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Abstract: In recent years, China has gradually become one of the countries with the largest levels of
foreign direct investment (FDI). FDI has played a significant role in promoting Chinese economic
development, and the FDI technology spillover effect is one of the core forces driving China towards
reaching new growth milestones. Therefore, due to the country’s interest in development, there is
competition for FDI throughout China. However, the existing imperfect environmental protection sys-
tem cannot prevent FDI from flowing into China’s highly polluting and resource-intensive industrial
chain, possibly causing serious environmental problems. Therefore, the topic of properly introducing
foreign capital to promote development and effectively end China’s current environmental pollution
crisis has become a research focus. To explore FDI’s impact on China’s economic growth, technologi-
cal innovation, and environmental pollution, we use Chinese provincial panel data for 2004–2016 to
construct a dynamic panel simultaneous-equation model. Considering the interrelationships between
the equations, we construct economic models of economic growth, technological innovation, and
pollution emissions, and incorporate them into the same research system for generalized method of
moments (GMM) estimation. Our results show that FDI has a significant and positive direct impact
on China’s economic growth and technological innovation, and can furthermore have a significant
pull effect on the domestic economy through the backward spillover channel. At the same time, FDI
has a direct and significant impact on the increase in regional waste-water discharge, while exhibiting
a pollution halo effect on the emission of sulfur dioxide (SO2) and chemical oxygen demand (COD)
emissions directly. In addition, we observe “benign feedback mechanism” between technological
innovation output and these three types of pollution, namely SO2 emission, COD emissions, and
ammonia and nitrogen discharge.

Keywords: FDI; economic growth; innovation; pollution; dynamic panel simultaneous equation model

1. Introduction

In recent years, China’s foreign direct investment (FDI) has reached 941.52 billion
yuan, ranking among the highest worldwide. Since the start of reforms and opening-up,
FDI has played an important role in promoting Chinese economic development [1], and,
especially, the part of fostering technological innovation, which can facilitate the attainment
of new growth milestones. As is well-known, the driving force and source of ensuring the
sustainable development of a country’s economy is the country’s technological innovation
capability, which plays an irreplaceable role in economic development [2–4]. Several studies
have shown that China’s technological innovation can be enhanced by the international
technology overflow effect via attracting FDI to “introduce–absorb–redigest” advanced
technologies from developed countries and “standing on the predecessor’s shoulders” to
innovate and then achieve the goal of improving the level of economic development [5].

However, while FDI brings economic growth, there may be potential hazards, the
most obvious being environmental pollution. Due to the insufficiency of regional economic
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development and the existence of loopholes in the introduction of foreign capital, FDI
tends to flow to energy-intensive and high-pollution industries. Therefore, an incalculable
environmental cost has been incurred alongside regional economic growth [6–9].

Developed countries that have implemented advanced scientific and technological
reforms and achieved high levels of economic development tend to move their high-
pollution and energy-intensive industries to less developed countries. The research of
Lin, B. and Xu, M. [10] indicates that China has gradually become a “pollution haven” in
Sino-Russian trade. Cheng et al. [11] also find evidence to confirm the pollution haven
hypothesis in China. To achieve temporary economic growth and improve employment
rates, the governments in such less-developed countries and regions have implemented a
series of measures to attract foreign capital at any cost and have continuously lowered the
standards of environmental control. Li et al. [12] found that FDI companies tend to avoid
areas with strict environmental regulations. To et al. [13] found that the pollution paradise
hypothesis is generally valid in Asian emerging markets. The problem of environmental
pollution has then arisen over time along with the inflow of capital and technology. With
the emergence of global climate change, ozone layer depletion, water pollution, and other
issues, the awareness of the “green” economic development in countries around the world
has gradually strengthened.

There are multiple influences among FDI, economic growth, technological innovation,
and environmental pollution. Only when the decision-makers have mastered all of the
various impacts brought by FDI inflows can they effectively adjust the FDI’s introduction
structure to achieve the goal of maintaining the standards of environmental protection
and avoiding an extensive development mode while improving the level of technological
innovation and ultimately promoting a healthy development of the domestic economy.
Therefore, studying how to balance the relationships among FDI inflows, economic growth,
and environmental protection and how to improve the innovation capacity of China’s
industries is of great practical significance.

The purpose of this paper is to examine 30 provinces, municipalities, and autonomous
regions (except Tibet) in China as the research object, comprehensively consider economic
growth, technological innovation, and environmental pollution, and thoroughly analyze
the impact of FDI inflows on various regions of China to provide scientific guidance to
policymakers for formulating reasonable measures for the introduction of foreign capital.
The contribution of this paper is to put FDI, economic growth, technological innovation, and
environmental pollution into the same system model for study. Moreover, we construct
a formula for calculating the FDI spillover effect at the provincial level in China, and
show that FDI has a significant and positive direct impact on China’s economic growth
and technological innovation. Furthermore, FDI can have a significant pull effect on the
domestic economy through the backward spillover channel. In particular, FDI has a direct
and significant impact on the increase in regional wastewater discharge while exhibiting a
pollution halo effect on the emission of SO2 and chemical oxygen demand (COD) emissions
directly. In addition, we observe “benign feedback mechanism” between technological
innovation output and these three types of pollution, namely SO2 emission, COD emissions,
and ammonia and nitrogen discharge. Therefore, this paper tries to contribute to the
existing literature in several dimensions. First, we extend the Cobb-Douglas (C-D) function
model by decomposing the innovation factor, following the research of Jerzmanowski [14],
Zhang and Liu [15], and Klenow and Rodriguez-Clare [16], and then use a dynamic panel
simultaneous equation model to include FDI, technological innovation, economic growth,
and environmental pollution in the same research system, fully consider the internal links
between the four, and then further analyze the impact of FDI. Second, we do not combine
multiple pollution variables into a new index, as some previous studies have done, and
instead add different types of pollution separately into the model to clearly identify the
types of pollution that are more susceptible to FDI. Finally, we establish the indicators of
FDI spillover effect at the provincial level in China, including horizontal, forward, and
backward spillover effects. Those spillover effect indicators are established by following
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the method proposed by Javorcik [17], but our approach is different from the author’s
calculation method based on micro-enterprises. We design the calculation formula from
the regional level.

The remainder of the paper is organized as follows. In Section 2, the related research
is summarized and analyzed. Section 3 introduces model construction and describes data.
Section 4 presents the process of empirical testing and analyzes the estimation results.
Section 5 provides the conclusions.

