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Abstract: Previous studies investigating the effect of excessive weight on the foot have commonly
been cross-sectional; therefore, it is still unclear how the foot function gradually changes with the
increased body mass that is physiologically gained over time. This study aimed to use a load transfer
method to identify the mechanism of how the foot function changed with the increased excessive
body mass over two years. Taking normal weight as the baseline, fifteen children became overweight
or obese (group 1), and fifteen counterparts maintained normal weight (group 0) over the two years.
Barefoot walking was assessed using a Footscan® plate system. A load transfer method was used
based upon the relative force–time integral (FTI) to provide an insight into plantar load transference
as children increased in weight. Significantly increased FTIs were found at the big toe (BT), medial
metatarsal (MM), lateral metatarsal (LM), and lateral heel (HL) in group 1, while at BT, MM, medial
heel (HM), and HL in group 0. Foot load showed a posterior to anterior transferal from midfoot
(2.5%) and heel (7.0%) to metatarsal and big toe in group 1. The control group, however, shifted
the loading within the metatarsal level from LM to HM (4.1%), and equally relieved weight from
around the midfoot (MF) (3.0%) to BT, MM, HM and HL. Earlier weight loss intervention is required
to prevent further adverse effects on foot functions caused by excessive weight-bearing.

Keywords: foot function; overweight children; obese children; load transfer; follow-up study

1. Introduction

Excessive body mass is known to be strongly associated with the development of
musculoskeletal disorders, lower extremity postural deformities, and altered walking
characteristics for children [1–4]. Especially, as the foot structure is in the process of
development in children, childhood obesity may undermine the foot structure and foot
function and further lead to the redistribution of foot loadings [5–8]. Previous studies
investigating the effect of increased weight on the plantar pressures and foot structural
changes in children have commonly been cross-sectional [9–12]; obese/overweight children
are compared with those of normal weight, but the temporal relationship of pathologic
development on foot function with the increased excessive body mass is unknown. It
is necessary to figure out how the foot function gradually changes with the increased
excessive body mass that is physiologically gained over time. Additionally, the foot
structure maintains constant growth until the age of 12 or 13 years [13,14]. It is notable
that with the increase in excessive body mass, distinctions exist between physiologic and
pathologic development in children. Therefore, a longitudinal study is needed to evaluate
pathologic development with the gain of excessive body mass.
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Load transfer analysis has been used in previous studies [15–18]. Bus et al. firstly
designed a load-transfer algorithm, which was used to assess load redistribution resulting
from custom-made insoles [15–17]. Mingyu Hu et al. also used a load transfer algorithm
to quantify the plantar force transference to observe the track of the load under children’s
feet [19]. Likewise, the load transfer analysis method would be a useful tool to figure
out the redistribution of foot loadings with the increased body mass in the present study.
To date, most studies have focused on the comparison of plantar pressure distribution,
but the correlation between the varied parts of the foot structure with load redistribution
is not usually considered. The load transfer analysis can provide an insight into the
mechanism of load redistribution with increased body mass, and could help to achieve
a clear understanding of the temporal relationship of pathologic development with the
increased excessive body mass. Accordingly, a load transfer algorithm designed by Mingyu
Hu et al. [19] was used in this study.

Therefore, the aim of this study was to identify the load transference with the increased
excessive body mass and to establish the mechanism about how foot function changes with
the increased excessive body mass over two years.

2. Methods
2.1. Participants

In total, 158 children aged 7–9 years from a randomly selected local primary school in
Yantai City, China, participated in the original study. Participants were excluded if they
had any of the following: neurological and orthopedic problems, a history of lower limb
injury during the previous 6 months, and previous foot surgery. The original and follow-
up measurements were conducted in September 2017, and September 2019, respectively.
This study was approved by the Ethics Committee of Sichuan University (K2020044).
Written informed consent was obtained from one of the children’s guardians before the
experiments. Body mass index (BMI) was calculated as the body mass divided by height
squared (kg·m−2). Participants were categorized as normal-weighted, overweight, and
obese according to the BMI reference norm established by the Group of China Obesity Task
Force (Table 1) [20].

Table 1. China BMI reference norms (7–11 years).

