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Abstract: The accurate prediction of storm surge disasters’ direct economic losses plays a positive
role in providing critical support for disaster prevention decision-making and management. Previous
researches on storm surge disaster loss assessment did not pay much attention to the overfitting
phenomenon caused by the data scarcity and the excessive model complexity. To solve these problems,
this paper puts forward a new evaluation system for forecasting the regional direct economic
loss of storm surge disasters, consisting of three parts. First of all, a comprehensive assessment
index system was established by considering the storm surge disasters’ formation mechanism and
the corresponding risk management theory. Secondly, a novel data augmentation technique, k-
nearest neighbor-Gaussian noise (KNN-GN), was presented to overcome data scarcity. Thirdly, an
ensemble learning algorithm XGBoost as a regression model was utilized to optimize the results and
produce the final forecasting results. To verify the best-combined model, KNN-GN-based XGBoost,
we conducted cross-contrast experiments with several data augmentation techniques and some
widely-used ensemble learning models. Meanwhile, the traditional prediction models are used as
baselines to the optimized forecasting system. The experimental results show that the KNN-GN-
based XGBoost model provides more precise predictions than the traditional models, with a 64.1%
average improvement in the mean absolute percentage error (MAPE) measurement. It could be noted
that the proposed evaluation system can be extended and applied to the geography-related field
as well.

Keywords: economic losses; storm surge; XGBoost; data augmentation; KNN-GN

1. Introduction

When a typhoon makes landfall, strong winds, low pressures, and high waves are
generated. The wind stress and the low pressure at the typhoon center will cause the sea
level to rise. High waves will result in an abnormal increase in tides. The combination
of abnormal and normal tides will form a typhoon storm surge, which will increase the
average water level from one meter to more than five meters. In 2019, the super typhoon
1909 “Lichma” struck the southeast coast of China, causing eight provinces to suffer
severe storm surge disasters. The maximum storm surge caused by it was as high as
312 cm, and the direct economic loss was nearly CNY 10.3 billion (approximately USD
1.6 billion) [1]. The significant impact of the typhoon storm surge on economic and social
development has drawn attention from scholars. Disaster economic loss assessment could
significantly support the disaster prevention decision and management of typhoon storm
surge. Therefore, the research on how to quickly and accurately forecast storm surge
disasters’ economic loss is vital and meaningful.

At first, many researchers preferred to use the statistical regression model, mostly
focusing on the relationship between a few indicators and disaster losses, to forecast
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disaster losses caused by typhoon storm surges. Schmidt et al. [2] utilized the polynomial
regression equations to reflect the relation between no more than two hazard factors and
disaster losses. After that, to improve the prediction’s accuracy, the researchers made
improvements in two aspects: by using more complex models and increasing the number
of hazard factors. Murnane and Elsner [3] applied a quantile regression to explore the
relationship between meteorological indicators and hurricane losses. Kim et al. [4] and
Qi et al. [5] increased the number of hazard factors to seven and nine, respectively, in
assessing typhoon storm surge hazard risk by different multivariate analysis methods.
These models achieved better performance. Besides, several econometric models have
been used by some researchers to assess the disaster losses, such as computable general
equilibrium models and input–output models [6]. These statistical models have achieved
specific results in solving weakly non-linear problems of low dimensionality. However,
disasters are complex, high-dimensional, and strongly non-linear systems, which are still
not well predicted by these models. Therefore, an effective economic loss assessment model
for natural disasters should include as many hazard factors as possible and reflect the
complicated non-linear relationship between hazards and direct economic losses.

Machine learning has recently become popular in natural disaster research [7]. Ma-
chine learning algorithms improve prediction accuracy by building more extensive and
complex learning networks to fit the complex non-linear relationships between multi-
dimensional variables. Hence, more and more scholars have tried to apply machine
learning algorithms to the typhoon storm surge’s economic loss assessment. Lou et al. [8]
selected 23 disaster-causing factors from four dimensions as input data to construct a
loss assessment model of tropical cyclone disasters based on support vector regression
(SVR). Wang et al. [9] and Yuan et al. [10] built an evaluation index system and utilized the
backpropagation neural network (BPNN) model to forecast the storm surge’s economic
damage. They optimized the BPNN with the beetle antennae search (BAS) algorithm and
the Levenberg Marquardt (LM) algorithm, respectively, to improve the prediction accuracy.
Besides, Lin et al. [11] used vector space model (VSM) to correct the result of BPNN to make
a more precise prediction. Chen et al. [12] combined three models, GA (genetic algorithms)–
Elman neural networks, SVR, and generalized regression neural networks (GRNN), to
predict the tropical cyclone disaster loss. This combined model is like a simple “stacking”
model in the ensemble learning, which made progress in the prediction performance.

However, the previous works have drawbacks in two aspects: the regression model’s
generalization ability and the data scarcity. For the former, although various machine
learning models are employed for natural disasters [7], they are almost all related to BPNN
and SVR in the field of economic loss forecasting. Ensemble learning is a widely-used
algorithm [13–16] that combines several machine learning techniques into an ensemble
model to reduce deviation and improve prediction accuracy [17]. Zhao et al. [18] used
an ensemble learning model Adaboost-BPNN for forecasting direct economic losses of
marine disasters. Besides, ensemble learning is rarely used in this field. Thereby, we
introduced XGBoost [19] into the field of direct economic loss evaluation caused by storm
surge disasters. For the latter one, without big data, machine learning methods are prone
to overfitting, which means that the model perfectly fits the training dataset but is not
generalized well to unknown data [20]. However, it is unrealistic and impossible to obtain
large amounts of storm surge data from the historical literature due to the limited number
of storm surges in practice. Zhao et al. [18] adapted four interpolation methods to tackle
the small sample issue, but the interpolation methods in this article cannot reflect the
disaster processes’ randomness. Besides, few studies are focusing on the data scarcity
problem in this scope. Inspired by the standard methods for solving data scarcity in
the field of deep learning, we concentrate on data augmentation [21], a technique that
could not only enhance the size and quality of training data to reduce overfitting but
also induce randomness. To solve the overfitting problem caused by data scarcity, we
propose a novel data augmentation technique named the k-nearest neighbor-Gaussian
noise (KNN-GN) algorithm.
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The main findings of this research can be concluded in three aspects. Firstly, we
established a comprehensive assessment index system for the regional direct economic
loss evaluation of storm surge disasters. Secondly, we put forward a novel data augmenta-
tion technique, k-nearest neighbor-Gaussian noise (KNN-GN), to settle the data scarcity
problem. KNN-GN expands the samples by injecting random directional noise, making
the augmented sample more satisfactory for the ensemble model. Thirdly, we conducted
an experiment to explore the most optimized ensemble learning model, named KNN-GN-
based XGBoost. To verify the proposed method’s prediction effectiveness, we compared
the model to other traditional ones, such as BPNN and SVR, based on the mean absolute
percentage error (MAPE), a commonly used performance metric. The damage assessment
model proposed in this paper could provide a quick and accurate estimation of direct
economic losses shortly after a storm surges disaster occurs, just with some investigated
and available disaster loss information. This rapid post-disaster prediction technology
may help organizations to make better disaster prevention decisions to avoid the more
significant impact of disasters.

