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Abstract: Accompanied by the rapid economic and social development, there is a phenomenon of
the crazy spread of many infectious diseases. It has brought the rapid growth of the number of
people infected with hand-foot-and-mouth disease (HFMD), and children, especially infants and
young children’s health is at great risk. So it is very important to predict the number of HFMD
infections and realize the regional early-warning of HFMD based on big data. However, in the
current field of infectious diseases, the research on the prevalence of HFMD mainly predicts the
number of future cases based on the number of historical cases in various places, and the influence
of many related factors that affect the prevalence of HFMD is ignored. The current early-warning
research of HFMD mainly uses direct case report, which uses statistical methods in time and space to
have early-warnings of outbreaks separately. It leads to a high error rate and low confidence in the
early-warning results. This paper uses machine learning methods to establish a HFMD epidemic
prediction model and explore constructing a variety of early-warning models. By comparison of
experimental results, we finally verify that the HFMD prediction algorithm proposed in this paper
has higher accuracy. At the same time, the early-warning algorithm based on the comparison of
threshold has good results.

Keywords: hand-foot-and-mouth disease; early-warning model; neural network; genetic algorithm

1. Introduction

With the intensification of global warming, climate abnormalities and natural disasters
have become more and more intense, and the increasing changes in the environment
have provided very favorable conditions for the spread of hand-foot-and-mouth disease
(HFMD) [1,2]. Although HFMD is not a critical disease, there are still many children who
have very serious complications due to this illness. If they are not treated in time, a series of
complications such as myocarditis and encephalitis will occur, causing vital organ damage
and even threatening their lives [3].

The prevalence of HFMD in China has continued unabated, and it has received great
attention from the national health department. The prevention and treatment of HFMD
should stop transmission from the root cause. However, the virus that leads to HFMD is not
only many kinds, but also many types. Therefore, to carry out research on the prediction of
the number of HFMD prevalence, the early-warning of epidemic trends and related factors
has become the top priority of the country’s HFMD epidemic control [4].

However, in previous studies on HFMD prediction and early-warning models, rel-
evant researchers mainly conducted statistical analysis on factors related to the HFMD
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epidemic [5]. Including weather and demographic attributes, they explore the correlation
between the different regions in the incidence of HFMD at different times of the amount of
each factor and established a variety of models for prediction. However, these methods
lack accurate positioning and research on the HFMD epidemic warning, and the data for
establishing the prediction model is insufficient, the time and space of the data are too large,
and the method used by the model is not perfect. Above shortcomings have caused many
problems such as HFMD prediction and early-warning model to be inaccurate, limited to
the problems of broad prediction and blind early-warning.

This paper aims to carry out accurate data analysis and standard data preprocessing
based on the incidence of HFMD. At the same time, this paper also established a more
accurate prediction model of the number of HFMD cases and a more reasonable early
warning model. These have laid the foundation for realizing early warning of whether the
regional HFMD has broken out or strengthened prevention and control.

2. Related Work

The World Health Organization (WHO) attaches great importance to the establish-
ment of an early-warning system for infectious diseases, and develops an early-warning
mechanism for infectious diseases and promoted its irreplaceable important role [6]. The
principle of the early warning system is to make a judgment on whether there will be an
outbreak or epidemic of infectious diseases based on the clinical information of the existing
disease diagnosis patients. Their purpose is clear, just to detect abnormal health incidents
promptly, quickly notify relevant health departments and staff, and take preventive and
control measures in the first time. The early-warning system of such infectious diseases is
the symptom monitoring system [7,8].

Since its establishment in 1946, the Centers for Disease Control and Prevention (CDC)
has established a national infectious disease surveillance system for epidemic infectious
diseases such as malaria and influenza. Until 1995, they began to build for all types of
acute infectious disease monitoring network, in 2001 they integrated more than 100 spotty
infectious disease surveillance system. Since then, the monitoring and early-warning
system has been changed to “National Disease Electronic Monitoring System” [9].

The European Union (EU) has developed a group-type infectious disease monitoring
and early-warning system based on the cooperation of all member states. It provides a
collaborative platform for information and control and prevention for the countries in the
group, and at the same time focuses on international cooperation and exchanges [10].

In January 2004, China began trial operation of the direct online reporting system for
epidemics and public health emergencies, and the system was officially launched in April
of the same year [11]. Afterwards, direct online reporting of various infectious diseases
such as tuberculosis, dengue fever, and HFMD have been launched on the system, and
public health information resources have been integrated and shared. At present, China’s
infectious disease early-warning model mainly uses the mobile percentile early-warning
method and the spatial scanning statistical method [12,13]. However, these two methods
rely too much on the direct reporting system of infectious diseases, and because the model
is simple, many parameters are determined artificially. This has led to the problems of
poor early-warning accuracy, repeated early-warnings, no early-warnings during epidemic
periods and chaotic early-warning during non-epidemic periods, which seriously affected
the early-warning work of HFMD epidemics.