Age
Male Female

Overweight Obese Overweight Obese

7 17.4 19.2 17.2 18.9
8 18.1 20.3 18.1 19.9
9 18.9 21.4 19.0 21.0
10 19.6 22.5 20.0 22.1
11 20.3 23.6 21.1 23.3

2.2. Equipment and Procedure

Anthropometric data, including age, gender, height, and body mass, were recorded
at baseline and follow-up. Plantar pressure parameters were measured by a one-meter
Footscan® plate system (RSscan International, Olen, Belgium) with a sampling frequency of
250 Hz. The platform was positioned at the center of a 10 m walkway. After familiarization,
participants were instructed to walk barefoot across the plate at their preferred speed. A
two-step initial protocol was used during data collection [21]. A trial was considered valid
when the following criteria were met: a natural walk with self-preferred speed and two
whole steps of both feet were recorded by the plate system. At least three successful trials
were recorded for each participant, and the mean values of the right foot were calculated
for analyses [22].



Int. J. Environ. Res. Public Health 2021, 18, 2879 3 of 9

2.3. Data Processing and Statistical Analysis

For analyzing load transferences between foot regions, the foot plantar was di-
vided into seven anatomical segments [23]: big toe (BT), second–fifth toes (T2–5), medial
metatarsal (MM, consisting of first metatarsal, second metatarsal, and third metatarsal),
lateral metatarsal (LM, consisting of third metatarsal and fourth metatarsal), midfoot (MF),
medial heel (HM), and lateral heel (HL). The force–time integral (FTI) is the total load in a
certain region of the foot which indicates the duration of contact so that the overall load
in that region can be fully described; therefore, the FTI was calculated for each region to
describe the inter-regional load transfer [19]. To eliminate the effects of different body mass
between the baseline and follow-up, force–time integral was normalized to relative FTI
(FTIrel). The formula was calculated as follows:

FTIrel (%) =
FTI(foot region)

∑ FTI(foot region)
× 100%

The change of foot structure with the increased body mass was assessed by the arch
index (AI). The arch index was defined as the ratio of the midfoot contact area relative to
the total contact area, excluding the toes [24].

Statistical analyses were conducted with SPSS 21.0 (IBM, New York, NY, USA).
Kolmogorov–Smirnov tests and Q–Q normality plots were used to test the data for nor-
mality. Independent sample t-tests were used to compare the differences between the
original data and follow-up data in anthropometry variables and FTI values for each group.
Statistical differences between group 1 and group 0 at baseline and follow-up for anthro-
pometry variables and FTI values were also analyzed with an independent samples t-test.
Confidence intervals (CI) at 95% were calculated for all the mean differences. A value of
p < 0.05 was perceived as significant for statistical analyses in this study.

2.4. Load Transfer Method

Load transfer with the increased body mass was assessed by a load transfer method
proposed by Mingyu Hu [19]. The values of load transferences during the two-year follow-
up were quantified by the difference values of FTIrel, which were calculated by the mean of
baseline data minus that of the follow-up data. Positive values indicated that the forces of
the baseline were higher than those in the follow-up; this was vice versa for negative values.
Four levels were defined following the anatomical segments: toes (Level 1, BT and T2–5),
metatarsal (Level 2, MM and LM), midfoot (Level 3, MF), and heel (Level 4, HM and HL).
In the beginning, foot load was transferred within each level from positive value regions to
negative value regions. Load transfer occurred between adjacent anatomical regions first,
and then between the further regions. Afterwards, the foot load was transferred between
adjacent levels from positive value regions to negative value regions. Finally, load was
transferred across levels with the help of longitudinal arches. After the transfer, the altered
FTIrel values were shown at the bottom of each foot region.

3. Results
3.1. Participant Characteristics

Of the original 158 participants, 24 of these participants were excluded: 15 participants
were unable to attend the scheduled follow-up measurements, 2 participants were due to
missing measurement data, and 7 participants because of pathologic foot developments.
Therefore, complete datasets of 134 children were available for observation. All of the
children were categorized as normal-weighted, overweight, or obese according to their
BMI. Children who had increased their BMI from normal weight to overweight or obese
after two years were selected. Fourteen children increased their BMI from normal weight to
overweight, and only one child increased the BMI from normal weight to obese. Therefore,
these fifteen children with increasing BMI were assigned to the study group (group 1).
Non-obese counterparts who maintained a BMI of normal weight over the two years were
also selected. To counter a possible bias of body factors, fifteen children whose age, gender,
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and body height were matched to the individuals of group 1 at baseline and follow-up
were selected as the control group (group 0). The participants’ characteristics are shown in
Table 2.