2. Literature Review

Scholars have studied the influence of FDI from many perspectives. The inflow of
FDI can not only bring abundant investment capital to a country but also enable the
country to enjoy its technological externalities to improve the technological development
capacity of enterprises. In particular, the technology spillover effect of FDI is more apparent
when foreign investors enter by means of technology or joint ventures. Considering rapid
economic development, some scholars have begun to realize the negative impact of FDI
inflows. In various economies, such impacts differ significantly in certain ways, and as
environmental problems continue to erupt, governments are increasingly cautious about
the introduction of foreign capital. In the following section, we present a detailed review of
FDI’s impact on economic growth, innovation, and environmental pollution.

2.1. FDI’s Impact on Economic Growth

FDI mainly affects a country’s economic growth in two ways. First, FDI provides
host countries with high-quality capital and stimulates them to expand investment and
production to achieve economic growth. Second, the advanced production technology and
management experience brought by FDI drive the host country’s enterprises to optimize
their production efficiency, thus also facilitating economic growth [18]. However, according
to studies, the results are sometimes not as optimistic as expected.

The new economic growth theory proposed by Romer [19] and Lucas [20] was the first
to prove that investment can lead to economic growth. Ahmed [21] analyzed the spillover
effect of FDI inflows using a time series regression model, proving that FDI inflows had
a driving effect on production input, thus causing the growth of the Malaysian economy.
Lee [22] considered G20 country data for 1971–2009 and used a panel data cointegration
regression model to verify the positive direct impact of FDI on the economic growth of G20
countries. Domestically, Wang and Wang [23] performed a comparative analysis of foreign
and domestic mergers and acquisitions in China, concluding that foreign ownership did
not drive production but boosted China’s development by improving its financial position.
Hong [24] and Peng et al. [25] considered Chinese provincial and municipal panel data.
The former used the generalized method of moments (GMM) method to re-estimate the
positive interaction between FDI and China’s production input, which supported China’s
economic growth; the latter studied the relationship between economic growth and FDI by
using a bootstrap Granger panel causality approach and concluded that causality between
FDI and economic growth was not identical completely in different regions of China, being
unidirectional or bidirectional. Considering environmental protection, Yue et al. [26] used
a slacks-based measure and directional distance function (SBM-DDF) approach to build
a model to analyze the economic growth efficiency of 104 cities in China. The results
showed that, overall, FDI had a positive impact on China’s economic growth efficiency;
however, the degree of impact varied by city and industry. Comes et al. [27] studied the
relationship between economic growth and FDI by using panel data on seven central and
eastern European countries with a low per-capita GDP, also concluding that FDI promoted
economic growth. Orlic et al. [28] researched the spillover effects of foreign firms on the total
factor productivity (TFP) of local manufacturing firms by using a dynamic panel model,
and revealed that local manufacturing firms benefit from the presence of foreign firms in
upstream knowledge-intensive services, and in the downstream manufacturing sector.
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However, some scholars’ results showed that FDI inflows had no significant eco-
nomic spillover effect on some countries and regions. For example, Belloumi [29] used
an autoregressive distributed lag (ARDL) model to analyze the relationship between FDI
and economic growth in Tunisia, determining that FDI in the country could not generate
positive externalities for economic growth and even that there was no significant causal
relationship between them.

In summary, one can easily conclude that FDI has positive spillover effects on economic
growth. However, this finding has not been verified by Belloumi. Does this discrepancy
mean that the economic development stages vary, and so do the results? Although the
former has conducted a relevant study of Chinese regions and believes that FDI’s impact
on China’s economic growth is positive, studying whether this result has by now changed
due to rapid economic development is warranted.

2.2. FDI’s Impact on Technological Innovation

There are two ways for a country to realize technological innovation, namely inde-
pendent innovation and technology introduction. Foreign-invested enterprises will bring
some advanced production technology and management experience to the host country;
therefore, FDI inflows may serve the purpose of technology introduction. On the other
hand, the entry of foreign capital will further increase the competitiveness of the host
country’s market. However, if local enterprises wish to compete with foreign enterprises
with many advantages, the only choice of the former is to increase investment in research
and development (R&D) to improve technical efficiency. Therefore, FDI to some extent
stimulates the host country’s awareness of the need for independent innovation. However,
another possible result is that due to the entry of FDI, the host country becomes overly
dependent on the technology spillover effect of foreign capital; alternatively, it may remain
merely at the technology replication stage with independent innovation consciousness
being inhibited, leading to a decline in the innovation level. Thus, FDI’s impact on the
innovation capacity of host countries is intricate and complex, and can mainly be of three
types based on inhibition theory, promotion theory, and dual role theory.

Kemeny [30] selected 119 sample countries across Europe, the Americas, and Asia
and constructed regression models with unbalanced panel data. The study observed that
FDI was positively correlated with a country’s technological upgrading; however, this
effect was limited by the country’s initial level of technological development and social
income capacity. The richer the country’s economy was, the weaker the technological
spillover effect of FDI. Erdal and Göçer [31] focused on ten developing Asian countries and
used a panel causality model and a cointegration model to analyze the FDI’s impact on
R&D and innovation. The results showed that FDI inflows improved the R&D capacity
of each country. Zhang [32] constructed Poisson and negative binomial models using
Chinese provincial panel data for 2004–2012, finding that the spillover effect of foreign
investment inflows had a positive impact on China’s overall innovation; however, there
were differences in innovation efficiency in different regions. Wang and Wu [33] considered
Chinese electronics companies and concluded that local innovations by foreign-funded
enterprises could significantly facilitate product innovation of domestic firms; additionally,
geographical proximity affected the technology spillover effect.

However, some scholars have questioned this market-for-technology strategy. Garc-
ía et al. [34] analyzed Spanish manufacturing enterprise data at the micro level and observed
that FDI into Spain was negatively correlated with the innovation performance of local
enterprises. Sasidharan and Kathuria [35] used panel data on Indian manufacturing
enterprises to study the relationship between FDI and corporate R&D under India’s post-
liberalization system. The results showed that the full sample’s analysis could not clearly
explain FDI’s impact on the enterprises’ domestic innovation; however, an analysis of a
subsample showed that FDI and R&D investment were complementary. The research of
Han, Y. and Wu, L.P. [36] indicated that FDI has negative backward spillover effects and
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positive horizontal spillover effects on domestic agricultural firm innovation, and that
firms with stronger absorptive capacity are more likely to benefit from FDI spillovers.

Therefore, for countries with different regions and different levels of economic devel-
opment, FDI’s impact on innovation will vary. Furthermore, in the absence of other factors,
its direct impact on China’s technological innovation ability is positive. The actual situation
is far more complex than this. Therefore, this paper includes environmental pollution and
economic growth in the research model and comprehensively considers the impact of FDI
to improve research accuracy and more rationally guide the inflow of capital.

