80 Proguanil Malaria

81 Fosfomycin Bacterial infection

82 Metha-cycline Bacterial infection

83 Tylosin Bacterial infection

84 Sulbactam Bacterial infection

85 Amikacin Bacterial infection

86 Ritonavir HIV/AIDS NCT04372628 et al., 43 cases

87 Sulfa-doxine Malaria

88 Dihydrostreptomycin Sulfate Bacterial infection

89 Cefotaxime Bacterial infection

90 Cefotetan Bacterial infection

91 Hexetidine Bacterial infection

92 Atovaquone Pneumocystis pneumonia,
toxoplasmosis, malaria NCT04339426

93 Oxacillin Bacterial infection

94 Daptomycin Bacterial infection

95 Rilpivirine HIV/AIDS
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Table 3. Cont.

No
Drug Medical Subject Heading (MeSH) Terms for
Anti-Infective PHARMACOLOGICAL Action
from the Final Model

Original Indication Reference

96 Sofosbuvir Hepatitis C virus infection NCT04443725

97 Streptomycin Bacterial infection

98 Artesunate Malaria NCT04387240

99 Hepcidins Antimicrobial peptide

100 Sparsomycin Bacterial infection
108 Tenofovir Viral infection IRCT20200421047155N1

134 Mupirocin Impetigo and secondary skin
infection NCT03489629

137 Inosine Pranobex Viral infection NCT04360122, NCT04383717
142 Cytarabine Leukemia NCT02310321
149 Clarithromycin Bacterial infection NCT04398004
150 Itraconazole Fungal infection 2020-001243-15 (Begium)
154 Amoxicillin Bacterial infection NCT04363060
157 Tazobactam Bacterial infection NCT04394182
160 Cobicistat HIV-1 infection NCT04425382 et al., 3 cases

175 Quinacrine Malaria PMID: 23301007, 31307979,
32194980

186 Darunavir HIV-1 infection NCT04435587 et al., 4 cases
191 Iodine Breast disorders and pain NCT04344236
194 Indinavir HIV/AIDS PMID: 15144898
199 Clavulanic Acid Bacterial infection NCT04363060
202 Mycophenolic Acid Organ rejection PMID: 5799033
204 Maraviroc HIV infection NCT04435522, NCT04441385
220 Chlorhexidine Antiseptics NCT04344236, NCT03489629
235 Trimethoprim Bacterial infection NCT04357366, NCT03489629
247 Sulfamethoxazole Bacterial infection NCT04357366, NCT03489629
253 Acetylcysteine Mucolytics NCT04419025 et al. 4 cases
257 Dactinomycin Cancer PMID: 1335030, 32194980
269 Atazanavir Sulfate HIV-1 infection NCT02016924
277 Idarubicin Acute Myeloid Leukemia NCT02310321
284 Hydrogen Peroxide Disinfectant and Sterilizer NCT04409873
291 Povidone-Iodine Infection NCT04410159 et al., 7 cases
294 Sirolimus Organ rejection NCT04374903 et al., 3 cases
298 Methylene Blue Methemoglobinemia NCT04376788, NCT04370288
350 Pyrazinamide Tuberculosis NCT04349241
362 Camphor Coughing PMID: 27823881, 32194980
367 Cetylpyridinium Bacterial infection NCT04409873
374 Daunorubicin Cancer PMID: 9647783

Most of the potential drugs with the highest relevance (top 100) to COVID-19 were
drugs for bacterial infections (antibiotics). Several drugs for viral infections were also on
the list. Various anti-retrovirals (used in HIV/AIDS) and anti-malarial drugs were also
shown to have high relevance to COVID-19.

To indirectly confirm the robustness of our final model, we compared the drug list of
10 models with different numbers of epochs. The top relevance drug list barely changed,
and only the bottom relevance (about 10%) drug list showed small changes, indicating that
our final model is robust and the list of potential drugs with the highest relevance (top 100)
is a stable result.