Table 2. Participant characteristics (Mean ± SD).

Group Baseline Follow-Up Mean Difference
(95% CI) p

Number
Group 0 15 15 - -
Group 1 15 15 - -

Age (years) Group 0 7.7 ± 0.5 9.7 ± 0.5 2 -
Group 1 7.7 ± 0.5 9.7 ± 0.5 2 -

Height (cm) Group 0 130.3 ± 4.1 141.2 ± 4.8 11.0 (9.9 to 12.0) 0.000
Group 1 129.9 ± 4.3 141.1 ± 4.7 11.3 (10.3 to 12.2) 0.000

Weight (kg) Group 0 25.4 ± 2.6 33.3 ± 4.9 7.8 (6.5 to 9.2) 0.000
Group 1 28.0 ± 2.3 40.4 ± 3.8 12.4 (11.0 to 13.8) 0.000

BMI (kg·m−2)
Group 0 15.0 ± 1.3 16.6 ± 2.0 1.7 (1.2 to 2.2) 0.011
Group 1 16.6 ± 0.8 20.3 ± 0.9 3.6 (3.1 to 4.2) 0.000

AI
Group 0 0.27 ± 0.07 0.16 ± 0.07 −0.11 (−0.08 to −0.13) 0.000
Group 1 0.27 ± 0.06 0.19 ± 0.06 −0.08 (−0.06 to −0.10) 0.002

Mean Difference represents the mean difference in anthropometry variables between the baseline and the follow-
up. p-values represent the differences in anthropometry variables between the baseline and the follow-up. The
bold represents statistical differences between the two group at baseline and follow-up.

After the two-year follow-up check, height, weight, and BMI of children in the
two groups increased significantly, and the weight and BMI of group 1 showed a greater
increase than group 0. The average weights of group 0 and group 1 participants increased
by 7.8 kg and 12.4 kg, respectively. The BMI values of group 0 and group 1 participants
increased by 1.7 kg·m−2 and 3.4 kg·m−2, respectively.

3.2. Arch Index

After the two-year follow-up check, the AI of all groups decreased significantly. The
AI of group 0 decreased from 0.27 to 0.16. The AI of group 1 decreased from 0.27 to 0.19.
Group 1 showed greater AI values at follow-up than those in group 0.

3.3. FTI

The FTI values of the two groups are shown in Table 3. As the result shows, FTI values
of both groups increased in all foot regions after the follow-up check. Significant increases
were displayed at BT, MM and HL regions in both groups. It was noticed that the FTI of
group 1 showed a significant increase of 26.8 N·s at the LM region (p = 0.001), while the
increased value in group 0 was only 6.2 N·s (p = 0.379) at that region. Meanwhile, the
increased FTI value of group 0 in the HM region was 13.6 N·s (p = 0.003), and the increased
FTI value of group 1 in that region was only 9.9 N·s (p = 0.110). Foot loading distributions
showed no significant difference between the two groups at baseline and follow-up.
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Table 3. FTI (N·s) and the difference values.

Regions
Group 0 Group 1

Baseline Follow
up

Mean Difference
(95% CI) p Baseline Follow

up
Mean Difference

(95% CI) p

BT 6.7 ± 3.0 16.2 ± 8.9 9.5 (5.0 to 14.0) 0.001 6.0 ± 4.6 16.9 ± 10.4 10.9 (6.4 to 15.5) 0.001
T2–5 2.2 ± 1.7 3.3 ± 2.1 1.0 (-0.4 to 2.5) 0.163 1.8 ± 1.5 3.4 ± 3.1 1.6 (−0.2 to 3.4) 0.082
MM 27.4 ± 9.2 60.0 ± 22.0 34.4 (21.6 to 47.2) 0.000 24.4 ± 15.4 55.2 ± 25.2 30.8 (14.9 to 46.6) 0.000
LM 25.2 ± 19.6 31.4 ± 18.0 6.2 (−4.4 to 16.8) 0.379 17.9 ± 10.6 44.7 ± 23.0 26.8 (14.2 to 39.3) 0.001
MF 13.7 ± 13.3 15.9 ± 13.6 2.2 (−1.9 to 6.3) 0.663 17.3 ± 15.7 23.4 ± 16.9 7.3 (−3.0 to 17.6) 0.320
HM 17.0 ± 8.7 30.6 ± 13.1 13.6 (4.9 to 22.2) 0.003 23.1 ± 18.3 33.1 ± 14.5 9.9 (−1.0 to 20.9) 0.110
HL 14.0 ± 6.9 28.1 ± 13.4 14.0 (6.4 to 21.6) 0.002 19.0 ± 11.1 31.0 ± 12.3 12.0 (4.1 to 19.9) 0.009