At present, most researchers’ research on the prevalence of HFMD relies on statistical
methods such as multiple linear regression [14], cross-correlation analysis, and correla-
tion analysis. They analyzed the correlation between related influencing factors and the
incidence of HFMD, and obtained statistically significant results. This research results
mostly proved the correlation between certain epidemic factors and the number of HFMD
cases; at the same time, the incidence of HFMD epidemic was predicted by using the
above-mentioned three infectious disease prediction methods.
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Yin Ye et al. counted the daily incidence of HFMD for six years since 2011, calculated
the correlation coefficient between the daily incidence of HFMD and twelve weather indi-
cators of the day, and drew the conclusion that the daily incidence of HFMD is correlated
with certain meteorological factors [15]. Jing Qinlong et al. used cross-correlation analysis
methods to study relevant meteorological factors. They found that as the lag period de-
creases, the relationship between monthly average temperature and monthly cumulative
precipitation and the number of HFMD monthly cases is the strongest [16]. Liu Yamin et
al. established a variety of different prediction models using monthly incidence data from
2010 to 2015, then input the monthly incidence rate data of HFMD in 2016 as test data into
the model [17]. Under the comparison of four objective evaluation indicators, they found
that the seasonal autoregressive integrated moving average (SARIMA) model not only has
excellent fitting generalization ability, but also has higher prediction accuracy.

As we entered the era of big data, many scholars began to design methods using big
data to help build more accurate prediction or early-warning model of diseases [18,19].
So in this paper, we would present our effort at constructing a HFMD prediction and
early-warning model with the help of big data.

3. Construct HFMD Prediction Algorithm Model Based on BP Neural Network

Figure 1 shows the overall process of the HFMD prevalence prediction model based on
back propagation (BP) neural network constructed in this article, which will be introduced
in detail below.

3.1. Data Acquisition and Analysis

This paper uses big data to build a predictive and early-warning model for HFMD
through multi-dimensional data fusion. The data used mainly include two parts: incidence
data and environmental data.

First of all, the incidence data comes from HFMD in Shanxi Province in 2016. There
is no personal privacy data in this data, including: region (township), date of onset, age
group, gender group, and population classification.

For the incidence data, we carried out exploratory data analysis to select appropriate
characteristic factors affecting the HFMD epidemic in the model construction process,
mainly analyzing indicators such as gender, population type, onset time, and patient age:

1. In terms of gender: As shown in Figure 2, among all HFMD patients in the province
in 2016, the ratio of male to female patients was about 4:3. It can be considered that
the relationship between HFMD infection and gender is very small, i.e., the chances of
male and female being infected with HFMD are equal, so the ratio of men to women
is not considered as a relevant factor affecting the prevalence of HFMD.

2. In terms of population types: As shown in Figure 3, there are three types of pop-
ulations for all patients: kindergarten, scattered living, and other categories. The
proportions of patients are 33.6%, 60.2%, and 6.2% respectively. Patients infected with
HFMD are mainly concentrated in kindergartens and scattered populations, but the
proportion of scattered patients is twice that of kindergarten patients, so the number
of children in kindergartens cannot be a good predictor of HFMD infection patients.

3. In terms of time: As shown in Figure 4, the infection time of patients is mainly
concentrated in 22–32 weeks (June-August). The 24th, 25th, and 26th week is the
HFMD epidemic period, and the number of infections reaches a large peak. There
are also multiple occurrences in 36–48 weeks, reaching a small peak of infection
around the 44th week. Therefore, the prevalence of HFMD is characterized by a
strong seasonal infection. The relevant weather indicators can be used as one of the
important factors in determining the prevalence of HFMD.

4. In term of age: As shown in Figure 5, infants and children aged 0–6 years of HFMD
infection account for a considerable portion, accounting for about 95% of all infected
people.Therefore, the number of children aged 0–6 in each region can be used as an
important indicator to predict the prevalence of HFMD.
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Figure 1. Flow chart of HFMD epidemic prediction model based on BP neural network.
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Figure 2. Sex ratio of HFMD patients.

Figure 3. HFMD’s proportion of each population category.
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Figure 4. HFMD’s proportion of each population category.

Figure 5. Age distribution of HFMD epidemic. the link (http://data.sheshiyuanyi.com/WeatherData/,
accessed on 1 March 2020). x-axis is in years.

http://data.sheshiyuanyi.com/WeatherData/
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After the epidemic analysis of the original data, according to the number of cases per
day in each district and county, the statistics are summarized, and only the date, area and
statistical incidence in the original data file are retained.

Then, according to the results of epidemic analysis, the daily weather of each district
and county was obtained. Due to different weather data sources and different ways
of data acquisition, some weather data (maximum temperature, minimum temperature,
wind level) need to be obtained from lishi.tianqi.com by web crawler; the other part of
weather data (sunshine duration, air humidity, average air pressure) is obtained by file
download. Because this part of the weather data only exists in the meteorological stations
in the province and the data index is stable, the three weather data of 18 meteorological
stations in Shanxi Province are downloaded from the http://data.sheshiyuanyi.com/
WeatherData/, accessed on 1 March 2020, and the statistical areas are allocated according
to the weather data of the nearest meteorological stations. Before the distribution, the
nearest meteorological stations can be found by crawling the geographical location of the
regions and meteorological stations, i.e., latitude and longitude data, and the three weather
data of the nearest stations are allocated to the statistical areas; to consider the effect of the
incubation period (usually 4 days) on the daily incidence of disease, the corresponding
weather data of the day before 4 days were obtained, and the weather indexes such as
maximum temperature, minimum temperature, wind grade, average sunshine duration,
average air humidity and average air pressure were obtained in the same way.

Finally, according to the results of HFMD epidemic analysis, population data needs
to be summarized, so the internal population data is calculated to count the number
of children aged 0–6 in each region, and integrated into the data file generated in the
previous step; at the same time, in order to consider the impact of the incidence of the day
before the day on the day, the number of cases from the previous day is also included in
the model characteristics to generate complete data for establishing the HFMD epidemic
prediction model.