2.3. FDI’s Impact on Environmental Pollution

In recent years, China, as a major developing country, has been steadily continuing
to open up, and its proportion of FDI has surpassed that of the United States. Indeed,
FDI inflows can stimulate economic development and may bring advanced technology
and experience, but there may be a high environmental cost incurred in the course of
such economic development. For China, which is in a critical period of transformation,
will the continuous increase in FDI increase the country’s environmental burden? Does it
contribute to environmental pollution? These concerns constitute global problems. The
existing studies show that FDI’s impact on environmental pollution is uncertain, and
the difference in the macroeconomic environment affects FDI’s impact on environmental
pollution, thus yielding uncertain results. FDI’s effects on the host country’s pollution
include several results: the pollution paradise effect, the pollution halo effect, and the
nonlinear relationship.

Omri and Kahouli [7] studied the correlation between energy consumption and FDI
by establishing a panel data model for 1990–2011 on 65 countries. The results showed
that there was a positive causal relationship between FDI and energy consumption in
all countries except low-income countries, indicating that an increase in FDI would lead
to an increase in energy consumption, which would probably lead to the emission of
more pollutants. Tang and Tan [9] used a cointegration model and a causality model
to study the influence of energy consumption and FDI on carbon dioxide emissions in
Vietnam, concluding that FDI was one of the main factors causing Vietnam’s carbon dioxide
emissions. Liu et al. [37] considered panel data on 112 Chinese cities and performed a
comparative study of the impact of domestic investment and FDI on the environment.
The results showed that both investment types had negative impacts on the environment;
however, the degrees of influence were different.

Simultaneously, many scholars have verified FDI’s pollution halo effect on the host
country’s environment. For example, Paramati et al. [38] used a causal relationship model
to study panel data on 20 emerging market economies worldwide. The empirical results
showed that FDI inflows had a significant positive impact on a country’s clean energy
consumption, which was conducive to improving the environmental quality of host coun-
tries to some extent. Lee [22] studied the contribution of FDI inflows to clean energy use
and carbon dioxide emissions in G20 countries and analyzed the long-term equilibrium
relationship among variables using a cointegration model, observing that FDI inhibited
carbon dioxide emissions of the economy and played an important role in realizing the
green growth target. Abdouli and Hammami [39] explored the causal relationship between
environmental quality and FDI in Middle Eastern and North African (MENA) countries
using a simultaneous-equation panel data vector autoregression (VAR) model, concluding
that FDI could reduce industrial pollution in the studied countries and that there was a
pollution halo effect. Yue et al. [26] performed an empirical study using panel data on
104 Chinese cities based on the SBM-DDF model. Wei et al. [40] used the multi-Stochastic
frontier model (SFA) model and a modified Stochastic Impacts by Regression on Population,
Affluence, and Technology (STRIPAT) model to investigate the impact of FDI on the total
factor energy efficiency (TFEE) of China’s manufacturing and found that FDI spillovers
showed an overall increase across the period. It implied that FDI can save energy and
reduce emissions through the spillover effect. The results showed that, overall, FDI had a
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positive impact on the green development of Chinese cities; however, the impact efficiency
varied with industry and location.

In addition, some studies show that FDI’s impact on environmental pollution is a
“conditional” effect or there is a nonlinear relationship between them. Zugravu-Soilita [41]
indicated that FDI could reduce pollution in countries with a low average capital ratio and
stricter environmental regulations. In contrast, FDI inflows could lead to pollution havens,
albeit on a smaller scale, in countries that are well-capitalized and have loose environmental
controls. Shahbaz et al. [42] apply the GMM method to examine the association between
FDI and carbon emissions for the Middle East and North African (MENA) region, and they
found there is an N-shaped association between FDI and carbon emissions. Liu et al. [37]
studied the dynamic spatial clustering effect of FDI and various types of pollution in 285
Chinese cities and observed that FDI and the aggregation areas of environmental pollution
were not completely consistent, which indicated that an increase in FDI might not lead to
worsening pollution from a geographical perspective. The scholar further used a spatial
panel model for analysis and concluded that FDI had a significant influence on various
pollution categories. However, the influence direction was either positive or negative: its
effect on dust pollution was negative, while the effect on wastewater discharge and SO2
pollution was positive.

3. Empirical Strategy and Data
3.1. Methodology
3.1.1. Econometric Modeling

In this paper, we will establish three equations for the following quantities: economic
growth, technological innovation, and environmental pollution.

(1) Economic Growth Equation.

The economic growth equation is established by using the Cobb-Douglas production
function. The latter is a production function of the relationship between input and output,
which was jointly studied by American mathematician Charles Cobb and economist Paul
Douglas. The basic form of this function can be formulated as follows:

Y = A(t)LαKβµ (1)

where Y, A(t), L, and K represent the total output value, the comprehensive technical
level, the labor force input, and the capital input, respectively, while α and β represent
the elasticities of labor output and capital output, respectively. Variable µ represents the
random disturbance term.

To meet the needs of our research, we extend the C-D function to the following
Equation (2), combining the endogenous growth theory, and the studies of Abdouli and
Hammami [39] and Omri and Kahouli [7]:

Y = A(t)LαKβ(FDI)ψEnλ (2)

According to the studies by Jerzmanowski [14], Zhang and Liu [15], Klenow and
Rodriguez-Clare [16], the comprehensive technical level A(t) can be decomposed in several
ways. Zhang and Liu [15] decompose it as A(t) = BeatFγCθ , where B, F, and C represent,
respectively, the exogenous technical change, the technical changes brought by the spillover
effect, and the competition effect of FDI. Jerzmanowski [14], and Klenow and Rodriguez-
Clare [16] put forward an assumption that the total factor productivity is determined by
both the available technology (denoted by Ti) and efficiency with which such technology
is used (denoted by Ei), and is expressed as Ai = TiEi. Here, we follow the approach
proposed by Jerzmanowski [12] and Klenow and Rodriguez-Clare [16] to decompose A(t).
The researchers’ explanation meets our need that a portion of A(t) differences be caused
by their relations with factors.
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Therefore, we extend the C-D function as follows:

Y = ETθ LαKβ(FDI)ψEnλ (3)

where Y is the real GDP, T represents the available technology, and E denotes the efficiency
of the use of this technology. Variables L, K and FDI represent labor, capital stock, and
foreign direct investment flow, respectively. To consider environmental pollution, an energy
consumption variable En has been added here. θ, α, β, ψ, and λ are production elasticities.