2. Methodology

The evaluation system consists of two parts: (1) a comprehensive index system of
storm surge disasters and (2) a KNN-GN-based XGBoost regression model. In the following
subsections, the two parts will be described in detail.

2.1. The Disaster Loss Assessment Index System

A reasonable assessment index system of storm surge disaster loss should fully con-
sider the formation mechanism of storm surge disasters, disaster system theory, and risk
management theory. The storm surge disasters will occur in the wake of high storm surge
levels. Then, the seawater will pass over the dam and flood the farmland, production,
and living facilities, which will cause certain economic losses. Multiplied factors affect
economic losses. To better learn the relationship between factors and natural disaster loss or
risk, numerous researchers developed the index system-based assessment method. Some of
them established the index system considering both biophysical and anthropogenic factors
to assess the disasters losses and risk in China [9,22–25], Greece [26], the Netherlands [27],
the United States [28–30], Brazil [31], Pakistan [32], and other regions.

Assessment indicators need to be accurate, specific, and quantifiable. Qualitative
indicators should also be quantified as much as possible to avoid a greater degree of
subjectivity. At the same time, various hazard-causing factors should be fully considered
to form a relatively complete assessment index system. The selection of indicators must
be relatively easy to obtain at this stage, and can be obtained through investigations or
experiments. Only in this way can the indicator system be valid and objective. Based
on the above principles and referring to 17 representative articles in the past twenty-one
years from 2000 to 2020, we considered the intensity of the storm surge disaster hazard, the
natural environment, and the socio-economic development of the affected area to propose
a comprehensive evaluation index system from four primary criteria: disaster-causing
factors, disaster-formative environment, hazard-bearing bodies, and disaster prevention
capabilities. Based on the four primary criteria, the loss assessment index system, including
16 indicators, is constructed, as shown in Table 1, considering the principles of objectivity,
accessibility, integrity, and low correlation. These 16 indicators have a direct or indirect
influence on the regional direct economic loss and are relatively easy to obtain. In the
experiment, we choose these 16 indicators as the features in the regression models.

2.1.1. Disaster-Causing Factors

This part includes three indicators: maximum storm surge (cm), exceeding the local
warning water level (cm), and typhoon duration (h). Storm surge disasters are generated
by the abnormal rise and fall of seawater caused by severe atmospheric disturbance. The
maximum water increase and tide level are the direct signs of the seawater changes after



Int. J. Environ. Res. Public Health 2021, 18, 2918 4 of 23

the arrival of the storm surge, which can directly reflect the intensity of the storm surge.
The typhoon’s duration is the typhoon’s staying time in the study area that triggered the
storm surge. This indicator reflects the impact of the typhoon on disaster areas directly
and the storm surge’s intensity indirectly. Those disaster-causing factors which represent
the intensity of storm surges are often used to predict the economic losses caused by
storm surges, showing that three indicators in the disaster-causing factors are significantly
correlated with the regional direct economic loss.

Table 1. The storm surge disaster loss assessment index system.

Criteria Indicators Variable References

Disaster-causing factors
Maximum storm surge (cm) X1

Guo 2020 [25], Shi 2020 [23], Wang 2018 [9],
Yang 2016 [22], Nicholls 2008 [33]

Exceeding the local warning
water level (cm) X2

Guo 2020 [25], Shi 2020 [23], Wang 2018 [9],
Yang 2016 [22]

Duration of the typhoon (hour) X3 Guo 2020 [25]

Disaster-formative
environment

Urban green area (hm2) X4
Sun 2020 [24], Stefanidis 2013 [26],
Peduzzi 2009 [34], Pelling 2004 [35]

The sown area of crops (hm2) X5
Guo 2020 [25], Stefanidis 2013,

Peduzzi 2009 [34], Pelling 2004 [35]
Aquaculture area (hm2) X6 Guo 2020 [25], Nicholls 2008 [33]

The proportion of the old and
young population (%) X7 Sun 2020 [24], Koks 2015 [27], Cutter 2000 [30]

The proportion of the urban
population (%) X8

Guo 2020 [25], Sun 2020 [24], Almeida 2016
[31], Peduzzi 2009 [34], Pelling 2004 [35]

Disaster-affected bodies
The disaster-affected population

(10,000) X9 Dickson 2012 [36], Wang 2018 [9]

The length of marine engineering
damage (km) X10 Wang 2018 [9], Lam 2017 [37]

Disaster prevention
capabilities

GDP per capita (CNY 1) X11

Guo 2020 [25], Sun 2020 [24], Wang 2018 [9],
Almeida 2016 [31], Peduzzi 2009 [34],
Nicholls2008 [33], Pelling 2004 [35],

Davidson 2001 [28]

The unemployment rate (%) X12
Sun 2020 [24], Peduzzi 2009 [34],

Pelling 2004 [35]

Fiscal expenditure (CNY 100 M) X13
Sun 2020 [24], Ainuddin 2015 [32],

Cardona 2006 [29]

The number of beds per thousand
people X14

Guo 2020 [25], Sun 2020 [24], Wang 2018 [9],
Almeida 2016, Ainuddin 2015 [32],

Davidson 2001 [9]

Number of medical institutions X15
Guo 2020 [25], Sun 2020 [24], Wang 2018 [9],

Ainuddin 2015 [32]
Commercial insurance costs

(CNY 100 M) X16
Guo 2020 [25], Ainuddin 2015 [32],

Cardona 2006 [29]

2.1.2. Disaster-Formative Environment

This part mainly studies the exposure degree of the natural and social attributes in the
study area to storm surge disasters. Therefore, the indicators consider three dimensions:
natural environment, economic development, and population structure.