3.2. Data Preprocessing

The process of data preprocessing will greatly influence the result of data analysis [20].

3.2.1. Missing Value Processing

Among the data related to the factors affecting the spread of HFMD, the weather
data or the population data of districts and counties on the day have some variable
values missing, so appropriate methods must be used to deal with them. First of all, for
variables whose values are not collected and most of the individuals whose variables are
missing, the simple deletion method is used to directly delete variables or individual data,
and will not be included in experimental research and data analysis. Then, the nearest
neighbor padding method is used to fill the attributes with stable attribute values and
small numerical variance. Finally, the mean value filling method is used to deal with the
situation where a small part of the data is missing.

3.2.2. Outlier Handling

The regional weather data obtained by the web crawler is identified through outliers,
and it is found that some data is abnormal, so the outliers need to be replaced or corrected.
First, for univariate factors, define constraints that meet actual needs, and use the mean
replacement method for variable outliers that do not meet the constraint definition. That
is, when the value of a certain variable of a certain object is found to be abnormal, the
average value of all other normal and non-missing values on the variable is calculated to
replace the abnormal value. Secondly, for multiple variable factors, the order of the highest
temperature and the lowest temperature often changes due to changes in the structure
and content of the crawler page. Therefore, it is necessary to identify the individual data
with the lowest temperature higher than the highest temperature, and exchange the two to
make the data meet the constraints.

http://data.sheshiyuanyi.com/WeatherData/
http://data.sheshiyuanyi.com/WeatherData/
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3.2.3. Data Standardization

The Z-score standardization method used in this paper. This paper also uses a simple
downgrading standardization method, because the number of population plays a crucial
role in the incidence of HFMD, and the magnitude of the difference between the number of
population and the actual incidence of HFMD is large, which is not conducive to analysis.
Therefore, the value of this variable is degraded.

3.3. Feature Selection

Through the data preprocessing process, we finally established the data table shown
in Table 1.

Table 1. HFMD epidemiological research data sheet.

Variable Name Basic Meaning of Data Type of Data Range

weekofyear week of statistical time discrete variable 1–53
addID statistical area code discrete variable 1401–1411
count number of infections integer variable 0–

last_count number of infections in the previous week integer variable 0–
highTem average maximum temperature continuous variable 0–39
lowTem average minimum temperature continuous variable 0–39

windLevel average wind level continuous variable 0–12
p_highTem average maximum temperature before the incubation period continuous variable 0–39
p_lowTem average minimum temperature before incubation period continuous variable 0–39

p_windLevel average wind level before the incubation period continuous variable 0–12
hTemDiff maximum temperature difference continuous variable −15–15
lTemDiff lowest temperature difference continuous variable −15–15

windLevDiff wind power difference continuous variable −3–3
wet average air humidity continuous variable 0–100

sunshine average sunshine duration continuous variable 0–10
pressure average air pressure continuous variable −2–2

p_wet average air humidity before incubation period continuous variable 0–100
p_sunshine average sunshine duration before incubation period continuous variable 0–10
p_pressure average pressure before the incubation period continuous variable −2–2

wetDiff average humidity difference continuous variable −100–100
sunDiff average sunshine duration difference continuous variable −10–10

pressDiff average air pressure difference continuous variable −5–5
Children number of children under 6 integer variable 1–

When constructing the supervised learning model for the prediction of the number
of HFMD cases, we maximized the fact that many a priori unknown related features
(meteorological and demographic features) were incorporated into the learning objectives.
So that the target problem (the number of HFMD cases) can be trained and learned more
effectively. However, some of the related features are not very relevant to the learning goal,
or even have no relationship. These features are usually called redundant features. When
they are added to the learning task, problems such as poor learner performance and data
disaster are likely to occur. Therefore, it is very necessary to select all features to greatly
enhance the generalization ability of the prediction model. This paper uses a multivariate
joint feature selection method based on correlation analysis.

In the study of the HFMD epidemic prediction model, three comprehensive feature
selection algorithms including filtering, wrapping and embedding are used. Different
methods are used in different training and learning stages, using filtering algorithms before
training, using embedded algorithms during training, and using wrapped algorithms after
training. In this way, the feature subset with the best performance is selected, the learner
with the strongest generalization ability is selected, and the number of cases is predicted
more accurately for scientific prevention and control.
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The core of the embedded algorithm is to integrate the feature selection process
into the model learning process, and the features are selected cleverly while learning, so
the algorithm depends on the machine learning algorithm used. However, embedded
algorithms are not used in the preprocessing of data in the early stage, and only used
during model training.

The core of the wrapped algorithm is to directly use the evaluation index of the learner
to reflect the pros and cons of the feature subset. The higher the accuracy of the learner,
the better the feature subset. Therefore, it is necessary to repeatedly use different feature
subsets to construct multiple learners until the best learner is obtained and the best feature
subset is obtained.

The core of the filtering algorithm is to directly filter out undesirable features to filter
out relatively good feature subsets. Then, without training the model, use an appropriate
evaluation function to evaluate the pros and cons of the feature subset until the best
evaluated feature subset is selected. Therefore, the feature selection of this method is
independent of the target learner, and the advantage is that it is simple, efficient and fast.