Using a similar method, protein terms with high relevance to COVID-19 were extracted
from the final model. Only the 5366 proteins that are of either human or coronavirus origin
were extracted, and their relevance to COVID-19 was then analyzed. Table 4 lists the top
100 proteins relevant to COVID-19. The proteins highlighted in gray in Table 4 indicate
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those that showed low relevance to COVID-19 but are known to be human proteins that
interact with COVID-19. Information on the human proteins that are known to interact
with COVID-19 and on known proteins of COVID-19 can be found in [32] and in the study
by [7]. Protein descriptions, gene names, and COVID-19 bait columns in Table 4 also lists
the COVID-19 interacting proteins. In particular, COVID-19 viral proteins were identified
as proteins with high relevance to COVID-19 in the final model, along with angiotensin
converting enzyme 2, which is known as the COVID-19 entry receptor. Among the top 100
highly-relevant proteins, the following were identified: six SARS-CoV-2 viral proteins listed
in The Human Protein Atlas (M protein, coronavirus; nsp1 protein, SARS coronavirus;
nsp14 protein, SARS coronavirus; 3C-like proteinase, coronavirus; nonstructural protein 3,
SARS coronavirus; Nsp16 protein, SARS virus) and three human proteins (angiotensin
converting enzyme 2; NARS2 protein, human; ALG8 protein, human).

Table 4. List of coronavirus or human proteins extracted from the final model with high relevance to COVID-19 with protein
description, gene name and covid-19 bait information.

No Protein Substance Name (SN) Terms of Human
and Coronavirus from the Final Model Protein Description Gene Name Covid-19 Bait

1 M protein, Coronavirus SARS-CoV-2 Viral Protein (M)

2 Nsp1 protein, SARS coronavirus SARS-CoV-2 Viral Protein (nsp1)

3 nsp14 protein, SARS coronavirus SARS-CoV-2 Viral Protein
(nsp14)

4 3C-like proteinase, Coronavirus SARS-CoV-2 Viral Protein (nsp5)

5 dynorphin converting enzyme

6 COG2 protein, human

7 nonstructural protein 3, SARS coronavirus SARS-CoV-2 Viral Protein (nsp3)

8 angiotensin converting enzyme 2 SARS-CoV-2 entry receptors ACE2

9 COX6A1 protein, human

10 poly U polymerase

11 CORIN protein, human

12 COX8C protein, human

13 Nsp16 protein, SARS virus SARS-CoV-2 Viral Protein (nsp16)

14 COX5A protein, human

15 COQ5 protein, human

16 GBE1 protein, human

17 transmembrane serine protease 2, human

18 sfericase

19 CPVL protein, human

20 COX4I1 protein, human

21 LARS2 protein, human

22 COX5B protein, human

23 NARS2 protein, human SARS-CoV-2 interacting protein NARS2 SARS-CoV-2 nsp8

24 UL49A protein, Human herpesvirus 2

25 COX6B1 protein, human

26 PARS2 protein, human

27 hydrogenase maturating endopeptidase HYBD

28 VARS2 protein, human
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Table 4. Cont.

No Protein Substance Name (SN) Terms of Human
and Coronavirus from the Final Model Protein Description Gene Name Covid-19 Bait

29 human airway trypsin-like protease

30 ERI1 protein, human

31 Myxo-bacter alpha-lytic proteinase

32 AARS2 protein, human

33 RARS2 protein, human

34 Tli polymerase

35 ADAM29 protein, human

36 HPN protein, human

37 O-antigen polymerase

38 SPEG protein, human

39 CLPB protein, human

40 FONG protein, human

41 ERManI protein, human

42 PDIK1L protein, human

43 ALG8 protein, human SARS-CoV-2 interacting protein ALG8 SARS-CoV-2 orf9c

44 NVL protein, human

45 HFM1 protein, human

46 HARS2 protein, human

47 COASY protein, human

48 TMPRSS13 protein, human

49 C1RL protein, human

50 COX20 protein, human

51 ECEL1 protein, human

52 NARFL protein, human

53 GANAB protein, human

54 AFG3L2 protein, human

55 TSEN54 protein, human

56 ERAL1 protein, human

57 m-AAA proteases

58 KY protein, human

59 TMEM129 protein, human

60 KEL protein, human

61 APH1B protein, human

62 MGME1 protein, human

63 ATL3 protein, human

64 oxacillinase

65 COX10 protein, human

66 MYORG protein, human

67 hemagglutinin-protease

68 Tiki1 protein, human



Int. J. Environ. Res. Public Health 2021, 18, 3005 14 of 18

Table 4. Cont.