From the natural environment perspective, the indicator of the urban green area (hm2)
was selected. It is the fundamental element for maintaining the urban ecological environ-
ment [38], helping a coastal city minimize natural disaster risks [39]. The urban green area
reflects an area’s ecosystem health, and a healthy ecosystem can help to withstand storm
surges effectively. Meanwhile, the green belt can effectively prevent road surface water
and further reduce the economic losses caused by storm surge disasters. So, the green
plant plays a vital role in social, ecological, and economic recovery after disasters such as
hurricanes [40,41].
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As for economic development, the aquaculture area (hm2) and crop sown area (hm2)
were chosen as two indicators. The aquaculture area reflects the scale of mariculture in the
disaster-affected area and the degree of dependence on the ocean. When a tidal disaster
occurs, the farmland will be flooded by the seawater’s floodplain, which results in direct
economic losses. The sown area of crops represents the agricultural development situation
in the disaster-affected area. When a storm surge occurs, fisheries and agriculture are the
most vulnerable economic entities to be affected. The larger the storm surge, the more
likely it is to cause more economic losses.

The number of casualties is a part of the direct economic losses caused by storm surge
disasters. Considering the population structure, we selected the proportion of the old
and young population and the urban population’s proportion as two indicators. After a
natural disaster, different groups of people will face different degrees of losses. Vulnerable
groups and low-income families in society are often more likely to be exposed to natural
disasters and find it harder to recover [42]. The first indicator adopts the proportion of
children under 15 and seniors over 65 in the study area’s total population. Since children
and seniors are in a relatively disadvantaged position in society, their self-rescue ability to
face disasters is weaker than that of young people [43]. When the proportion of the old and
young population in the affected areas becomes more extensive, the probability of death
from injuries will also increase, impacting economic losses. Simultaneously, the overall
economic development level in rural areas is not as good as that in cities because there
are many low-income families in the countryside. The low housing and infrastructure
conditions have made them more vulnerable to storm surge damage and difficult to recover
from the disaster. The urban population’s proportion reflects the study area’s urbanization
level and indirectly reflects the ratio of the population vulnerable to disasters. The higher
this indicator, the less vulnerable the study area is to storm surge hazards.

2.1.3. Disaster-Affected Bodies

This index shows the vulnerability of the disaster-affected bodies. The biophysical
vulnerability refers to the ultimate impact of the disaster, which is usually expressed by
a certain amount of losses of the system at risk [44]. Numerical simulation studies of
natural hazards are now proliferating, which allows us to estimate the potential damage to
a disaster more accurately by computer [45]. In the numerical simulation of storm surge
hazards, the affected population and the damage to marine engineering are relatively
straightforward. These two indicators are better able to help us to predict the regional
direct economic losses more quickly and precisely. Hence, this paper takes the loss of
the disaster area caused by the storm surge as the representation of vulnerability of the
disaster body, which is characterized by two indicators: the disaster-affected population
and the length of marine engineering damage (km). These two indicators can directly
reflect the economic losses caused by storm surge disasters. When a place suffers a storm
surge disaster, the affected population and the length of marine engineering damage are
the most common and easily collected items while counting property through the survey.

2.1.4. Disaster Prevention Capabilities

Disaster prevention capabilities show the research area’s ability to resist disasters,
which plays a vital role in reducing the impact of disasters. Disaster prevention capabilities
can reduce the economic losses and help the affected areas quickly resume production. This
paper selects various indicators that characterize the research area’s disaster prevention and
mitigation capabilities from two dimensions: economic development and social security.

Per capita GDP is an indicator that directly reflects the regional economic development
level, as the economy is the foundation of the overall development. Good economic devel-
opment can drive the growth of other aspects of society and improve disaster resilience
as well. Meanwhile, the unemployment rate can reflect the region’s overall economic
conditions and represent the stability of society to a certain extent. Generally speaking,
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regions of economic prosperity and social stability are more able to withstand natural
disasters than less developed regions.

Besides, fiscal expenditure stands for the local government’s investment in various
public undertakings, including facilities construction, public safety, social security, etc.
The higher the index, the better the government’s ability to deal with natural disasters.
Storm surge disasters not only cause direct economic losses but also often lead to casualties.
Therefore, the victims’ life safety cannot be guaranteed without the support of the medical
system. The number of beds per thousand people and the number of medical institutions
can fully indicate the study area’s medical conditions. The higher the indicators, the
stronger the rescue capability and the smaller the disaster loss. Lastly, commercial insurance
costs directly show the anti-risk level of a region. Insurance is an effective means of risk
transfer; thus, after a storm surge disaster, insurance can recoup parts of the regional direct
economic loss and improve the entire region’s disaster resistance.

2.2. Data Input
2.2.1. Study Area

The southeastern coast of China is one of the most severely affected areas in the
world by storm surge disasters. About one-third of the world’s typhoons originate in
the Northwest Pacific [46], and the southeastern coast of China is located on the main
moving path of typhoons in the Northwest Pacific. Therefore, certain geographical factors
have caused China’s southeastern coast to suffer typhoon storm surges for the long term.
According to statistics from the China Marine Disaster Bulletin (2001–2019) [1], in the past
20 years, storm surge disasters have caused CNY 212.511 billion (approximately USD
32 billion) direct economic losses to the Chinese mainland.