Before the actual training of the learner, the filter method is usually used to select the
features, and the dependency metric is used to evaluate the feature subset. At the same
time, according to the results of the dependency measurement, the measurement threshold
is set, and the features whose relevant indicators are greater than the threshold are selected,
and further statistically significant tests are performed on them as a double standard for
selecting features. At the same time, bivariate correlation analysis is difficult to escape the
influence of confounding factors, so multiple linear regression analysis methods must be
used to establish a regression model for the influencing factors and the number of hand,
foot and mouth cases, and find the secondary confounding factors according to the partial
regression coefficients. The previous filtering feature selection process is completed.

The selection process can be divided into the following steps:

1. Calculate the variance of all variables using a single variable analysis method;
2. Filter out attributes whose variance is greater than the variance threshold, and get a

preliminary feature subset;
3. Using bivariate correlation analysis method, calculate the Pearson coefficient, Spear-

man coefficient, distance correlation coefficient and p-value of the independent vari-
able and the dependent variable;

4. According to the correlation coefficient and statistical p-value results, select the fea-
tures whose p-value is less than the significance level and the correlation coefficient is
greater than the coefficient threshold to obtain a more accurate initial feature subset;

5. According to the feature subset selected by the variable analysis method, establish a
multivariate joint regression model based on the multiple linear regression model, and
obtain the partial regression coefficient, intercept and statistical p-value of the model;

6. According to the multiple regression parameter table, filter and select variables
whose p value is less than the significance level, and obtain the feature subset in the
linear model;

7. Then the k features with the largest nonlinear correlation coefficients in the initial
feature subset, which do not exist in the linear model feature subset, are included in
the nonlinear model feature subset.

3.4. Construction of HFMD Prediction Model

Commonly used machine learning regression prediction algorithms include multiple
linear regression (LR), support vector regression (SVR), differential integrated moving
average autoregressive models and BP neural networks [15] and so on. Through analysis,
we will select BP neural network to construct an early prediction model for HFMD on
big data.
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After analysis of related factors, seven related variables were obtained. After these
seven related variables are normalized by Min-Max, the training set and the test set are
randomly selected according to the ratio of 7:3. Then input the training set into the
prediction model to be established, and train and adjust the parameters in the model. After
a series of training processes, a HFMD epidemic prediction model suitable for solving
this problem is obtained. Then input the test set into the HFMD prevalence prediction
model for prediction, obtain the prediction result, and compare the result with the expected
output to evaluate the HFMD prevalence prediction model.

The structure of the HFMD prediction model based on the machine learning regression
algorithm is shown in Figure 6. It includes six modules: data acquisition and summary,
data preprocessing, influencing factor analysis, model learning, epidemic case number
prediction, and model evaluation analysis. In the data acquisition and summary module,
the meteorological factors and demographic factors data related to the HFMD epidemic are
acquired in multiple ways, and the county daily data is summarized as city weekly data;
the dirty data is mainly cleaned in the data preprocessing module; in the influencing factor
analysis module, univariate, bivariate and multivariate joint analysis of the correlation
between influencing factors and the number of popular populations are carried out, and
the feature set of relevant HFMD epidemic influencing factors suitable for modeling is
selected; in the process of model learning, the machine learning regression model is used
to learn to obtain the optimal structure; in the HFMD epidemic case number prediction
module, the test set is input into the model; in the model evaluation and analysis module,
the learned optimal model is analyzed with different weights on the training set and the
test set, and the relevant evaluation index values are obtained to judge the pros and cons
of the model.

Figure 6. Structure diagram of HFMD epidemic prediction model based on machine learning regres-
sion algorithm.

Figure 7 shows the three-layer structure of the BP neural network used in this article.
The number of neurons in each layer is m, k, and 1, respectively. The number of hidden
layers and the number of neurons in each layer can be dynamically adjusted according to
the training effect. However, the number of neurons in the first and last layers is fixed. The
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training process of BP neural network is realized by error feedback mechanism [16]. The
activation function used is the relu function.

Figure 7. Three-layer single output BP neural network structure diagram.

The model training process is:

1. Establish the network structure according to the actual HFMD prediction problem.
There is only one input layer and output layer, which contain the number of neurons
as the feature number and 1, respectively. A hidden layer with k neurons is initially set.
If the training result is not Ideally, the number of layers and the number of neurons
on each layer can be dynamically changed, but not more than three hidden layers;

2. Initialize the hyperparameters in the network structure, including learning rate,
training times, and connection weights. If the training results are not ideal, the
hyperparameter values can also be dynamically adjusted;

3. Start to input training samples into the network, obtain the predicted value of each
sample through the forward propagation process, and calculate the overall error
between the output predicted value and the expected value;

4. If the error does not meet the condition or the training does not reach the number
of generations, the error is propagated back to the input layer, and the connection
weight is updated in the process;

5. If it is greater than the set number of generations, the training process is ended, the
structure of the BP neural network is output, and the test data is evaluated according
to relevant indicators;

6. If the test result does not reach a certain threshold, it is necessary to adjust the relevant
hyperparameters or the number of hidden layers or the number of neurons in each
hidden layer in the network, and repeat the above training process.

4. Neural Network Parameter Optimization Based on GA

In the training process of BP neural network, the gradient descent method and error
feedback propagation mechanism are essentially used to dynamically update the connec-
tion weights, which also exposes the shortcomings of this training method [21]. First of all,
there are strict requirements for model hyperparameters such as learning rate, too large
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or too small learning rate will affect the optimization effect; Secondly, if the number of
training iterations is too large, the convergence efficiency is low when the error function
gradually becomes flat in the later stage, and it is difficult to converge to a flat point if the
number of generations is too small; Finally, it is because the training starts according to
the initial set of random weights, looking for a smooth gradient and falling into a local
minimum state, it is difficult to jump out to find the global minimum state. Therefore, in
view of the above shortcomings, we use genetic algorithm (GA) to globally optimize the
connection weights.