No Protein Substance Name (SN) Terms of Human
and Coronavirus from the Final Model Protein Description Gene Name Covid-19 Bait

69 FIGN protein, human

70 ATL1 protein, human

71 RLGP protein, human

72 FbxL4 protein, human

73 hemorrhagic metalloproteinase

74 3C proteases

75 HEXB protein, human

76 GNPTG protein, human

77 ADAM23 protein, human

78 NSF protein, human

79 RNA polymerase SP6

80 ADAM22 protein, human

81 IntS9 protein, human

82 SERAC1 protein, human

83 RPL41 protein, human

84 pokeweed antiviral protein

85 COX15 protein, human

86 small cardioactive peptide A

87 DARS2 protein, human

88 AGBL5 protein, human

89 LARGE1 protein, human

90 COX4I2 protein, human

91 NHLH1 protein, human

92 MINDY2 protein, human

93 DHX29 protein, human

94 RNA polymerase Esigma(38)

95 ADAM30 protein, human

96 DLG2 protein, human

97 Ric-8b protein, human

98 UST protein, human

99 Deep Vent DNA polymerase

100 PIGL protein, human
143 EXOSC8 protein, human SARS-CoV-2 interacting protein EXOSC8 SARS-CoV-2 nsp8
163 PITRM1 protein, human SARS-CoV-2 interacting protein PITRM1 SARS-CoV-2 M
172 NGLY1 protein, human SARS-CoV-2 interacting protein NGLY1 SARS-CoV-2 orf8
177 ALG11 protein, human SARS-CoV-2 interacting protein ALG11 SARS-CoV-2 nsp4

281 TMPRSS2 protein, human SARS-CoV-2 entry
associated proteases TMPRSS2

345 PCSK6 protein, human SARS-CoV-2 interacting protein PCSK6 SARS-CoV-2 orf8
352 MDN1 protein, human SARS-CoV-2 interacting protein MDN1 SARS-CoV-2 orf7a
360 ERMP1 protein, human SARS-CoV-2 interacting protein ERMP1 SARS-CoV-2 orf9c
384 QSOX2 protein, human SARS-CoV-2 interacting protein QSOX2 SARS-CoV-2 nsp7
392 HectD1 protein, human SARS-CoV-2 interacting protein HECTD1 SARS-CoV-2 nsp8
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Table 4. Cont.

No Protein Substance Name (SN) Terms of Human
and Coronavirus from the Final Model Protein Description Gene Name Covid-19 Bait

497 USP54 protein, human SARS-CoV-2 interacting protein USP54 SARS-CoV-2 nsp12
502 NDUFB9 protein, human SARS-CoV-2 interacting protein NDUFB9 SARS-CoV-2 orf9c
577 NEU1 protein, human SARS-CoV-2 interacting protein NEU1 SARS-CoV-2 orf8
664 PRIM1 protein, human SARS-CoV-2 interacting protein PRIM1 SARS-CoV-2 nsp1
685 Cwc27 protein, human SARS-CoV-2 interacting protein CWC27 SARS-CoV-2 E
691 NDUFAF1 protein, human SARS-CoV-2 interacting protein NDUFAF1 SARS-CoV-2 orf9c
696 AASS protein, human SARS-CoV-2 interacting protein AASS SARS-CoV-2 M
716 FKBP10 protein, human SARS-CoV-2 interacting protein FKBP10 SARS-CoV-2 orf8
740 ATP6V1A protein, human SARS-CoV-2 interacting protein ATP6V1A SARS-CoV-2 M
756 Mov10 protein, human SARS-CoV-2 interacting protein MOV10 SARS-CoV-2 N
773 TCF12 protein, human SARS-CoV-2 interacting protein TCF12 SARS-CoV-2 nsp12
785 TBK1 protein, human SARS-CoV-2 interacting protein TBK1 SARS-CoV-2 nsp13
935 DDX21 protein, human SARS-CoV-2 interacting protein DDX21 SARS-CoV-2 N
938 DDX10 protein, human SARS-CoV-2 interacting protein DDX10 SARS-CoV-2 nsp8
1010 UPF1 protein, human SARS-CoV-2 interacting protein UPF1 SARS-CoV-2 N
1026 ACAD9 protein, human SARS-CoV-2 interacting protein ACAD9 SARS-CoV-2 orf9c
1080 ADAMTS1 protein, human SARS-CoV-2 interacting protein ADAMTS1 SARS-CoV-2 orf8
1118 GFER protein, human SARS-CoV-2 interacting protein GFER SARS-CoV-2 nsp10
1120 RNF41 protein, human SARS-CoV-2 interacting protein RNF41 SARS-CoV-2 nsp15
1145 ADAM9 protein, human SARS-CoV-2 interacting protein ADAM9 SARS-CoV-2 orf8
1217 PPT1 protein, human SARS-CoV-2 interacting protein PPT1 SARS-CoV-2 orf10
1300 LOX protein, human SARS-CoV-2 interacting protein LOX SARS-CoV-2 orf8
1450 MYCBP2 protein, human SARS-CoV-2 interacting protein MYCBP2 SARS-CoV-2 nsp12