To some extent, there is a linear relationship between energy consumption (En) and
pollution (R): En = b× R. Therefore, Equation (3) can be transformed into the following:

Y = ETθ LαKβ(FDI)ψ(bR)λ (4)

where we assume that there is a relationship among θ, α, β, λ and ψ: θ + α + β + ψ +
λ = 1. A large proportion of China’s wastewater, waste gas, and dust are generated by
consumption of resources in industrial production, especially in the context of energy use.
Therefore, R can represent SO2 emissions, the total wastewater discharge, COD emissions,
or ammonia nitrogen emissions. After dividing Equation (4) by L, we obtain:

Y
L
= Ebλ

(
T
L

)θ(K
L

)β( L
L

)α( FDI
L

)ψ(R
L

)λ

(5)

Then, a log-linear regression panel data model of Equation (5) can be proposed. Below,
provinces are indexed by subscript i (i = 1, . . . , N), while t represents the time period
(t = 1, . . . , T).

ln
(

Y
L

)
it
= α0 + α1ln

(
T
L

)
it
+ α2 ln

(
K
L

)
it
+ α3 ln

(
FDI

L

)
it
+ α4 ln

(
R
L

)
it
+ α5Zit + di + vt + µit (6)

where α5 represents the coefficient of control variables Zit that includes three-way FDI
spillover: forward (denoted by f s), backward (denoted by bs), and horizontal (denoted
by hs); the calculations of the three spillover indexes are shown in Appendix A. Variables
di, vt, µit represent, respectively, time effects, country-specific effects and the error term.
The rationale for this model is that FDI brings into a host country not only capital but also
most importantly a package of intangible assets. As a result, FDI can contribute to a host
country’s economic growth not only through direct capital input but also through spillover
effects in the form of increased productivity of the host country’s domestic firms as stated
by Javorcik [17]. Some studies have shown that financial development is also closely
related to economic growth, ecological environment, and technological innovation (Wang
et al. [43]; Shahnazi and Shabani, [44]; Umar et al. [45], Barrell and Nahhas, [46]).Thus, we
add three-way FDI spillover variables ( f s, bs, and hs), financial development ( f d, f d2), and
the openness to trade (open) to the control variables’ list to research the channels of FDI’s
effects on economic growth, technology, and pollution emission.

(2) Technological Innovation Equation.

In studying FDI’s impact on technological innovation in China’s provinces, this paper
combines many scholars’ results and presumes that innovation can be regarded as the
output process of new knowledge [47–49]. Therefore, our empirical analysis considers the
technological innovation equation of the following basic functional form according to the
studies of Hu [50], Abdouli and Hammami [39], and Crescenzi et al. [51]:

Tit = f (GDPit, R&Dit, Humit, FDIit) (7)

where T represents technological innovation, and GDP, R&D, Hum, and FDI represent,
respectively, the gross domestic product, the research and development expenditures,
the number of employees in the science and technology-oriented industries, and foreign
direct investment.
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For this study, the actually used model of technological innovation is transformed into
the following log-linear regression form

:
lnTit = β0 + β1 ln(Hum)it + β2 ln(GDP)it + β3 ln(R&D)it + β4 ln(FDI)it + β5Xit + di + vt + µit (8)

where β5 represents the coefficient of control variables Xit that includes financial devel-
opment ( f d, f d2), the openness to trade (open), and three-way FDI spillover: forward
(denoted by f s), backward (denoted by bs), horizontal (denoted by hs); the calculations of
the three spillover indexes are shown in Appendix A. Pollution R could also be included
in Xit, but the effect of R on T is uncertain. We expect pollution to have a positive effect
on technological innovation. Moreover, we believe that the increase in environmental
pollution will inevitably lead to people’s dissatisfaction, which in turn will stimulate enter-
prises to improve technical capabilities. Finally, in the above model di, vt, and µit represent,
respectively, time effects, country-specific effects and the error term.

(3) Environmental Pollution Equation.

Combining the research models of Shahbaz et al. [52], Liu et al. [37], Zugravu-
Soilita [41], Yue et al. [26], and Tang and Tan [9], we observe that environmental pollution
can be affected by regional economic growth, energy consumption, FDI, technological
innovation capacity, and the environmental regulations’ strictness. Based on the above
theoretical findings, we specify the general pollution emission function of the following
form:

Rit = f (GDPit, Tit, Enit, FDIit, ERit) (9)

where R, T, GDP, En, and FDI represent, respectively, pollution emissions, technological
innovation, the gross domestic product, energy consumption and foreign direct investment,
and ER reflects environmental regulations’ strictness. We transform the function into
the natural logarithmic form to use a log-linear specification in order to keep the form
consistent with the above two models, and it is agreed that this form (in contrast to the
linear case) can lead to consistent and reliable empirical results.

lnRit = ϕ0 + ϕ1 ln GDPit + ϕ2 ln FDIit + ϕ3 ln ERit + ϕ4lnEnit + ϕ5lnTit + ϕ6lnMit + di + vt + µit (10)

In Equation (10), R represents pollution emissions. In this paper, pollution includes
SO2 emissions (SO2), the total wastewater discharge (ww), chemical oxygen demand
emissions (choe), and ammonia nitrogen emissions (nhe). M represents control variables,
including urban population density (Pop), financial development ( f d, f d2), the openness to
trade (open) and the three-way FDI spillover, namely, forward (denoted by f s), backward
(denoted by bs), and horizontal spillover (denoted by hs).

3.1.2. Dynamic Panel Simultaneous Equation Model

In addition, this paper uses a simultaneous equation model to describe economic
behavior, which was first studied by Samuelson and Hicks. In reality, some economic
phenomena often have complex mutual influence relations, and single-equation models
have been insufficient for solving problems. Therefore, simultaneous equation models,
which can more accurately describe the comprehensive interaction between variables, have
gradually been adopted by many studies. After analyzing previous studies, we observe
that there may be complex interactions among economic growth, technological innovation,
environmental pollution, and FDI. In studying FDI’s impact on the other three factors, we
adopt a simultaneous equation model and include these four factors in the same system to
obtain more accurate experimental results.