First determine the BP network structure, and encode the target individual with
floating-point numbers. Arrange all the connection weights in the neural network in order
to form the row vector Wj = (w1, w2, · · · , wn) of individual j, which represents the genetic
code of chromosome j in the population, The weight wi of connection i in the network
represents the genotype of gene i on the chromosome, and n represents the number of all
connections in the neural network. In this model, if the number of neurons contained in
the input layer, the first hidden layer, the second hidden layer, and the output layer are m,
k, h, 1, respectively, then the number of genes n is calculated as in Equation (1).

n = m× k + k× h + h (1)

Secondly, all individuals in the population must be initialized randomly. Each indi-
vidual has a chromosome vector, which can be decoded back into a BP neural network
model with floating-point numbers. Therefore, before learning, all individual vectors
must be initialized with random real numbers in the range of [−1, 1] to generate the first
generation population.

Finally, it is necessary to calculate the fitness of all individuals, select individuals
for genetic operations, including replication, crossover and mutation, to generate a new
generation of populations [22]. In this paper, the fitness can be calculated directly from the
average error of the individual on the sample. Therefore, select high fitness, i.e., individuals
with small errors for retention, and select low fitness, i.e., individuals with large errors for
elimination. Thus, individual neural networks with poor fit are discarded in the training
process. Then, perform uniform mutation and arithmetic crossover operations on general
individuals to obtain a new generation. After repeated training reaches the specified
number of evolutions, the optimal model is obtained. Otherwise, it returns to the fitness
calculation step to reiterate. The final individual is decoded to obtain all the connection
weights in the neural network, which are used for actual prediction and quantitative
evaluation indicators are obtained. Figure 8 is a detailed flowchart of the GA-BP HFMD
prediction model.
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Figure 8. Flow chart of GA-BP HFMD epidemic prediction model.
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5. Construction of HFMD Early-Warning Model Based on Big Data

The traditional HFMD epidemic warning model is mainly based on two major meth-
ods of time and space, namely the moving percentile prediction method and the spatial
scanning statistical method. It also needs to use the repeated warning kicking algorithm
to remove duplicates. The early-warning method is only based on historical data before
and after the same period. It does not consider that the HFMD outbreak may be related
to related weather and demographic factors. Blind warning and the warning process are
cumbersome and wrong. There is a situation of blind warning every day and everywhere.

As there is no yet a complete and accurate early-warning mechanism for infectious
diseases, HFMD epidemic early-warning methods based on adjustable parameters, moving
percentiles and a combination of the two are proposed, mainly proposed different methods
for the setting of HFMD early-warning threshold. The HFMD epidemic early-warning
model is mainly based on the number of HFMD cases in the region generated by the above
HFMD epidemic prediction model and the number of cases in the same period in history.
That is, whether there will be an outbreak of HFMD epidemic in the early warning area,
Or according to historical data in the same period, relevant health departments need to be
warned to increase the vigilance of the HFMD epidemic in the region. The overall process
of the model is shown in Figure 9.

Figure 9. Flow chart of HFMD epidemic warning model.

5.1. HFMD Epidemic Warning Model Based on Adjustable Parameters

The parameters are adjustable, referring to different HFMD epidemic areas, according
to the epidemic time of different seasons, the corresponding characteristic parameters in
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the HFMD prediction model can be dynamically adjusted according to the actual local
conditions. The corresponding features can be obtained by the feature selection method,
and the number of patients output by the feature parameters through the model is used
as the early-warning threshold of HFMD infectious diseases. If the actual predicted value
exceeds the early-warning threshold, the system will issue an early-warning signal. For
example, when the minimum temperature, air humidity, the number of illnesses last week,
the number of children aged 0–6, and the number of weeks are 24 degrees Celsius, 40%,
45 cases, 28 thousand people, and 16:00, through the HFMD epidemic prediction model,
the incidence under this feature is obtained and used as the early-warning threshold.
These characteristic values can be dynamically adjusted according to different regions and
different times.

5.2. HFMD Epidemic Warning Model Based on Historical Percentile Method

First, establish a database of local historical cases of HFMD with the city as the unit,
refer to the historical incidence of the same period in the past 3–5 years and two cycles
before and after the same period. Like the forecast period, the general historical period is
seven days. Then get the percentile (usually 80% after sorting from small to large) from the
historical incidence as the early-warning threshold. When the predicted incidence in the
statistical period is greater than this early-warning threshold, the system will automatically
send an early-warning signal to relevant departments in the observation area within one
day. For example, it is predicted that the weekly incidence of the area will reach 100.
Among the nine incidence data of the same period and before and after the past three years,
the incidence at the 80th percentile is 80. Then the system will send an early-warning signal
to the relevant departments in the forecast area to remind the area that there may be an
outbreak, or the need to strengthen prevention and control higher than the historical level.

5.3. HFMD Epidemic Warning Model Based on Threshold Comparison

Threshold comparison is to compare the two early-warning thresholds obtained by
the above-mentioned parameter adjustable method and the historical percentile method,
and use the smallest as the new early-warning threshold. The flow chart of the HFMD
epidemic warning model based on threshold comparison is shown in Figure 10.