Mean Difference represents the mean difference in FTI values between the baseline and the follow-up. p-values represent the differences in
FTI values between the baseline and the follow-up. Abbreviations: big toe (BT), second–fifth toes (T2–5), medial metatarsal (MM), lateral
metatarsal (LM), midfoot (MF), medial heel (HM), and lateral heel (HL).

3.4. Load Transfer

Calculated FTIrel and transfer values of all groups are shown in Table 4. The assess-
ments of load transference in group 0 and group 1 are illustrated in Figure 1. The calculated
transfer values were matched to the foot regions (Figure 1A,B).

Table 4. FTIrel (%) and the transfer values.

Regions
Group 0 Group 1

Baseline Follow up Transfer Value Baseline Follow up Transfer Value

BT 6.6 8.6 −2.0 6.2 8.4 −2.2
T2–5 1.9 1.8 0.1 1.9 1.7 0.2
MM 29.1 33.2 −4.1 24.0 26.8 −2.8
LM 21.6 16.7 4.9 16.5 21.2 −4.7
MF 11.0 8.0 3.0 13.3 10.8 2.5
HM 16.1 16.5 −0.4 20.4 15.8 4.6
HL 13.6 15.1 −1.5 17.6 15.2 2.4

The transfer value is calculated as the baseline FTIrel value minus the follow-up FTIrel value. Abbreviations: big
toe (BT), second–fifth toes (T2–5), medial metatarsal (MM), lateral metatarsal (LM), midfoot (MF), medial heel
(HM), and lateral heel (HL).

As shown in Figure 1, with a two-year development in weight-increased children, MF,
HM, and HL were the main regions to where the load was transferred in group 1. Foot load
showed a posterior to anterior transferal from the midfoot and heel to the metatarsal and
big toe. The control group, however, shifted the loading within the metatarsal level from
LM to HM, and equally relieved weight from around MF to BT, MM, HM and HL. Notably,
foot loading was relieved from MF regions, as well as being concentrated in BT and MM in
both groups. However, different load transferences were displayed in LM, HL, and HM
regions between the two groups. Concerning the LM region, load was transferred from this
region to BT and MM in group 0 with a decrease in FTIrel from 21.6% to 16.7%; however,
the load was transferred from the midfoot and heel to the LM regions in group 1, where the
FTIrel increased from 16.5% to 21.2%. Concerning the heel region, the FTIrel of HM and
HL in group 0 increased by 0.4% and 1.5%, respectively. This increased FTIrel originated
from the MF regions. The FTIrel of heel regions decreased in group 1, because the load had
transferred from heel regions to metatarsal regions with the two-year development.
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Figure 1. Load transferences in (A) group 0 and (B) group 1. (A1,B1) show the transfer values in
each foot region. In the beginning, load transfers were within each level (A2,B2). Arrows going
from the positive region (red regions) to the negative region (green regions) means that the loss
of foot load in the positive region is transferred to the negative region. Load transference occurs
between adjacent anatomical regions first, and then between the further regions. Afterwards, load is
transferred between adjacent levels from positive regions to negative regions (A3,B3). Finally, load
transfers were across levels (A4,B4). The FTIrel values after transference are shown at the bottom of
each foot region.

4. Discussion

In this two-year follow-up study, load transference in children whose BMI increased
from normal weight to overweight or obese was identified, and further compared with
normal-weighted children. As the results showed, the gain of excessive body mass led
to different load transferences compared to normal-weighted children. After a two-year
development in children with increasing BMI, foot load showed a posterior to anterior
transferal from the midfoot and heel to the metatarsal and big toe. The normal-weighted
children, however, shifted the loading within the metatarsal level from LM to HM, and
equally relieved the loads from around the MF to BT, MM, HM, and HL.