The study area in this paper is Fujian Province (115◦ 50′~120◦40′ E, 23◦30′~28◦22′ N),
located on the southeastern coast of China. As a typical coastal province, Fujian has a long
coastline (3752 km) with low-lying coastal areas. Moreover, as one of China’s developed
regions, it has a large population and a prosperous economy. The reasons that cause Fujian
long-suffering from typhoon storm surges and enormous economic losses are both factors
on particular geography and social economy. In the past five years, the typhoon storm
surge disasters have caused the direct financial loss of Fujian about CNY 5.96 billion (about
USD 0.9 billion), accounting for 99% of all marine disasters. Therefore, this paper selected
32 typhoon storms with comprehensively complete records that affected Fujian from 1995
to 2019 (as shown in Figure 1a). Besides, to evaluate the robustness of the research method,
this paper also chooses 35 typhoon storms data (see in Figure 1b) of Guangdong province
(109◦39′~117◦19′ E, 20◦13′~25◦31′ N), another typical coastal province in China, as the
input of the robustness experiment. The data used to draw the landing track in Figure 1
is obtained from the China Meteorological Administration Tropical Cyclone Best Track
Data Center (tcdata.typhoon.org.cn, accessed on 4 March, 2021) and refers to the work of
Ying et al. [47].

2.2.2. Data Collection

This research involves 17 variables: 16 independent variables in the index system and
a dependent variable, the direct economic loss of a regional storm surge disaster. In this
paper, we respectively select thirty-two and thirty-five storm surge disasters with relatively
complete records in the Fujian and Guangdong provinces during the 25 years from 1995 to
2019 as research materials. The samples in Fujian are used for the main experiments, while
the samples in Guangdong are used for the robustness experiment. These disaster-related
data come from the following eight sources.

tcdata.typhoon.org.cn
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Figure 1. This is the landing track of selected typhoon storms. (a) The landing track of 32 typhoon
storms affecting Fujian; (b) the landing track of 35 typhoon storms affecting Guangdong.

• China Marine Disaster Bulletin [1]: The Ministry of Natural Resources of China pub-
lishes this annual report on its official website to record the information of marine
disasters suffered across China in the previous year. In this paper, the data of the
maximum storm surge, exceeding the local warning water level, disaster-affected
population, marine engineering damage length, and regional direct economic loss
were collected from twenty-five bulletins from 1995 to 2019. What needs special
explanation is that the regional direct economic loss data were collected, counted, and
checked by local governments. The public officials classified and counted kinds of
lost property caused by the disaster through the field survey, and then calculated the
corresponding value to obtain the overall direct economic loss data.

• Fujian Marine Disaster Bulletin [48]: The Bureau of Ocean and Fisheries of Fujian
Province, from 2011, offers these annual reports on its official website. Like China
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Marine Disaster Bulletin, it records the information of marine disasters but only includes
data from Fujian in the previous year. Moreover, Fujian Marine Disaster Bulletin has
supplementary records of the affected population and extra records the length of
marine engineering damage in Fujian.

• Guangdong Marine Disaster Bulletin [49]: The Department of Natural Resources of
Guangdong Province publishes these annual reports from 2013. It also offers the data
of the affected population, which is not in the China Marine Disaster Bulletin, and the
length of marine engineering damage.

• Collection of Storm Surge Disasters Historical Data in China 1949–2009 [50]: This book is
one of the achievements of a special survey program organized by the State Oceanic
Administration of China. It collects and collates the detailed information of the
maximum storm surge and exceeding the local warning water level of 209 typhoon
storm surge disasters in China from 1949 to 2009. Because marine disaster bulletins
mentioned above do not record the data of the maximum storm surge and exceeding
the local warning water level of a few storm surges before 2009, we referred to this
book for the supplements.

• Central Meteorological Observatory Typhoon Website [51]: This website displays lots of
typhoon tracking information, which can be used to calculate the land impact time.

• National Statistics of China [52]: This is a database provided by the National Bureau
of Statistics, which includes the basic natural environment and socio-economic data
of each province. Eleven indicators of disaster-formative environments and disaster
prevention capabilities are mainly from this database.

• Statistical Yearbook of Fujian [53]: This annual report is published by the Fujian Bureau
of Statistics from 2000. It supplements the missing data in the National Statistics of China
in terms of 11 indicators of disaster-formative environments and disaster prevention
capabilities that are missing.

• Statistical Yearbook of Guangdong [54]: These annual reports also log the local socio-
economic development, which are published by the Guangdong Bureau of Statistics
from 2000. Similar to the Statistical Yearbook of Fujian, it fills in the part of miss-
ing data of 11 indicators belonging to disaster-formative environments and disaster
prevention capabilities.

The above data are taken from the official website of China. To provide follow-up
researchers with quicker access to the data, we have collated and uploaded the bulletin
and yearbook documents [55] used in this paper for reference. What needs particular
explanation is that the social capital shifts to the coastal cities as the economy develops.
Greater direct economic losses occur once suffering the storm surge.

2.2.3. Data Preprocessing

Step 1: missing data processing: As mentioned above, all data are from online or
offline materials, including official reports and reference books. We collected as much
data as possible, but there were still five missing data and three uncertain data among
the thousands of data obtained. Although data augmentation techniques could fill the
data scarcity, we still hope to fill these gaps through manual intervention because this
provides samples with more practical information to enhance the model’s predictive effect.
To make the sample data more complete and usable, we carried out preprocessing work on
these rare missing data, which consisted of filling in the missing data and dealing with the
uncertain data.

We filled in the data gaps in the following ways. First of all, the storm “9608Herb” that
occurred in 1996 had three missing indicators, namely, the proportion of the old and young
population X7, the proportion of the urban population X8, and commercial insurance costs
X16, because these indicators were not counted in the Statistical Yearbook of Fujian [53] before
the year 2000. After checking the correlation between these indicators and the year, we
used generalized linear regression [56] with independent variable years to fill these missing
data. Secondly, the affected population and the length of marine engineering damage of
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the storm “0010bilis” that occurred in 2000 were completed by a kind of single imputation
(set to zero) [57] due to its non-obvious regularity.