First, set the characteristic thresholds of the influencing factors of the HFMD epidemic,
i.e., under the corresponding weather factors and demographic factors, the number of
possible HFMD incidences is the number at risk of HFMD outbreaks, and these charac-
teristic values are substituted into the HFMD prediction model to obtain the incidence
number threshold.

Then, according to the local database of historical HFMD cases, calculate the 80th
percentile number of cases in the same cycle and two swing cycles in the past three years,
and use this value as another threshold for early-warning.This threshold is compared
with the early-warning threshold obtained by parameter adjustment, and the minimum
incidence threshold is used as the early-warning threshold of HFMD early-warning model.

Finally, the HFMD epidemic prediction model is used to predict the number of local
cases. When the number of cases exceeds the early-warning threshold, the local health
department will send an early-warning signal and take corresponding measures after
verification. At the same time, it can feed back suggestions, continuously adjust the charac-
teristic parameter thresholds, and improve the precise HFMD early-warning mechanism;
When this incidence does not exceed the warning threshold, no warning signal is issued,
only the number of HFMD infections that may occur in the local area.
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Figure 10. Flow chart of HFMD epidemic warning model based on threshold comparison.
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6. Experiments
6.1. Predictive Model Evaluation Index
6.1.1. Goodness of Fit

Goodness of fit refers to the degree of fit of the regression model to the observations,
and its measurement statistic is the coefficient of determination R2. The value range of R2 is
[0, 1]. The larger the value in this range, the better the fitting effect of the regression equation
to the training sample; on the contrary, the worse the fitting degree. When the goodness of
fit is negative, It shows that the fitting effect of this regression model is too poor and has
no practical significance. Suppose y is the value to be fitted, its mean value is ȳ, the fitted
predicted value is rounded to ŷ, the total square sum (SST) is ∑n

i=1(yi − ȳ)2, the regression
square sum (SSR) is ∑n

i=1(ŷi− ȳ)2, and the residual square sum (SSE) is ∑n
i=1(yi− ŷi)

2, then
SST = SSR + SSE, the calculation method of the determination coefficient is as follows:

R2 =
SSR
SST

= 1− SSE
SST

(2)

Generalization ability is an important indicator for detecting regression prediction
performance. Therefore, when designing a regression model, it is necessary to consider not
only the model’s correct prediction of the required regression prediction object, but also
the prediction effect of the model on the new data. The preprocessed data is divided into
training data and test data in a ratio of 7:3. The evaluation index of the final model is the
sum of the weights of the goodness of fit of the two, and the weight ratio is 3:7.

6.1.2. Mean Absolute Error

The mean absolute error (MAE) refers to the average of the absolute value of the
difference between multiple predicted values and the true value. In the HFMD epidemic
prediction model, the average absolute error indicates the degree of deviation between the
number of HFMD cases predicted by the model and the number of true cases when the
number of HFMD cases is predicted in different regions or at different times. The smaller
MAE, the more accurate the mode. The larger MAE, the worse the predictive ability of the
model. Therefore, the magnitude of the average absolute error MAE reflects the pros and
cons of the model, and its calculation formula is as follows:

MAE =
1
n

n

∑
i=1
|yi − y| (3)

where, n represents the number of predictions, yi represents the predicted value, and y
represents the true value.

6.1.3. Accuracy within Error

Similar to the accuracy rate in the classification problem, in order to avoid the influence
of interference factors, the accuracy rate within the error is introduced. The accuracy within
error (AWE) refers to the ratio of the number of samples correctly fitted by the regression
model obtained through training to the total number of training samples in the regression
analysis process of predicting integer dependent variables within a certain error tolerance.
To a certain extent, AWE explains the generalization ability of the regression model. The
higher the AWE, the stronger the fitting ability of the model, and the lower AWE, indicating
the weak fitting ability of the regression model, which ranges between 0 and 100%. The
calculation formula of AWE is as follows:

AWE =
n
N
× 100% (n := n + 1 when | f (Xi)− yi| ≤ errorpeople) (4)

where n represents the number of samples correctly predicted by the regression, and N
represents the total number of samples. When the absolute value of the error between
the predicted value and the true value is less than the specified error range, add 1 to the
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number of correctly fitted samples n, until all samples are trained, and the final number of
samples correctly predicted is obtained.

When predicting the number of HFMD cases, the number of cases of the dependent
variable is an integer number. Therefore, the predicted value must be rounded up, and
then the predicted value after processing is compared with the true value. If the difference
between the two is within the allowable range of the number of errors, it is considered
that the trained model predicts the sample correctly, otherwise it is considered that there
is a large error in the sample prediction. According to the analysis of infectious disease
researchers and the regression model, the number of errors is five, i.e., when the difference
between the predicted value and the true value does not exceed five, it is determined that
the model fits this sample correctly.

6.2. Early-Warning Model Evaluation Index
6.2.1. Warning Rate

The warning rate (WR) refers to the ratio of the number of samples that use the early
warning model to send out early warning signals to the total number of samples, and its
value is within the range of [0%, 100%]. Appropriate warning rate can reflect the difference
of the model to different test data, and avoid the phenomenon of full warning and no
warning. If the warning rate is too large or too small, it reflects the large error of the early
warning model and the failure of correct warning.