1481 CTSL protein, human SARS-CoV-2 entry associated
proteases CTSL

1483 CYB5R3 protein, human SARS-CoV-2 interacting protein CYB5R3 SARS-CoV-2 nsp7
1621 NEK9 protein, human SARS-CoV-2 interacting protein NEK9 SARS-CoV-2 nsp9
1693 COMT protein, human SARS-CoV-2 interacting protein COMT SARS-CoV-2 nsp7
1709 MARK3 protein, human SARS-CoV-2 interacting protein MARK3 SARS-CoV-2 orf9b
1798 HS6ST2 protein, human SARS-CoV-2 interacting protein HS6ST2 SARS-CoV-2 orf8
1816 MARK2 protein, human SARS-CoV-2 interacting protein MARK2 SARS-CoV-2 orf9b
1840 Rab14 protein, human SARS-CoV-2 interacting protein RAB14 SARS-CoV-2 nsp7
1845 G3BP1 protein, human SARS-CoV-2 interacting protein G3BP1 SARS-CoV-2 N
1871 Rab10 protein, human SARS-CoV-2 interacting protein RAB10 SARS-CoV-2 nsp7
1957 MARK1 protein, human SARS-CoV-2 interacting protein MARK1 SARS-CoV-2 orf9b
2109 RAB8A protein, human SARS-CoV-2 interacting protein RAB8A SARS-CoV-2 nsp7
2279 USP13 protein, human SARS-CoV-2 interacting protein USP13 SARS-CoV-2 nsp13
2287 RAB5C protein, human SARS-CoV-2 interacting protein RAB5C SARS-CoV-2 nsp7
2346 PRKACA protein, human SARS-CoV-2 interacting protein PRKACA SARS-CoV-2 nsp13
2369 PLAT protein, human SARS-CoV-2 interacting protein PLAT SARS-CoV-2 orf8
2436 PTGES2 protein, human SARS-CoV-2 interacting protein PTGES2 SARS-CoV-2 nsp7
2598 BRD2 protein, human SARS-CoV-2 interacting protein BRD2 SARS-CoV2 E
2722 PLOD2 protein, human SARS-CoV-2 interacting protein PLOD2 SARS-CoV-2 orf8
2744 RALA protein, human SARS-CoV-2 interacting protein RALA SARS-CoV-2 nsp7
2847 DPP4 protein, human SARS-CoV-2 entry receptors DPP4
3039 NSD2 protein, human SARS-CoV-2 interacting protein NSD2 SARS-CoV-2 nsp8
3204 MIB1 ligase, human SARS-CoV-2 interacting protein MIB1 SARS-CoV-2 nsp9