In addition, we have only three uncertain data in three indicators, namely, the maxi-
mum storm surge, exceeding the local warning water level and regional direct economic
loss. The reason for the missing data is due to all uncertain data appearing in the early
records. The uncertain, direct economic damage value comes from the storm “0604 Bilis”,
which occurred in 2006. Because the two official reports mentioned above were investigated
at different times, there are two different regional direct economic losses. Besides, due to
the different observation positions where the survey crew measured the maximum storm
surge and exceeding the local warning water level, there are also a few different values. It
is worth noting that the gap between these different values is very small. These uncertain
data could be filled by the average value of different resources.

Step 2: normalization: Every sample in this original dataset has 16 different fea-
tures, each representing a different meaning of storm surge or information about the local
province. Each component has a specific magnitude. For example, the mean of the feature
“exceeding the local warning water level” is 155.77, while the mean of the feature “maxi-
mum storm surge” is only 30.65. To eliminate the dimensional influence between indicators,
we use the normalization process to solve data indicators’ comparability. Considering that
money has time value, we discount the monetary features into the present value before
normalizing. Finally, normalization is generally carried out by subtracting the mean and
then divided by the standard deviation of given data. The formula is defined as follows:

y =
x− µ

σ
(1)

where y, µ, σ represents the normalized value of the x actual value, the mean of feature x
belongs to, and the feature’s standard deviation.

2.3. Ensemble Learning Models

Typically, ensemble learning models have many merits, such as overfitting avoidance,
computational advantage, and representation [58,59]. These unique attributes make en-
semble learning models the state-of-the-art approach for solving a plethora of machine
learning problems [60]. Ensemble learning establishes and combines multiple base learners
to achieve significantly superior generalization performance over a single learner. Popular
ensemble learning models could be basically categorized into two types: bagging [61] and
boosting [62]. The main difference between them is the way to reconstruct train sets and
organized base learners. The bagging-based model’s base learners are independent with
each other (see Figure 2). The boosting-based model is the opposite, which means that the
base learners generated in the previous iterations will guide the next base learner’s learning
(see Figure 3). Bagging-based algorithms use repeated sampling with replacements from
the original training set to form the new one (see Figure 2). In contrast, boosting-based
algorithms assign weights to each sample in the original training set to construct a new
one (see Figure 3). Random Forest [63] is a representative bagging-based model. By con-
trast, XGBoost [64], LightGBM [65], and CatBoost [66] are three successful and popular
boosting-based models. All of these four ensemble learning models regard classification
and regression trees (CARTs) as base learners.

2.3.1. Random Forest

Random forest [63] is a classical resemble learning model proposed by Breiman et al.
in 2001. Each tree in a random forest is built from sampled features extracted from the
sampled training set (i.e., bootstrap samples). In addition, instead of using all the features,
a subset of the features is randomly selected to achieve the randomization of trees further.
Therefore, the bias generated by the random forest increases slightly, but the estimated
variance is reduced by the calculated mean value of less-correlated trees, resulting in a
better overall performance of the model.
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Figure 2. The principle schematic of bagging.

Figure 3. The principle schematic of boosting.

2.3.2. XGBoost

Based on gradient boosted decision tree (GBDT) [64], XGBoost [19] is an ensemble
learning algorithm proposed by Chen et al. in 2014. When it comes to XGBoost, GBDT
should be briefly introduced at first. GBDT is a successful implementation of boosting,
which regards CARTs as base learners. It constructs CARTs iteratively by using the boosting
decision tree algorithm, that is, fitting the residual error generated by the previous CARTs.
Different from simple regression models, GBDT takes the average of different hypotheses
(i.e., a possible relationship between independent and dependent variables) made by base
learners to avoid learning a spurious relationship between variables. Moreover, to speed up
the convergence, GBDT uses gradient descent to optimize the loss function—mean-square
error (MSE) and Huber, for example.

XGBoost is an improved algorithm of GBDT, and the main improvements are as
fol-lows. First, the loss function of XGBoost involves second-order Taylor expansion. It
makes XGBoost estimate the actual loss function more accurately than that of GBDT, which
only considers the first order. Second, XGBoost adds regularizers to depress the overfitting.
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2.3.3. LightGBM

LightGBM [65], proposed by Microsoft in 2016, is also an improved algorithm of GBDT.
Compared to XGBoost, LightGBM presents gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB) to speed up the training process. The former can decrease
the time cost of calculating loss function, and the latter is aimed at reducing the dimension
of samples to accelerate the algorithm. In conclusion, LightGBM can keep almost the same
accuracy with less time and space in the setting of big data.

2.3.4. CatBoost

CatBoost [66] is another improved algorithm of GBDT. It was proposed by Yandex
in 2017 and its main improvement is in the processing of classification features. CatBoost
successfully handles classification features and takes advantage of dealing with them
during training rather than preprocessing. Meanwhile, to accelerate the search for the best
split, this model uses a kind of histogram computation without any atomic operations,
which is also an improvement to LightGBM in terms of time efficiency.

2.3.5. Comparison of the Ensemble Learning Models

XGBoost is better than the other three and the reasons are as follows. In random
forest, the training sets of every base learner are generated by repeated sampling with
replacements from the original training set. Although they have the same number of
samples, the training sets may not include every sample from the original training set.
Especially, there are a few real samples in the augmented samples. Therefore, if sampled
training sets exclude some real samples, the performance of base learners would acquire
degradation. However, XGBoost, based on the boosting framework, does not have this
shortcoming. Furthermore, when a CART grows, XGBoost uses the exact greedy algorithm
to find the best node. Whereas, LightGBM and CatBoost sacrifice a little precision in finding
the best splitting points to improve computational speed and memory usage efficiency,
which also adds the model complexity. Although it is feasible and effective in big data,
this sacrifice is magnified and decreases the model performance when dealing with small
sample problems.

2.4. The Data Augmentation
2.4.1. Cubic Spline Interpolation

Zhao found that the cubic spline interpolation is the most potent interpolation
for forecasting the direct economic losses of marine disasters among the four interpo-
lations tested [18]. Therefore, we chose the cubic spline interpolation as one of the
experiment baselines.