Foot-loading was concentrated in BT in both groups, showing a development towards
an adult-like foot loading pattern with the increased bone intensity of the big toe [25].
As children increased in body weight from normal-weight to overweight or obese, the
excessive body mass led to load transference to the metatarsal regions. Specifically, it was
noticed that load was transferred from LM to MM in group 0 with the development of the
foot, resulting in a rather large foot loading in the MM region (33.2% FTIrel) compared to



Int. J. Environ. Res. Public Health 2021, 18, 2879 7 of 9

that in the LM region (16.7% FTIrel). However, foot loading in metatarsal regions tended
to be equally distributed in LM and MM regions in group 1 (26.8% FTIrel, 21.2% FTIrel).
The equal distribution was also reported in previous studies [1]; this could be an adaption
strategy to compensate for additional bodyweight.

Martínez et al. indicated that the foot posture of children changes from a rather flat
foot to a neutral foot type with significantly reduced FPI scores, which has a minimal
relationship with the BMI from their three-year prospective study [26]. Similar results
were found in AI values in the present study. The AI values significantly decreased during
the two-year follow-up both in group 0 and group 1. Meanwhile, the midfoot revealed
a continuous reduction in foot loading in group 0 and group 1 with the development of
the foot. The results suggested a link between midfoot load transference and foot arch
raises. The decreased AI values indicated the maturation of the longitudinal foot arch from
a rather flat foot to a normal or even higher arch pattern, accompanied by the resolved
plantar soft tissue. With the raises of the longitudinal foot arch, the spring mechanics of the
foot arch become active [27]. When the foot is encumbered with load during walking, the
longitudinal arch collapses to absorb the foot loading and stores strain energy, subsequently
recoiling to generate propulsion. Additionally, with the help of the windlass mechanism,
foot load in the midfoot is transferred to other regions with the alleviation of the flatness
of the longitudinal foot arch. The AI value in group 1 displayed a smaller decrease than
that in group 0. This was attributed to the greater medial midfoot pad thickness and
the collapse of the medial longitudinal arch, which resulted from the excessive body
mass [28,29]. Additionally, the relieved FTI value of MF in group 1 was lower than that
in group 0. A cross-sectional study has indicated that the feet of overweight and obese
children follow a different growth pattern from that of normal-weight children [30]. The
delayed development of the foot and the collapse of the medial foot arch brought by the
excessive body mass could lead to a reduced ability of the foot arch to absorb shock and
alleviate foot loading than that in normal-weight children.

Force–time integral (FTI) is the total load in a certain region of the foot which indicates
the duration of contact; thus, the overall load in that region can be fully described. Numer-
ous studies have indicated that obesity could lead to greater force–time integrals under
metatarsal, midfoot and heel regions in comparison to normal-weighted children [31]. In
this study, with the gain of excessive body mass, significantly increased FTIs were found
under BT, MM and HL regions in both groups. Moreover, the LM region displayed a signif-
icantly increased FTI in group 0, and the HM regions displayed a significantly increased
FTI in group 1. These differences can be explained by load transference in the two groups.
BT and MM were the two main regions to where the load was transferred, both in group 0
and group 1, although different load transferences were displayed in LM and HL between
the two groups. Load was transferred from HL to LM in group 1, but transferred from
lateral to medial within the metatarsal level, and from MF to HL in group 0. Because
load is transferred from midfoot and heel to the big toe and metatarsal with the gain of
excessive body mass, the big toe and metatarsal regions are more exposed to high foot
loading than normal. Additionally, the force–time integrals were normalized to relative
FTI, which can directly reflect the foot loading distribution among all the foot regions. The
main loading regions in the two groups were the metatarsal and heel regions. Despite the
different load transferences in group 0 and group 1, the foot loading distributions showed
no significant difference between the two groups. This may be attributable to the excessive
weight-bearing having been maintained for enough time to adversely change the foot
function. Therefore, the authors suggest that weight loss interventions should be taken as
early as possible.

There were two strengths in our study. Firstly, this was the first study to use a load
transfer method to investigate load transference with increased excessive body mass,
which provided an insight into the mechanism of load redistribution with weight increases.
Secondly, a two-year longitudinal investigation was conducted in this study, making it
possible to determine how the foot gradually changed with the increased excessive body
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mass that was physiologically gained over time. However, two main limitations existed in
this study. Firstly, it will be necessary to add a larger sample to the study cohort to reinforce
the results. Secondly, a longer duration of follow-up is needed to investigate the variation
of load transferences.