As the data type we use is panel data and the one-period lagged levels of endogenous
variables (i.e., GDP, technological innovation, and pollution emissions) can affect their
current levels [7,53], we allow our simultaneous-equation models to have a dynamic
panel specification. Our dynamic panel simultaneous-equation models are then estimated
by using the generalized method of moments estimator. This approach uses a set of
instrumental variables to solve the endogeneity problem of the regressors.
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The specific form of the dynamic panel simultaneous-equation models used in this
paper is defined in the following Equations (11)–(13) that follow from Equations (6), (8)
and (10):

ln(y)it = α0 + α1ln(y)it−1 + α2 ln kit + α3 ln f diit + α4 ln Tit + α5lnRit + α6Zit + vi + µit (11)

lnTit = β0 + β1 ln Tit−1 + β1 ln(Hum)it + β2 ln yit + β3 ln(RD)it + β4 ln( f di)it + β5Xit + vi + µit (12)

lnRit = ϕ0 + ϕ1 ln Rit−1 + ϕ1 ln yit + ϕ2 ln f diit + ϕ3 ln ERit + ϕ4lnEnit + ϕ5lnTit + ϕ6lnMit + vi + µit (13)

In Equation (11), y represents economic growth, and f di, T, R represent foreign
direct investment flow, technological innovation, and pollution emissions, respectively.
Control variables Zit include financial development ( f d, f d2), the openness to trade (open),
and three-way FDI spillover: f s, bs, and hs. In Equation (12), T, y, and f di have the
same meanings as in Equation (11). Hum and RD represent, respectively, the number
of employees in the science and technology-oriented industries and the research and
development expenditures. Control variables X include financial development ( f d, f d2),
the openness to trade (open), and three-way FDI spillover ( f s, bs, and hs) and ln(y)it−1. In
Equation (13), control variables M include financial development, the openness to trade,
urban population density (Pop), ln(y)it−1, f s, bs, and hs.

3.2. Estimation Method

There are two methods of estimating a simultaneous equation system: single-equation
estimation and system estimation. The latter uses all information of the system to estimate
all structural equations at the same time, and obtain parameter estimates of all equations
simultaneously. This paper uses this method. Possible implementations of the system
estimation method can follow the three-stage least method (3SLS), the full information
maximum likelihood method (FIML), or the generalized method of moments. Here we
focus on the latter.

Our estimated model is a dynamic model, and the time series observations in our
sample are thirteen years. The researches of Blundell and Bond [54], and Barrell and
Nahhas [46] show that the system’s GMM estimation can effectively overcome the problem
of weak instrumental variables, greatly improve the finite sample performance of the
estimator, and improve the accuracy of the estimation while reducing the problem of
downward bias of the autoregressive coefficients. So, it is best to use a systems GMM
approach to estimate our model. GMM is a parameter estimation method that requires that
the actual parameters of the model satisfy some moment conditions. It is a generalization
of the moment estimation method that allows random error terms to be heteroscedastic
and serially correlated, and is more widely used than other traditional estimation methods.
The idea of the GMM estimation method is to define the criterion function Q(∆) as the
correlation function between the instrumental variable and the disturbance term, and
minimize the function to obtain the estimated values of parameters:

Q(∆) = u′ZΩ̂−1Z′u

where ∆ denotes the parameters we estimate. Variables u, Z, and Ω are the residual vector,
instrumental variable, and covariance matrix estimator of sample moments, respectively.

3.3. Data and Descriptive Statistics
3.3.1. Data

The data type considered in this study is panel data, which refers to data tracking
the same group of individuals within a period of time, including both the cross-sectional
and time dimensions. The three targets of this study are economic growth, technological
innovation, and environmental pollution. The selected data are annual Chinese provincial
data from 2004 to 2016. Due to a significant data loss in Tibet and the different institu-
tional environments in Hong Kong, Taiwan, and Macao, only 30 provinces, cities, and
autonomous regions are considered in this paper. Tibet, Hong Kong, Taiwan, and Macao
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are outside the research scope. In addition, the data we have used is balance panel data,
and there are no missing observations in our sample range. Data are collected from the
China Statistical Yearbook, the China Industrial Statistics Yearbook, and the China Trade
and External Economic Statistics Yearbook.

In Equation (11), y represents economic growth, measured by the provincial GDP
per capita (L), and L is defined as the employed population. Variables f di, T, and R
represent foreign direct investment flow, technological innovation and pollution emissions,
respectively, and f di is defined as the provincial investment of foreign enterprises per capita.
T is calculated as the number of domestic patent grants per capita [55]. Variables y, f di,
and T have been CPI-adjusted to a constant price value based on 2004. R is defined as SO2
emissions per capita (denoted by SO2). Alternatively, R may stand for the total wastewater
discharge per capita (denoted by ww), chemical oxygen emissions per capita (denoted by
choe), or ammonia and nitrogen emissions per capita (denoted by nhe). Control variables
Zit include three-way FDI spillover ( f s, bs, and hs), financial development ( f d, f d2) and
the openness to trade (open). It is very appropriate to use economic freedom to reflect the
financial development of a country. However, there is no index of economic freedom at
the provincial level in China, and the legal environment and government environment are
similar in China. Therefore, financial development is defined as the ratio of loans of the
banking system to GDP (denoted by f d). The openness to trade is defined as the ratio of the
sum of import and export to GDP (denoted by open). The calculations of the three spillover
indexes are shown in Appendix A. Variable k represents the capital stock calculated using
the perpetual inventory method (PIM):

kit = (1− δ)kit−1 + Iit

Following Zhang et al. [46], we choose the gross fixed capital formation in year t
deflated by price index for fixed asset investment, denoted by Iit. Zhang et al. [46] set δ of
9.6%. As different fixed assets account for different proportions of all fixed assets in each
region, we follow the method of Zhang et al. [56] to calculate δ, but the value of δ we used
as following is not a constant. We select the method of Hall and Jones [57] to calculate the
capital stock for the base period (k0) in 2004.

δit =
FAICit × 6.9% + FAIMEit × 14.9% + FAIOTit × 12.1%

TFAIit

where FAIC, FAIME, FAIOT, and TFAI respectively represents fixed asset investment in
construction, machinery and equipment, other types of fixed asset investment, and total
fixed asset investment.

In Equation (12), the measurements of T, y, and f di have been defined in Equation (11).
Variables Hum and RD are measured, respectively, by the number of R&D personnel and
corporate R&D expenditure. The latter is CPI-adjusted to a constant price value based on
2004. The R&D we have considered refers to the innovation process that uses knowledge
gained from basic research, applied research, and practical experience to produce new
products, establish new processes or services, and improve the mentioned aspects. Variable
X includes financial development ( f d, f d2) and the openness to trade (open) and three-way
FDI spillover (s, bs, and hs)).

In Equation (13), M includes f d, f d2, open, the urban population density (Pop), f s, bs,
and hs. Variables Pop and En are calculated as the ratio of provincial population to land
area, and the total consumption of various types of fossil energy per capita, respectively.
ER is calculated according to the following formula:

ERit =
nPuIit

IAVit ∑T
t=1

PuIit
IAVit

(i = 1, 2 . . . 30; t = 1, 2, . . . 12) (14)
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where ER, PuI, and IAV represent the environmental regulation index, the amount in-
vested in industrial pollution control, and the industrial added value. Furthermore, cities
are indexed by subscript i (i = 1, ..., N), while t represents the time period (t = 1, . . . , T).