Suppose that there are the following points: (x1, y1), (x2, y2) . . . (xn, yn) and
a < x1 < x2 < · · · < xn < b. Given n points, the spline curve S(x) is a piecewise
function. Specifically, the cubic spline equation satisfies the following three conditions:

a. In each segmented section [xi, xi+1] (i = 1, 2, . . . , n− 1), S(x) = Si(x) is a
cubic polynomial;

b. Si(x) = yi (i = 0, 1, . . . , n );
c. In section [a, b], S(x), derivative S′(x), and second derivative S′′(x) are all continuous.

Hence, Si(x) can be expressed as follows:

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3, i = 0, 1, . . . , n− 1 (2)

After substituting the point (xi, yi) and the specified first endpoint condition a, b into
the matrix equation, we solve the matrix equation and obtain the quadratic differential
value mi. ai, bi, ci, di can be calculated as

ai = yi (3)
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bi =
yi+1 − yi
xi+1 − xi

− xi+1 − xi
2

mi −
xi+1 − xi

6
(mi+1 −mi) (4)

ci =
mi
2

(5)

di =
mi+1 −mi

6(xi+1 − xi)
(6)

In our experiment, we regard regional direct economic losses as x and one of the
features as y, and do interpolation 16 times for 16 different features.

2.4.2. Noise Injection

Most data augmentation algorithms focus on image data classification problems,
but there is a data augmentation technique, noise injection [67], that can be applied to
non-image data. It is used in the following way (refer to Equations (7) and (8)).

Assume that a sample i can be expressed as Xi =
(

xi
1, xi

2, . . . , xi
m
)
, where m is the

dimension of a sample, and corresponding regional direct economic loss is yi. For each
augmentation, we generate Gaussian noise

→
α = (α1, α2, . . . , αm) and αj ∼ N(0, δ), then the

new sample can be calculated as:

Xi
new = Xi +

→
α ◦ Xi (7)

yi
new = yi (8)

where ◦ is the symbol of Hadamard product, and according to the convention of unchang-
ing labels on image data, we do not add noise to regional direct economic loss.

2.4.3. KNN-GN

KNN-GN is motivated by noise injection and synthetic minority over-sampling tech-
nique (SMOTE), which utilizes the information of neighbors to guide the direction of
Gaussian noise (refer to Equations (9) and (10) and Figure 4). New samples can be gained
in the following way.

Figure 4. This is the schematic of k-nearest neighbor-Gaussian noise (KNN-GN).
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Assume that
(

Xj, yj
)

is one of the k-nearest neighbors of Xi in the (m+1)-dimension
feature space, we generate an extra random number αm+1 ∼ N(0, δ), then a new sample
can be calculated as:

Xi
new = Xi +

→
α ◦

(
X j − Xi

)
(9)

yi
new = yi + αm+1·

(
yj − yi

)
(10)

2.4.4. Comparison of the Data Augmentation Technology

KNN-GN is the best of all the data augmentation techniques mentioned above and
the reasons are as follows. Cubic spline interpolation is commonly implemented in low-
dimensional space. Each feature of new samples calculated by interpolation only establishes
a functional relationship with regional direct economic losses, which does not make full
use of samples’ high-dimensional characteristics. Moreover, cubic spline interpolation
is deterministic and fails to reflect the randomness of the disasters’ process, while noise
injection introduces random noise following Gaussian distribution. However, it has its
limitations. Noise injection only runs in the feature space, and a new sample is just related
to one specific original sample, ignoring the information between the samples. Whereas
KNN-GN not only looks for the neighbors in the feature-target space but also adds random
directional noise. These merits make full use of samples’ high-dimensional characteristics
and the information between samples, as well as introduce randomness, which makes it
outperform the former two.

To show the effect of cubic spline interpolation, noise injection, and KNN-GN more
intuitively, we apply these techniques to 20 three-dimension samples. The visualizations of
the 100-time augmentation are displayed in Figure 5.

Figure 5. There are the visualizations of these three data augmentation techniques. (a)The visualization of cubic spline
interpolation; (b) The visualization of noise injection; (c) The visualization of KNN-GN.

2.5. Comparative Experimental Design

Due to the advantages mentioned above of KNN-GN and XGBoost, we compared
the KNN-GN-based XGBoost method with 15 other data augmentation combined regres-
sion models to verify its performance. The baselines of KNN-GN are none augmentation,
cubic spline, and noise injection [67], while that of XGBoost are random forest [63], Light-
GBM [65], and CatBoost [66] (refer to Figure 6). It should be noted that for the sake of
convenience, we regarded the none data augmentation and noise injection as kinds of
general data augmentation techniques. The original dataset was randomly shuffled and the
last five samples were regard as validation samples. We term such a process as one partition
of the dataset. To eliminate the randomness while splitting the training and validation
set, we adopted ten independently random partitions on the original dataset to generate
ten groups of training and validation sets. Meanwhile, to assess the performances of the
different combinations, we used MAPE as the error measure, which is defined as follows:

e(i) = pred(i)− y(i) (11)
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MAPE =
1
N

N

∑
i=1

∣∣∣∣ e(i)
y(i)

∣∣∣∣ (12)

Figure 6. The comparative experiment design of the research.

The flow chart of the experiment in this research is composed of four steps (see Figure 7).

Figure 7. The flow chart of a regression model based on a data augmentation technique.

(a) The original samples are randomly split into a training set and a validation set.
(b) According to an acknowledged kind of technique, training sets are augmented with

N times to attain an extended training set. (The augmented training set by noise
injection and KNN-GN includes (N + 1)× (n− 5) samples, while the augmented
training set with cubic spline interpolation and without any data augmentation has
N × (n− 5) samples and n − 5 samples, respectively.)

(c) Augmented training set is fed to one of the regression models.
(d) The validation set is predicted with the trained regression model.

Finally, in addition to comparing the KNN-GN-based XGBoost with other combined
models, we compared the model with two widely used models: BPNN and SVR, to further
verify its performance.