5. Conclusions

In this study, load transference with the gain of excessive body mass in children whose
BMI increased from normal-weight to overweight or obese was identified, and compared
with the normal. As the results showed, the gain of excessive body mass led to different
load transferences compared to normal-weighted children. Foot load showed a posterior to
anterior transferal from the midfoot and heel to the metatarsal and big toe regions with the
gain of excessive body mass. The control group, however, shifted the loading within the
metatarsal level from LM to HM, and equally relieved load from around MF to BT, MM,
HM, and HL. Load was transferred from the midfoot and heel to the big toe and metatarsal
with the gain of excessive body mass; therefore, the big toe and metatarsal regions were
more exposed to high foot loading than normal. The authors suggest that earlier weight
loss intervention is required to prevent further adverse effects on foot functions caused by
excessive weight-bearing.

Author Contributions: Conceptualization, L.Y. and H.F.; methodology, R.L. and S.Y.; software, Y.Z.
and L.Z.; validation, X.C. and S.Y.; formal analysis, Y.Z. and L.Z.; investigation, R.L., Q.L. and L.Z.;
data curation, R.L., Q.L. and Y.Z.; writing—original draft preparation, R.L. and Q.L.; writing—review
and editing, X.C., S.Y., J.B., L.Y. and H.F.; supervision, X.C. and L.Y.; project administration, Y.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of Sichuan University (K2020044).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to acknowledge all the participants, their parents, the
school administrators, and teachers for their participation in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Steinberg, N.; Nemet, D.; Pantanowitz, M.; Eliakim, A. Gait Pattern, Impact to the skeleton and postural balance in overweight

and obese children: A review. Sports 2018, 6, 75. [CrossRef]
2. Mignardot, J.-B.; Olivier, I.; Promayon, E.; Nougier, V. Obesity impact on the attentional cost for controlling posture. PLoS ONE

2010, 5, 12. [CrossRef]
3. Anandacoomarasamy, A.; Caterson, I.; Sambrook, P.; Fransen, M.; March, L. The impact of obesity on the musculoskeletal system.

Int. J. Obes. 2008, 32, 211–222. [CrossRef] [PubMed]
4. Gil Madrona, P.; Romero Martinez, S.J.; Saez-Gallego, N.M.; Ordonez Camacho, X.G. Psychomotor limitations of overweight and

obese five-year-old children: Influence of body mass indices on motor, perceptual, and social-emotional skills. Int. J. Environ. Res.
Public Health 2019, 16, 427. [CrossRef] [PubMed]

5. Mesquita, P.R.; Neri SG, R.; Lima, R.M.; Carpes, F.P.; de David, A.C. Childhood obesity is associated with altered plantar pressure
distribution during running. Gait Posture 2018, 62, 202–205. [CrossRef] [PubMed]

6. Song-Hua, Y.; Lu, W.; Kuan, Z. Effects of different movement modes on plantar pressure distribution patterns in obese and
non-obese Chinese children. Gait Posture 2017, 57, 28–34. [CrossRef] [PubMed]

7. Steele, J.R.; Riddiford-Harland, D.L.; Mickle, K.J. Excessive weight bearing compromises foot structure and function across the
lifespan. Mechanobiol. Obes. Relat. Dis. 2015, 16, 149–179.

8. Wyszynska, J.; Leszczak, J.; Podgorska-Bednarz, J.; Czenczek-Lewandowska, E.; Rachwal, M.; Deren, K.; Baran, J.; Drzal-Grabiec,
J. Body fat and muscle mass in association with foot structure in adolescents: A cross-sectional study. Int. J. Environ. Res. Public
Health 2020, 17, 811. [CrossRef]

http://doi.org/10.3390/sports6030075
http://doi.org/10.1371/journal.pone.0014387
http://doi.org/10.1038/sj.ijo.0803715
http://www.ncbi.nlm.nih.gov/pubmed/17848940
http://doi.org/10.3390/ijerph16030427
http://www.ncbi.nlm.nih.gov/pubmed/30717253
http://doi.org/10.1016/j.gaitpost.2018.03.025
http://www.ncbi.nlm.nih.gov/pubmed/29562217
http://doi.org/10.1016/j.gaitpost.2017.05.001
http://www.ncbi.nlm.nih.gov/pubmed/28551468
http://doi.org/10.3390/ijerph17030811