3456 CTSB protein, human SARS-CoV-2 entry associated
proteases CTSB

4470 RHOA protein, human SARS-CoV-2 interacting protein RHOA SARS-CoV-2 nsp7
4471 SIRT5 protein, human SARS-CoV-2 interacting protein SIRT5 SARS-CoV-2 nsp14
4540 DNMT1 protein, human SARS-CoV-2 interacting protein DNMT1 SARS-CoV-2 orf8
4569 HMOX1 protein, human SARS-CoV-2 interacting protein HMOX1 SARS-CoV-2 orf3a
4663 IMPDH2 protein, human SARS-CoV-2 interacting protein IMPDH2 SARS-CoV-2 nsp14
4780 RIPK1 protein, human SARS-CoV-2 interacting protein RIPK1 SARS-CoV-2 nsp12
4929 HDAC2 protein, human SARS-CoV-2 interacting protein HDAC2 SARS-CoV-2 nsp5
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The drugs and proteins listed in Tables 3 and 4 are the COVID-19 related term list
extracted from PubMed MeSH and SN term-based word embedding model. When com-
paring these results with the latest references reflective of current research trends, some
were consistent, while others highlighted information not being investigated in the cur-
rent research.

4. Discussion and Conclusions

This research aimed to understand the characteristics of COVID-19, which is a novel
disease that humanity is currently facing, using the PubMed database, a knowledge base
that has been established over a long duration. To accomplish this, information from
PubMed literature pertaining to coronaviruses from the past decade was structured in a
word embedding model, and subsequently, the relationships between COVID-19 terms
and other biomedical terms were inferred. With the result of this study, proteins and drugs
with high relevance to COVID-19 were deduced.

The word embedding technique used in this study upgrades the field of knowledge
discovery from the biomedical literature, previously dealt with in bibliometrics, enabling
inference on the demand for knowledge with many uncertainties, such as that on COVID-
19. This helps to understand and discover new knowledge. The vector calculation and
mathematical modeling techniques of word embedding can play a role in advancing drug
development, which is time-consuming and costly, by adding inferencing capabilities to
the insufficient medical literature knowledge.

The result of this study is highly comparable to the biomedical demands of research
and development efforts to overcome the COVID-19 crisis. We expect that this list of drugs
and proteins, and their relevance to COVID-19, will help in identifying potential vaccine or
treatment candidates. This word embedding research model also provided an in-silico drug
design method for drug repurposing that can drastically reduce the time and cost of drug
development. With the urgent need for identifying drug candidates for COVID-19, various
data, tools and methods for drug repurposing are being introduced and analyzed. The
results of this study also provide a computational method to predict potential drug-target
interactions (DTIs).

This study exhibits three limitations. First, it only used MeSH and SN terms for word
embedding, which both has advantages and limitations. As to the advantages, these terms
are controlled vocabularies, and only technical terms were used to establish the model,
which virtually eliminates all noise. However, it might have excluded new terms that may
exist in plain texts. If plain texts such as abstracts would be included, natural language
processing and named entity recognition could be required. In this case, the BERT model
can be considered. Second, for drug repositioning, a broader consideration regarding
the pharmacological action of drugs as anti-infective drugs should have been included.
Recently, there have been cases of drugs being used for an entirely different indication;
for example, anti-tumor drugs and anti-parasitic drugs are also being studied as potential
COVID-19 treatments. As this study aims to expand our knowledge of COVID-19, it may
also be necessary to observe more broadly its relevance to COVID-19. Third, adding more
databases beyond PubMed can provide more information. In particular, adding clinical
trials databases could be helpful in enriching the information by including data on the
latest commercial drugs.

Follow-up research is needed to overcome these limitations. Future research should
include the entire list of drug substance terms, as well as anti-infective drugs, for analysis
in order to produce helpful results for drug repositioning for COVID-19. This is because,
like the cases in which new indications were added for drugs with completely different
indications in the past, it is not possible to rule out the possibility that a drug that appears
to be irrelevant will appear as a therapeutic candidate for COVID-19. Furthermore, a word
embedding model using clinical trial databases, in addition to PubMed literature, needs to
be established. With the addition of pharmacokinetic prediction, the list of potential vaccine
or treatment candidates could become more meaningful and more useful information.
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Studies to understand the interaction between drugs and proteins by applying a clustering
technique to the drug list and protein list related to COVID-19, or studies applying the
BERT model, are also meaningful as follow-up studies. If we approach the pandemic from
the perspective of an X-event like a major accident [33], machine learning-based modeling
studies of complex systems for the spread of infectious disease will also help broaden
our understanding of COVID-19 and new infectious diseases caused by a novel virus [34].
These efforts will contribute to availing more accurate information pertaining to COVID-19
rapidly, which will help overcome new pandemics.
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