2.6. Parameter Settings

The standard deviations used in noise injection and KNN-GN were respectively set
to 0.05 and 0.25, and expansion multiples of both were 10. All baselines were initial-
ized with default parameters suggested by their papers, and we also further carefully
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adjusted parameters to achieve optimal performance. Especially, for the common parame-
ters among the four models, max_depth and n_estimator were searched in {2, 5, 10, 15, 20}
and {16, 32, 64, 128, 256, 512, 1024, 2048}. Besides, for XGBoost, we sought the best
learning_rate in {0.001, 0.01, 0.1, 0.2}.

BPNN had one input layer, two hidden layers, and one output layer with the activation
function Sigmoid. SVR used Gaussian kernel and set the other parameters to the default
values in the Python library sklearn.

3. Results and Discussion
3.1. Optimization of Combined Models

The experimental results of all the combinations are shown in Figure 8. Considering
reliability, the results in Figure 8 are the means of 10 repeated experiments using ten
different groups of training and validation sets. Moreover, each column represents a
regression model, and each row represents a kind of data augmentation technique. The
purpose of this experiment is to validate that KNN-GN-based XGBoost is the optimal
combined model. Additionally, in Figure 8, the smaller the MAPE value and the darker the
color, the better the model performance.

Figure 8. The results of 16 different combined experiments. RF: random forest.

In the heatmap, it can be concluded that (1) KNN-GN, on average, performs 27.1%,
18.5%, and 30.0%, respectively, better than none, cubic spline and noise injection on four
ensemble learning models, and (2) XGBoost, on average, performs 15.4%, 15.1%, and 14.7%
respectively better than random forest, LightGBM and CatBoost on four data augmentation
techniques, and (3) KNN-GN-based XGBoost arrives at 0.304 in terms of MAPE and
performs best among all the combinations. Figure 9, for example, intuitively shows the
KNN-GN-based XGBoost has good prediction performance.

Therefore, we investigated that KNN-GN-based XGBoost could improve the perfor-
mance of forecasting regional direct economic losses of storm surge disasters. Furthermore,
we also provided the proportion of the indicator importance as shown in the Figure 10.
It is observed that the top three most influential, in that order, are the disaster-affected
population, the length of marine engineering damage, and the exceeding the local warning
water level. The indicator that has the least effect is the unemployment rate.
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Figure 9. The fitting and prediction result of the KNN-GN-based XGBoost model. The samples in
the shadow part belong to validation, while the rest belong to the training set.

Figure 10. The proportion of the indicator importance based on KNN-GN-based XGBoost.

To explore why KNN-GN-based XGBoost performs best, we made further analysis
(see Figures 11 and 12) as follows.

Firstly, to intuitively illustrate the merits of KNN-GN and XGBoost, we show the
absolute percentage error (APE) of every sample in one of the partitions (see Figure 11).
On the one hand, from Figure 11a, it can be observed that (1) based on XGBoost, none data
augmentation has around zero APEs on the training set; besides, KNN-GN, cubic spline,
and noise injection have larger APEs on the training set; (2) based on XGBoost, KNN-GN
and noise injection have smaller APEs on the validation set than none data augmentation
techniques. According to these two observations, we can conclude that KNN-GN and noise
injection can suppress the overfitting to promote the model training. On the other hand,
Figure 11b shows that (1) random forest has small APEs with high variance on the training
set and performs worst on the validation set; (2) LightGBM and CatBoost have lower APEs
but perform poorly on the validation set; (3) XGBoost has consistent performance on the
training and verification set. The findings above verify that (1) random forest has lousy
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performance because it omits some real samples as mentioned above, (2) and XGBoost has
a better matching degree between the complexity of models and the size of samples.

Figure 11. The APE of every sample in one of the partitions. (a) The fitting and prediction effect
of none data augmentation, cubic spline, noise injection, and KNN-GN based on XGBoost. (b) The
fitting and prediction effect of random forest, LightGBM, CatBoost, and XGBoost.

Furthermore, from Figure 12a, it can be seen that random forest cannot fit in the
training set well according to high MAPE at 0.442 and 0.479 respectively on training and
validation sets without any data augmentation. Hence, random forest is not a suitable
regression model for forecasting regional direct economic losses of storm surge disasters,
as analyzed above. Secondly, from Figure 12b–d, it can be seen that the MAPEs of training
sets on XGBoost are more extensive than that of LightGBM and CatBoost, and the situation
for the validation sets is the opposite. Both observations over again support the opinion
that XGBoost is better than LightGBM and CatBoost. Based on the theoretical analysis men-
tioned above, we can attribute this result to the matching degree between the complexity of
models and the size of samples. The higher the matching degree of the model complexity
and the sample size, the better model performs. Although LightGBM and CatBoost are the
improved models of XGBoost in the setting of big data, XGBoost outperforms the other
two in the prediction problem with small samples.
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Figure 12. Comparison of MAPE in training and validation sets. (a) MAPE of training and validation sets based on random
forest. (b) MAPE of training and validation sets based on XGBoost. (c) MAPE of training and validation sets based on
LightGBM. (d) MAPE of training and validation sets based on CatBoost.

All of the regression models aim at finding a distribution to fit the actual distribution as
much as possible by known samples, which is the essence of the model training. However,
the scarcity of known samples probably leads to the overfitting of the model. It is because
of the mismatch between the complexity of models and the size of samples. Additionally,
models are too complicated to learn the unique and individual characteristic of known
samples and regard it as the general characteristic of potential samples, thus leading to
generalization error and overfitting. This is why we attempt to apply data augmentation to
ensemble learning models.

As for the reason that we choose KNN-GN, from Figure 11, it can be seen that
(a) based on random forest, KNN-GN performs best for the highest MAPE in training
sets; (b) for XGBoost, LightGBM, and CatBoost, MAPEs of training sets appear the increas-
ing trend in the order of none, cubic spline, noise injection and KNN-GN and the situation
for validation sets is inverse, which strongly supports that noise injection and KNN-GN
could reduce overfitting and further improve the effect of model training; (c) cubic spline
interpolation performs worst, even worse than none augmentation data. (d) KNN-GN
performs better than the other data augmentation techniques we used as baselines.