6.2.2. Accuracy Rate

Accuracy rate (ACR) refers to the ratio of the number of samples with the same early
warning results of the model to the test data and the real early-warning results to the total
sample, reflecting the accuracy of the HFMD epidemic early-warning model, and its value
range is Between [0, 1].

The higher the accuracy rate, the better the prediction ability of the early-warning
model, and the lower the accuracy rate, the worse the prediction ability of the early-warning
model. Therefore, the accuracy rate can truly reflect the prediction effect of the HFMD
epidemic early-warning model.

6.3. Comparison of Different Prediction Time and Space Accuracy

To obtain a more accurate prediction model of the number of HFMD cases, the different
temporal and spatial precisions were compared. From the finest time accuracy (day) and
spatial accuracy (districts and counties) to a week and prefectures, respectively, linear
regression, BP neural network and SVR are used to fit predictions. Because the average
and variance of the number of cases in different time and space accuracy are very different,
only the goodness of fit R2 is used to compare the models. The experimental results are
shown in Table 2, and the broken line graph is shown in Figure 11. With the expansion of
time and space accuracy, the goodness of fit of the model doubles. At the same time, in the
comparison of three different methods, the BP neural network prediction model has the
largest R2, so the city-level weekly prediction model based on the BP neural network has
the highest accuracy.

Table 2. Experimental results of different time precision and spatial precision prediction.

Forecast Model Name District/County, Daily Forecast District/County, Weekly Forecast City-Level, Weekly Forecast

LR 0.3914 0.7611 0.8983
BP-NN 0.3931 0.7613 0.8994

SVR 0.3041 0.7597 0.8948
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Figure 11. Comparison line chart of results of different prediction accuracy. The value represents
results for R2, MAE/10, AWE for different parameters settings.

6.4. Comparative Analysis of Forecasting Models

In this paper, by training and forecasting numerical variables, based on the weekly
incidence of HFMD in the city and the weekly weather data that affects the epidemic and
the child population data, the relevant variable analysis of the influencing factors is carried
out. After that, a multivariate joint feature selection method based on correlation analysis
was used to screen out a subset of features suitable for building a linear model, including
the weekly ordinal number of the statistical time, the incidence of the previous week, the
weekly average air pressure, and the number of children aged 0–6. At the same time, a
subset of features suitable for establishing a nonlinear model is obtained, including the
weekly ordinal number of the statistical time, the incidence of the previous week, the
weekly average air pressure, the weekly minimum temperature, the weekly air humidity,
the wind level and the number of children aged 0–6. Three regression methods were used
to establish a model to fit the weekly incidence. Under different evaluation indicators, the
training results of each model are shown in Table 3 and Figure 12. The analysis shows that
the R2 of the BP neural network reaches the maximum and the MAE reaches the minimum.
At the same time, when the prediction error does not exceed the MAE, the AWE reaches
its maximum value. Therefore, the HFMD epidemic prediction model based on BP neural
network performs best, and the fitting effect is relatively best.

Table 3. Training results of different machine learning regression algorithms.

Evaluation Index LR BP-NN SVR

R2 0.9193 0.9243 0.9142
MAE 8 7 7
AWE 58.94% 69.94% 63.85%
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Figure 12. Line chart comparing the training results of different machine learning regression algorithms.
The value represents results for R2, MAE/10, AWE for different parameters settings.

6.5. GA Tuning Parameter Analysis

When optimizing the connection weights of the BP neural network prediction model
with a good fit effect, it is necessary to adjust and compare the hyperparameters such as
the number of individuals in the population, the number of generations, the crossover and
mutation probability in the genetic algorithm. Therefore, in this section, the hyperparame-
ters in Table 4 are adjusted from the default values, and the optimal value is selected as the
result of this test after three tests under the same conditions. It is used to evaluate the com-
parison results of R2, MAE and AWE recording the changes of various hyperparameters,
find the relevant hyperparameters of the model with the strongest generalization ability,
and find the HFMD epidemic prediction model with the highest prediction accuracy based
on these hyperparameters.

Table 4. Hyperparameters related to genetic algorithm in GA-BP neural network model.

Hyperparameter Name Description Default

Population size number of individuals in the population 70
Number of generations population evolution times 60

Mutation probability probability of genetic mutation on individual chromosomes 0.1
Crossover probability probability of genetic recombination on chromosomes of two individuals 0.9

6.5.1. Impact of the Number of Generations

The model evaluation results of adjusting the number of generations are shown in
Table 5, and the line graph shown in Figure 13 is drawn accordingly.

According to Table 5 and Figure 13, when the number of generations reaches 90 times,
the goodness of fit and the accuracy within error achieve the maximum value. When it is
greater than or less than this value, these two indicators will become smaller and affect
the prediction effect. At the same time, MAE reaches the minimum value, and increases
whenever it is greater or less than this value. Therefore, the population evolution is iterated
90 times, and the model is optimal.
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Table 5. Evaluation table for adjusting the number of generations of hyperparameters in GA-BP model.

Number of Generations R2 MAE AWE

30 0.7933 13 0.3922
40 0.7916 12 0.4902
50 0.8538 10 0.5752
60 0.6798 17 0.2549
70 0.8622 10 0.5556
80 0.8539 10 0.5163
90 0.8992 8 0.5962

100 0.8328 11 0.5033
110 0.8209 12 0.4314
120 0.8628 11 0.4510

Figure 13. Line chart of adjustment results of hyperparameters in GA-BP model. The value represents
results for R2, MAE/10, AWE for different parameters settings.