Int. J. Environ. Res. Public Health 2021, 18, 2879 9 of 9

9. Da Rocha, E.S.; Bratz, D.T.; Gubert, L.C.; de David, A.; Carpes, F.P. Obese children experience higher plantar pressure and lower
foot sensitivity than non-obese. Clin. Biomech. 2014, 29, 822–827. [CrossRef]

10. Yan, S.H.; Zhang, K.; Tan, G.Q.; Yang, J.; Liu, Z.C. Effects of obesity on dynamic plantar pressure distribution in Chinese
prepubescent children during walking. Gait Posture 2013, 37, 37–42. [CrossRef]

11. Gijon-Nogueron, G.; Montes-Alguacil, J.; Martinez-Nova, A.; Alfageme-Garcia, P.; Cervera-Marin, J.A.; Morales-Asencio, J.M.
Overweight, obesity and foot posture in children: A cross-sectional study. J. Paediatr. Child Health 2017, 53, 33–37. [CrossRef]
[PubMed]

12. Catan, L.; Amaricai, E.; Onofrei, R.R.; Popoiu, C.M.; Iacob, E.R.; Stanciulescu, C.M.; Cerbu, S.; Horhat, D.I.; Suciu, O. The impact
of overweight and obesity on plantar pressure in children and adolescents: A systematic review. Int. J. Environ. Res. Public Health
2020, 17, 6600. [CrossRef]

13. Forriol, F.; Pascual, J. Footprint analysis between 3 and 17 years of age. Foot Ankle 1990, 11, 101–104. [CrossRef] [PubMed]
14. Volpon, J.B. Footprint analysis during the growth period. J. Pediatric Orthop. 1994, 14, 83–85. [CrossRef] [PubMed]
15. Bus, S.A.; Ulbrecht, J.S.; Cavanagh, P.R. Pressure relief and load redistribution by custom-made insoles in diabetic patients with

neuropathy and foot deformity. Clin. Biomech. 2004, 19, 629–638. [CrossRef]
16. Bus, S.A.; van Deursen, R.W.; Kanade, R.V.; Wissink, M.; Manning, E.A.; van Baal, J.G.; Harding, K.G. Plantar pressure relief in

the diabetic foot using forefoot offloading shoes. Gait Posture 2009, 29, 618–622. [CrossRef]
17. Bus, S.A.; Waaijman, R.; Arts, M.; Manning, H. The efficacy of a removable vacuum-cushioned cast replacement system in

reducing plantar forefoot pressures in diabetic patients. Clin. Biomech. 2009, 24, 459–464. [CrossRef]
18. Zhao, Y.; Zheng, D.; Yan, S.; Liu, M.; Yang, L. Children with obesity experience different age-related changes in plantar pressure

distributions: A follow-up study in china. Int. J. Environ. Res. Public Health 2020, 17, 6602. [CrossRef]
19. Hu, M.; Zhou, N.; Xu, B.; Chen, W.; Wu, J.; Zhou, J. The mechanism of force transference in feet of children ages two to six. Gait

Posture 2017, 54, 15–19. [CrossRef] [PubMed]
20. Group of China Obesity Task Force. Body mass index reference norm for screening overweight and obesity in Chinese children

and adolescents. Chin. J. Epidemiol. 2004, 25, 97–102.
21. Meyersrice, B.; Sugars, L.; McPoil, T.; Cornwall, M.W. Comparison of 3 methods for obtaining plantar pressures in nonpathologic

subjects. J. Am. Podiatr. Med Assoc. 1994, 84, 499–504. [CrossRef]
22. Menz, H.B. Two feet, or one person? Problems associated with statistical analysis of paired data in foot and ankle medicine. Foot

2004, 14, 2–5. [CrossRef]
23. Gerych, D.; Tvrznik, A.; Prokesova EV, A.; Nemeckova, Z.; Jelen, K. Analysis of Peak Pressure, Maximal Force, And Contact Area