Furthermore, according to the observations above, we make an extra theoretical
interpretation as follows. The possible reason that cubic spline interpolation performs badly
is that it cannot be approximated directly by fitting a simple function due to the complicated
relationship between the disaster-causing factor and the regional direct economic loss.
Especially when there is a significant difference between the new sample and the original
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sample, that is, an Euclidean distance of two samples in the feature space. It probably
causes the noise introduced by interpolation to be much larger than the information it
brings. We try to set new samples as close as the original samples, but not too close to
obtain further information. This problem can be tackled by introducing the high dimension
Gaussian noise with a small standard as noise injection, and KNN-GN does.

Figure 11 explains the reason why KNN-GN performs better than noise injection.
Suppose we have a class of samples with two-dimension points. The actual distribution of
these samples and points is shown as the dotted line in Figure 13a,b. Samples augmented
by noise injection and KNN-GN are shown in Figure 13a,b. Intuitively, samples generated
by KNN-GN are easier to hit the true curve so that more information can be brought
to guide to fit the real distribution. Because when expanding a sample, noise injection
only expands a sample approximately in its own feature vector direction, KNN-GN does
more. It first finds the sample’s neighbor in the features-target space and then introduces a
Gaussian noise tending to the difference in vector direction between the sample and its
neighbor. From the perspective of mathematics, the fundamental idea of KNN-GN is like
using the secant line instead of the tangent line and further replacing the curve.

Figure 13. These are the abridged general view to interpret why KNN-GN performs better than noise injection. (a) The
effect picture of noise injection. The blue part includes points augmented by noise injection. According to the application on
image data, noise injection only adds noise to the Feature 1 dimension. (b) The effect picture of KNN-GN, which adds noise
to two dimensions and tends to be close to the true distribution. The yellow part includes points augmented by KNN-GN.

Therefore, we can finally conclude that KNN-GN-based XGBoost improves the perfor-
mance of storm surge disasters’ regional direct economic losses evaluation by applying
XGBoost with suitable model complexity and suppressing the overfitting of model training.

3.2. Validation of the KNN-GN-Based XGBoost Model

We compared the KNN-GN-based XGBoost with XGBoost and two widely-used
models: BPNN and SVR to assess the optimized ensemble learning model’s performance.
For the models being compared, we used the dataset of Fujian and obtained ten different
partitions to eliminate contingency. Same as the previous experiment, we used MAPE to
evaluate the performances of the models. The experimental results of the different models
are listed in Table 2. When the MAPE of validation is lower, the performance is better.
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Table 2. The MAPE of training and validation sets in the different models.

KNN-GN-Based XGBoost XGBoost BPNN SVR

Training set 0.450 0.241 0.175 0.029
Validation set 0.304 0.384 0.857 0.837

From Table 2, we can observe that the proposed optimized model has the minimum
MAPE of validation sets. On the one hand, for the reason that KNN-GN-based XGBoost
performs better than BPNN and SVR, KNN-GN-based XGBoost adopted KNN-GN to
solve the data scarcity problem and eventually depressed the overfitting of XGBoost. On
the other hand, the reason that KNN-GN-based XGBoost outperforms BPNN and SVR
is as follows. When dealing with small sample problems, the general learning algorithm
can often find many different hypotheses that fit the training samples well. However, it
is still difficult to make accurate predictions for unknown samples, which is overfitting.
There is serious overfitting in Table 2, where BPNN and SVR have low MAPEs (<0.2)
in the training sets but perform poorly (MAPE > 0.8) in the validation sets. However,
ensemble learning models, such as XGBoost and KNN-GN-based XGBoost, select the
average of different hypotheses to reduce overfitting and improve overall generalization
ability. We can therefore conclude that the novel approach is effective and could improve
the forecasting performance.

3.3. Robustness Analysis

To assess the robustness of the KNN-GN-based XGBoost, we applied it to another
dataset that includes 35 storm surge disaster samples from the years 1995–2019 in Guang-
dong. We selected the 30 storm surge samples that occurred between 1995 and 2015 as
the training set. The disaster samples from 2016 to 2019 were the verification samples (the
last five samples). It should be noted that we have appropriately adjusted the robustness
experiment models’ parameters to be more suitable for the Guangdong dataset.

The fitting-prediction values and targets of samples are shown in Figure 14, where
we can observe that KNN-GN-based XGBoost has a considerable good prediction on the
validation set. Although the proposed model did not predict the regional direct economic
losses of 33rd and 35th storm surge disasters so well, the storm surge disaster itself has
uncertainty and randomness. Therefore, we can conclude that KNN-GN-based XGBoost
has robustness. This model’s performance is qualified to aid policy makers in taking timely
and proper measures in managing a storm surge disaster.

Figure 14. The results of the robustness experiment of Guangdong.
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4. Conclusions

This paper proposed a novel evaluation system consisting of an index system and
a regression model, which could accurately predict regional direct economic losses after
storm surge disasters in a short time. The performance is superior to that of state-of-the-art
models from two advantages: (1) the index system considers four aspects: disaster-causing
factors, disaster-formative environments, hazard-bearing bodies, and disaster prevention
capabilities from the perspectives of storm surge disasters’ formation mechanism and risk
management; (2) the KNN-GN-based XGBoost regression model not only reduces the
overfitting by taking the average of hypotheses and data augmentation but also matches
the model complexity and the sample size well.

Our evaluation model achieves promising results on two storm surge disaster datasets
in the Fujian and Guangdong provinces in China. It is worth noting that the performance
still has room for improvement by training on more datasets. As for the limitation, the 16
indicators selected in the index system of this paper are mainly from historical data. In the
future, as the storm surge forecasting systems and the numerical simulation technology
advance, these indicators could be estimated accurately before a disaster happens. This
progress makes the proposed evaluation system work even before the storm surge disaster
happens. Finally, the results show that our evaluation system can be applied to other
disasters—geography-related disasters, for instance—with small samples.
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