6.5.2. Effect of Population Size

The evaluation results of the model for adjusting the population size are shown in
Table 6, and the line graph shown in Figure 14 is drawn accordingly.

Table 6. The population size adjustment evaluation table of the hyperparameters in the GA-BP model.

Population Size R2 MAE AWE

10 −0.7920 35 0.2418
20 −0.1791 30 0.2353
30 0.6508 16 0.3203
40 0.6592 17 0.3072
50 0.7964 13 0.3856
60 0.9023 7 0.6053
70 0.8131 12 0.4575
80 0.7942 13 0.4379
90 0.7422 13 0.4575

100 0.8052 13 0.3856
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Figure 14. Line chart of adjustment results of hyperparameters in GA-BP model. The value represents
results for R2, MAE/10, AWE for different parameters settings.

According to Table 6 and Figure 14, when the population size reaches 60, the goodness
of fit and AWE take the maximum value. When it is greater than or less than 60, the value
decreases. At the same time, MAE is the smallest, and when it is greater than or less than
60, its value will increase. Therefore, the model with a population size of 60 is optimal.

6.5.3. Impact of Crossover Probability

The model evaluation results for adjusting the cross probability are shown in Table 7,
and the line graph shown in Figure 15 is drawn accordingly.

It can be obtained from Table 7 and Figure 15 that when the crossover probability
reaches 0.8, the goodness of fit and AWE achieve the maximum value, while MAE is the
smallest. When the crossover probability is not 0.8, the relevant index values are not ideal.
Therefore, the GA model with a crossover probability of 0.8 performs best.

Figure 15. Line chart of the adjustment results of the crossover probability of the hyperparameters
in the GA-BP model. The value represents results for R2, MAE/10, AWE for different parameters
settings.
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Table 7. Adjustment evaluation table of cross probability of hyperparameters in GA-BP model.

Crossover Probability R2 MAE AWE

0.1 0.3900 22 0.2484
0.2 0.1680 26 0.2876
0.3 0.7922 13 0.3268
0.4 0.7411 13 0.4444
0.5 0.8301 12 0.4444
0.6 0.7688 14 0.3333
0.7 0.8258 11 0.5074
0.8 0.8341 10 0.5098
0.9 0.7635 13 0.3399

6.5.4. Impact of Gene Mutation Probability

The evaluation results of the model for regulating the probability of gene mutation
are shown in Table 8, and the line graph shown in Figure 16 is drawn accordingly.

Table 8. Adjustment evaluation table of hyperparameter mutation probability in GA-BP model.

Mutation Probability R2 MAE AWE

0.10 0.8270 11 0.4837
0.09 0.8194 12 0.4444
0.08 0.8036 13 0.3464
0.07 0.8053 13 0.3399
0.06 0.8137 12 0.3660
0.05 0.8400 11 0.4706
0.04 0.9256 9 0.7011
0.03 0.7796 12 0.4033
0.02 0.7484 14 0.3725
0.01 0.7643 13 0.4314

Figure 16. Line chart of adjustment results of hyperparameter mutation probability in GA-BP model.
The value represents results for R2, MAE/10, AWE for different parameters settings.

It can be obtained from Table 8 and Figure 16 that when the mutation probability is
0.04, the goodness of fit and AWE reach a good result, the maximum value is selected,
and MAE is minimum. Higher or lower than this probability will make the relevant index
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value worse. Therefore, the GA model with a mutation probability of 0.04 has the best
performance and a better effect.

Through the adjustment and comparison of these four hyperparameters in GA, it is
found that the individual population is 60, the number of evolutionary iterations is 90, the
gene crossover probability is 0.8, and the gene mutation probability is 0.04. At this time,
the neural network HFMD prevalence prediction model based on GA has the strongest
generalization ability, the smallest error, and best results.

6.6. Comparative Analysis of Early-Warning Models

According to our experiment, we have built the GA-BP HFMD prediction model.
We set the critical eigenvalue of HFMD outbreak and substitute the eigenvalue into the
prediction model to obtain the first HFMD outbreak threshold. Then, the samples of test
data were input into three early warning models, and the 80 percentile incidence of the
region was calculated as the second HFMD outbreak threshold for the same period of
3 years and 2 weeks before and after the same period. Finally, the WR and ACR values of
different warning models were counted, as shown in Table 9.

Table 9. Comparison of different early-warning models.

Adjustable Parameters Historical Percentile Threshold Comparison

WR 4.13% 29.08% 32.02%
ACR 98.62% 85.46% 87.28%

According to the comparison, we could see that although warning model based on
adjustable parameters has the best ACR, its WR is too small, so it is not generalized.
Therefore, we conclude that the warning-model based on threshold comparison should be
the optimal one.

7. Conclusions

This paper proposes a prediction and early-warning model for HFMD and the model
uses big data. Data used in this paper are patient data and weather data. We can obtain a
more accurate early-warning effect by constructing integrated prediction and early-warning
model based on big data.

This paper constructs the prediction model by using GA to optimize the BP neural
network. The best prediction accuracy could be gain as 92.56%. Then we explores the vari-
ous construction methods of early-warning model. Through the comparison of experiment
results, it is found that the early-warning model based on the comparison of threshold has
the highest accuracy. And the optimal accuracy of the early-warning method is around
87.28%.There are still many parts that can be optimized in the research of this paper. For
example, we would want to add more factors to enhance the accuracy of the prediction
model. We will continue to study in depth accordingly.
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