3.3.2. Descriptive Statistics

As shown in Table 1, n = 30 and t = 13; thus, the data type is short panel data. To
eliminate partial heteroscedasticity and make the data more robust, we use the logarithm of
each variable except the ratio variable. The statistical results for each variable are as follows.

Table 1. Summary statistics (for logarithms of variables) for the period of 2004–2016.

Region
Mean

y T SO2 choe nhe ww fdi

Anhui 143,591.7 25,492.23 73,046.92 81,186.39 9364.256 2.85 × 108 27,338.31
Beijing 128,858.2 41,755.08 13,379.35 13,845.49 1577.978 1.38 × 108 91,767.23

Chongqing 125,300.3 15,989.08 135,230.6 55,845.81 6469.876 2.84 × 108 35,611.15
Fujian 151,079.1 24,449.62 49,198.12 57,397.37 6874.098 3.01 × 108 94,407.55
Gansu 102,868.6 2913.308 164,197.8 74,232.02 9677.556 1.69 × 108 8863.61

Guangdong 158,019.2 120,454.2 43,737.66 51,632.26 6030.769 3.18 × 108 111,128.40
Guangxi 143,852.8 5438.769 139,233.9 167,336.6 12,803.32 4.89 × 108 28,656.64
Guizhou 121,461.4 4894.692 340,797.5 75,858.87 7315.475 2.11 × 108 11,057.20
Hainan 110,050.7 884.0769 16,795.3 80,413.61 7988.159 2.43 × 108 166,396.30
Hebei 198,955.2 12,737.31 161,182.5 101,180.1 9299.005 3.15 × 108 29,650.51

Heilongjiang 70,360.6 10,369 41,563.99 66,048.01 5308.232 1.10 × 108 9031.56
Henan 274,182.3 20,170.15 179,903.2 126,126.3 14,729.47 4.99 × 108 32,705.48
Hubei 135,996.1 18,211.23 67,598.41 76,809.29 9141.114 2.83 × 108 28,447.68
Hunan 151,690.5 15,767.69 88,521.91 111,145.8 12,674.23 3.19 × 108 20,955.36
Jiangsu 564,483.6 133,607.4 184,740.5 161,607.1 16,698.2 9.38 × 108 484,146.00
Jiangxi 162,857.8 8358.692 111,863.9 112,577.2 10,942.53 3.42 × 108 49,430.16

Jilin 35,740.34 4814 19,581.12 25,550.34 2049.409 5.74 × 107 8825.36
Liaoning 148,223.6 15,444.62 103,718.5 77,042.65 7980.085 2.32 × 108 85,641.86

Neimenggu 193,355.9 2574.308 293,909 97,689.9 8836.252 1.82 × 108 29,342.30
Ningxia 122,551.5 948 323,721 143,899.9 11,425.14 3.34 × 108 24,181.78
Qinghai 113,308.9 468.3077 145,071.3 88,527.95 8829.724 2.30 × 108 17,707.86

Shandong 207,644.5 50,173.31 109,329.2 67,559.55 6627.785 2.58 × 108 50,398.25
Shanghai 248,022.5 38,107.38 63,833.08 45,419.43 6578.039 3.96 × 108 373,501.40
Shanxi1 90,361.62 5020.615 170,044.6 50,326.67 5963.292 1.51 × 108 16,627.95
Shanxi2 152,295.8 14,028.38 150,212.1 70,744.39 7034.998 2.15 × 108 25,965.57
Sichuan 136,180.3 29,475 102,660.6 90,622.58 8633.14 2.76 × 108 25,841.29
Tianjin 233,505.8 15,585.62 68,876.19 49,730.98 5769.727 2.14 × 108 193,205.00

Xinjiang 108,663.3 3273 154,475.1 98,882.75 7611.937 1.97 × 108 6639.75
Yunnan 110,665.4 4912.154 100,098.2 66,222.77 5916.428 2.06 × 108 17,905.00
Zhejiang 154,977.5 116,989.9 49,355.9 42,701.39 4973.814 2.58 × 108 75,267.36

Descriptive statistics of various variables are presented in Table 1. On average, regions
with the highest GDP include Beijing, Shanghai, Tianjin, and Jiangsu. Among the regions
with the lowest GDP are Gansu, Yunnan, Shanxi, and Sichuan, most of which are in western
China. In particular, Shanxi is a major coal-producing province.

The most densely distributed regions of patent grants are Guangdong, Jiangsu, and
Zhejiang, where manufacturing and high-tech industries are concentrated. Regions with
the lowest number of patent grants include Qinghai, Ningxia, and Hainan.

There are four variables that characterize pollution. The data shows that SO2 emissions
tend to rise gradually and level off. Overall, ammonia and nitrogen emissions have
followed a downward trend. Emissions of chemical oxygen have exhibited a volatile
decline, especially in recent years.
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4. Empirical Results and Discussion
4.1. Panel Unit Root Test

If there are random trends or structural changes in a dataset, data may be nonstationary.
Results of a direct regression estimation of a model with nonstationary data will not be
economically significant, and the estimated parameters will be biased, which will lead
to the invalidation of other tests and ultimately cause the problem of “false regression”.
Therefore, we first test the stationarity of data. Here, we use the unit root test method for
panel data. To some extent, the panel data’s unit root test results are more convincing than
analyses of the time series data itself.

Table 2 shows for each variable the results of two types of panel unit root test with their
respective test characteristics. The unit root test for each variable has at least one result that
rejects the null hypothesis. Thus, we can be confident that the logarithmic variables are stable.

Table 2. Results of the panel unit root test.

Variable LLC HT Stationarity Variable LLC HT Stationarity

lnT −3.520 *** 2.186 Yes lnchoe −0.274 −3.874 *** Yes
ln f di −3.842 *** 0.500 Yes lnww −1.816 ** −4.337 *** Yes
lnk −0.902 −9.638 *** Yes lny 0.302 0.363 *** Yes

lnSO2 −2.244 ** 0.283 *** Yes lnPop −40.698 *** −2.493 *** Yes
ER −4.265 *** −11.189 *** Yes lnRD −1.042 −14.653 *** Yes

lnnhe −3.074 *** −4.817 *** Yes lnHum −2.341 *** −12.081 *** Yes
hs −2.6214 *** −15.6659 *** Yes lnEn −5.9700 *** −3.7577 *** Yes
bs −4.460 *** −41.169 *** Yes f s −4.649 *** 0.722 Yes
f d −3.1260 *** 2.4120 Yes open −8.8420 *** 3.2327 Yes

Note: The null hypothesis of the Levin-Lin-Chu(LLC) and Harris-Tzavalis(HT) tests are that all panels contain a unit root. Significance
levels are indicated as follows: *** p < 0.01, ** p < 0.05.