Changes during Walking and Running with Conventional and Shock-Absorbing Insoles In the Combat Boots Of the Czech Army.
J. Mech. Med. Biol. 2013, 13, 1350042. [CrossRef]

24. Cavanagh, P.R.; Rodgers, M.M. The arch index—A useful measure from footprints. J. Biomech. 1987, 20, 547–551. [CrossRef]
25. Bosch, K.; Gerss, J.; Rosenbaum, D. Development of healthy children’s feet–nine-year results of a longitudinal investigation of

plantar loading patterns. Gait Posture 2010, 32, 564–571. [CrossRef]
26. Martínez-Nova, A.; Gijón-Noguerón, G.; Alfageme-García, P.; Montes-Alguacil, J.; Evans, A.M. Foot posture development in

children aged 5 to11 years: A three-year prospective study. Gait Posture 2018, 62, 280–284. [CrossRef] [PubMed]
27. Ker, R.F.; Bennett, M.B.; Bibby, S.R.; Kester, R.C.; Alexander, R.M. The spring in the arch of the human foot. Nature 1987, 325,

147–149. [CrossRef]
28. Riddiford-Harland, D.L.; Steele, J.R.; Baur, L.A. Are the feet of obese children fat or flat? Revisiting the debate. Int. J. Obes. 2011,

35, 115–120. [CrossRef] [PubMed]
29. Dowling, A.M.; Steele, J.R.; Baur, L.A. Does obesity influence foot structure and plantar pressure patterns in prepubescent

children? Int. J. Obes. 2001, 25, 845–852. [CrossRef] [PubMed]
30. Jimenez-Ormeno, E.; Aguado, X.; Delgado-Abellan, L.; Mecerreyes, L.; Alegre, L.M. Foot morphology in normal-weight,

overweight, and obese schoolchildren. Eur. J. Pediatrics 2013, 172, 645–652. [CrossRef] [PubMed]
31. Hills, A.P.; Hennig, E.M.; Byrne, N.M.; Steele, J.R. The biomechanics of adiposity—Structural and functional limitations of obesity

and implications for movement. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2002, 3, 35–43. [CrossRef] [PubMed]

http://doi.org/10.1016/j.clinbiomech.2014.05.006
http://doi.org/10.1016/j.gaitpost.2012.05.018
http://doi.org/10.1111/jpc.13314
http://www.ncbi.nlm.nih.gov/pubmed/27652525
http://doi.org/10.3390/ijerph17186600
http://doi.org/10.1177/107110079001100208
http://www.ncbi.nlm.nih.gov/pubmed/2265808
http://doi.org/10.1097/01241398-199401000-00017
http://www.ncbi.nlm.nih.gov/pubmed/8113378
http://doi.org/10.1016/j.clinbiomech.2004.02.010
http://doi.org/10.1016/j.gaitpost.2009.01.003
http://doi.org/10.1016/j.clinbiomech.2009.02.004
http://doi.org/10.3390/ijerph17186602
http://doi.org/10.1016/j.gaitpost.2017.02.019
http://www.ncbi.nlm.nih.gov/pubmed/28242568
http://doi.org/10.7547/87507315-84-10-499
http://doi.org/10.1016/S0958-2592(03)00047-6
http://doi.org/10.1142/S0219519413500425
http://doi.org/10.1016/0021-9290(87)90255-7
http://doi.org/10.1016/j.gaitpost.2010.08.003
http://doi.org/10.1016/j.gaitpost.2018.03.032
http://www.ncbi.nlm.nih.gov/pubmed/29604617
http://doi.org/10.1038/325147a0
http://doi.org/10.1038/ijo.2010.119
http://www.ncbi.nlm.nih.gov/pubmed/20567243
http://doi.org/10.1038/sj.ijo.0801598
http://www.ncbi.nlm.nih.gov/pubmed/11439299
http://doi.org/10.1007/s00431-013-1944-4
http://www.ncbi.nlm.nih.gov/pubmed/23340700
http://doi.org/10.1046/j.1467-789X.2002.00054.x
http://www.ncbi.nlm.nih.gov/pubmed/12119658

	Introduction 
	Methods 
	Participants 
	Equipment and Procedure 
	Data Processing and Statistical Analysis 
	Load Transfer Method 

	Results 
	Participant Characteristics 
	Arch Index 
	FTI 
	Load Transfer 

	Discussion 
	Conclusions 
	References