4.2. Hausman Test

In general, there are three strategies for estimating panel data: mixed regression,
fixed-effect models, and random-effects models. Here, the Hausman test is performed for
each equation to select the appropriate regression model.

Table 3 shows the results of the Hausman tests. The p-values of such tests of economic
growth, technological innovation, SO2 emissions, COD discharge, ammonia nitrogen
discharge model, and wastewater discharge models are all less than 0.05. Therefore, we
reject the null hypothesis and use the fixed-effect model to estimate these quantities’ models.
Theoretically, for the estimation of the variance of individual residuals, the estimation
results of the random-effects model are consistent only when N (the number of individuals)
approaches infinity. Fixed-effects models, however, reduce endogeneity by controlling
for unobserved individual heterogeneity that does not change over time. We only have
30 individuals, so the fixed-effect model is more appropriate.

Table 3. Results of the Hausman test.

The Classification of R Model Chi2 Statistic Prob. Type of Model

R = SO2

Model of economic growth 82.77 *** 0.000 Fixed effect
Model of technological innovation 38.21 *** 0.000 Fixed effect

Model of SO2 emissions 57.92 *** 0.000 Fixed effect

R = nhe
Model of economic growth 79.45 *** 0.000 Fixed effect

Model of technological innovation 32.58 *** 0.002 Fixed effect
Model of ammonia and nitrogen emissions 63.00 *** 0.000 Fixed effect

R = choe
Model of economic growth 78.96 *** 0.000 Fixed effect

Model of technological innovation 31.17 *** 0.003 Fixed effect
Model of COD discharge 61.02 *** 0.000 Fixed effect

R = ww
Model of economic growth 110.15 *** 0.000 Fixed effect

Model of technological innovation 43.78 *** 0.000 Fixed effect
Model of wastewater discharge 139.01 *** 0.000 Fixed effect

Note: The null hypothesis of the Hausman test is that µi is not related to Xit and zi , which means that the random-effect model is more
suitable than other model types. Labels *** indicate significance at 10% levels, respectively.
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4.3. Overidentification Test

Assume that the model contains all exogenous and endogenous variables and that the
residual obtained using the Instrumental Variable (IV) method is an auxiliary regression
for all exogenous variables.

The estimation method adopted in this paper is GMM. Three specifications that
correspond to Equations (11)–(13) are simultaneously estimated. Table 4, Table 5, Table 6,
Table 7 report the results of diagnostic tests (the J-statistic for overidentification, and the
AR(2) test for the existence of the second-order autocorrelation in first differences). The
purpose of the J-statistic is to test the validity of overidentifying restrictions under the null
hypothesis that such restrictions are obeyed.

Table 4. GMM estimation results of panel simultaneous equations of Equations (11)–(13) (R represents SO2).

Specifications Specification 1 Specification 2 Specification 3

Independent Variables lny lnT lnSO2

lny - −0.194 ***
(0.040)

0.348 ***
(0.029)

lny(t− 1) 0.215 *** 0.281 *** −0.346 ***
(0.040) (0.032) (0.020)

lnT
0.147 *** - −0.021 ***
(0.018) (0.003)

lnT(t− 1) - 0.880 *** -
(0.022)

lnSO2
−0.009 −0.070 *** -
(0.030) (0.014)

lnSO2(−1) - - 0.949 ***
(0.007)

lnk
0.710 *** - -
(0.036)

ln f di 0.097 *** 0.037 −0.021 **
(0.021) (0.026) (0.008)

lnEn - - 0.029 **
(0.011)

ER - - 0.009
(0.005)

lnPop - - 0.006
(0.007)

lnRD - 0.044 ** -
(0.022)

lnHum - 0.095 ** -
(0.020)

hs
−0.112 0.054 0.041
(0.078) (0.075) (0.026)

f s −0.296 −0.520 *** −0.378 ***
(0.182) (0.185) (0.063)

bs
0.017 *** −0.011 *** −0.378 ***
(0.003) (0.003) (0.063)

f d −0.203 *** 0.218 *** 0.128 ***
(0.077) (0.077) (0.041)

f d2 0.012 −0.058 ** −0.056 ***
(0.024) (0.024) (0.015)

open −0.151 *** −0.038 ** 0.028 **
(0.031) (0.221) (0.016)

Constant
−3.188 *** 0.934 −0.142

(0.745) (0.295) (0.139)
J-statistic (p-value) 28.462 (0.1609) 26.063 (0.1637) 26.852 (0.1395)
AR(2) test (p-value) 0.104 (0.9172) 0.303 (0.7617) −0.623 (0.5333)

Note: Variable R is defined as the emission of SO2. J-statistic refers to the overidentification test for the restrictions
in the GMM estimation. The AR(2) test is the Arellano-Bond test for the existence of the second-order autocorre-
lation in first differences. Labels ** and *** indicate significance at 5% and 10% levels, respectively. The use of
(t− 1) means the lag of the variables.



Int. J. Environ. Res. Public Health 2021, 18, 2839 14 of 24

Table 5. GMM estimation results of panel simultaneous equations of Equations (11)–(13) (R represents choe).

Specifications Specification 1 Specification 2 Specification 3

Independent Variables lny lnT lnchoe

lny - −0.212 *** 0.278 ***
(0.035) (0.049)

lny(t− 1)
0.219 *** 0.248 *** 0.134 **
(0.038) (0.035) (0.063)

lnT
0.139 *** - −0.069 ***
(0.018) (0.009)

lnT(t− 1) - 0.924 *** -
(0.017)

lnchoe
0.003 −0.031 -

(0.013) (0.022)

lnchoe(t− 1) - - 0.703 ***
(0.035)

lnk
0.714 *** - -
(0.030)

ln f di 0.090 *** 0.034 * −0.030 *
(0.018) (0.018) (0.018)

lnEn - - −0.108 ***
(0.025)

ER - - 0.047
(0.016)

lnPop - - 0.003
(0.019)

lnRD - 0.022 -
(0.020)

lnHum - 0.068 *** -
(0.018)

hs
−0.084 0.029 0.216 ***
(0.072) (0.071) (0.051)

f s −0.246 −0.205 −0.441 ***
(0.199) (0.125) (0.143)

bs
0.018 *** −0.018 *** 0.036 ***
(0.003) (0.004) (0.014)

f d −0.177 ** 0.156 ** 0.129
(0.081) (0.073) (0.097)

f d2 0.004 −0.038 −0.102 ***
(0.026) (0.024) (0.033)

open −0.154 *** −0.070 *** −0.094 ***
(0.024 f d2 (0.023) (0.036)

Constant
−3.173 *** −0.569 ** 1.211 ***

(0.658) (0.227) (0.347)
J-statistic (p-value) 24.582 (0.372) 22.995 (0.289) 5.871 (0.997)
AR(2) test (p-value) −0.191 (0.849) 0.725 (0.469) −1.757 (0.079)

Note: Variable R is defined as the COD discharge. J-statistic refers to the overidentification test for the restrictions
in the generalized method of moments (GMM) estimation. The AR(2) test is the Arellano–Bond test for the
existence of the second-order autocorrelation in first differences. Labels *, ** and *** indicate significance at 1%,
5%, and 10% levels, respectively. The use of (t− 1) means the lag of the variables.
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Table 6. Generalized method of moments (GMM) estimation results of panel simultaneous equations
of Equations (11)–(13) (R represents nhe).

Specifications Specification 1 Specification 2 Specification 3

Independent Variables lny lnT lnnhe

lny - −0.211 *** 0.429 ***
(0.036) (0.110)

lny(t− 1)
0.219 *** 0.246 *** 0.808 ***
(0.040) (0.032) (0.066)

lnT
0.147 *** - −0.210 ***
(0.018) (0.025)

lnT(t− 1) - 0.921 *** -
(0.019)

lnnhe
−0.019 −0.046 *** -
(0.013) (0.018)

lnnhe(t− 1) - - −0.290 ***
(0.027)

lnk
0.729 *** - -
(0.032)

ln f di 0.084 *** 0.039 * 0.032
(0.019) (0.022) (0.071)

lnEn - - −0.081
(0.058)

ER - - 0.053
(0.013)

lnPop - - 0.107 ***
(0.025)

lnRD - 0.030 -
(0.022)

lnHum - 0.073 *** -
(0.019)

hs
−0.090 0.067 0.231 ***
(0.075) (0.076) (0.058)

f s −0.231 −0.240 −0.583 **
(0.204) (0.147) (0.286)

bs
0.016 *** −0.018 *** −0.085 ***
(0.003) (0.004) (0.017)

f d −0.223 *** 0.097 0.068
(0.085) (0.068) (0.147)

f d2 0.018 −0.019 −0.179 ***
(0.027) (0.023) (0.048)

open −0.139 *** −0.086 *** −0.453 ***
(0.031) (0.022) (0.07)

Constant
−3.054 *** −0.643 ** −0.733

(0.040) (0.036) (0.910)
J-statistic(p-value) 27.50597 (0.193) 22.47347 (0.315) 23.574 (0.370)

AR(2) test (p-value) −0.053089 (0.958) 0.111534 (0.911) −0.000 (0.100)
Note: Variable R is defined as the ammonia nitrogen emissions. J-statistic refers to the overidentification test
for the restrictions in the GMM estimation. The AR(2) test is the Arellano–Bond test for the existence of the
second-order autocorrelation in first differences. Labels *, ** and *** indicate significance at 1%, 5%, and 10%
levels, respectively. The use of (t− 1) means the lag of the variables.
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Table 7. GMM estimation results of panel simultaneous equations of Equations (11)–(13) (R represents
total wastewater discharge (ww)).

Specifications Specification 1 Specification 2 Specification 3

Independent Variables lny lnT lnww

lny - −0.272 *** 0.903 ***
(0.043) (0.012)

lny(t− 1)
0.045 *** 0.187 *** −0.838 ***
(0.015) (0.027) (0.015)

lnT
0.038 *** - 0.0006
(0.011) (0.002)

lnT(t− 1) - 0.909 *** -
(0.017)

lnww
0.868 *** 0.084 *** -
(0.033) (0.027)

lnww (t− 1) - - 0.900 ***
(0.010)

lnk
0.127 *** - -
(0.022)

ln f di 0.025 * 0.037 * 0.022 ***
(0.013) (0.019) (0.005)

lnEn - - −0.004
(0.005)

ER - - 0.014 ***
(0.003)

lnPop - - 0.018 ***
(0.003)

lnRD - 0.053 ** -
(0.021)

lnHum - 0.099 *** -
(0.019)

hs
−0.056 *** 0.004 0.013

(0.019) (0.083) (0.019)

f s −0.051 −0.198 −0.175 ***
(0.084) (0.132) (0.038)

bs
0.002 −0.030 *** 0.010 ***

(0.002) (0.006) (0.002)

f d 0.013 0.205 *** −0.110 ***
(0.029) (0.078) (0.020)

f d2 −0.021 ** −0.036 0.035 ***
(0.009) (0.025) (0.007)

open 0.071 *** −0.061 ** −0.005
(0.018) (0.024) (0.007)

Constant
−7.138 *** −1.768 *** 0.872 ***

(0.380) (0.393) (0.113)
J-statistic (p-value) 24.476 (0.435) 24.636 (0.216) 25.230 (0.193)
AR(2) test (p-value) 2.523 (0.012) 1.115 (0.265) 1.282 (0.200)

Note: Variable R is defined as the total wastewater discharge. J-statistic refers to the overidentification test
for the restrictions in the GMM estimation. The AR(2) test is the Arellano–Bond test for the existence of the
second-order autocorrelation in first differences. Labels *, ** and *** indicate significance at the 1%, 5%, and 10%
levels, respectively. The use of (t− 1) means the lag of the variables.

To improve the identifiability of the model, all variables except endogenous ones
are regarded as instrumental variables. In particular, FDI is a variable that is prone to
having endogeneity, so it is necessary to select an instrumental variable to replace it to
weaken endogeneity. The method used in this paper is to select the one-lag FDI as a special
instrumental variable. All test statistics in Table 4, Table 5, Table 6, Table 7 indicate good
statistical performance.
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4.4. GMM Estimation Results of the Simultaneous Equation Model and Discussion

As the use of single-equation estimation will ignore the relationship between each
equation and the equation disturbance term, which will cause deviation of the experimental
results to some extent, we further adopt a more efficient system estimation method that
considers all equations together and incorporates them into a system for research.

Table 4 shows the GMM estimation results of panel simultaneous equations of Equa-
tions (11)–(13), where R represents emission of SO2. The overall findings show evidence
of bidirectional causal links between economic growth and technology innovation and
between the latter and SO2 emissions, while the relationship between economic growth
and pollution emissions is not significant. In addition, the results show that FDI has a
positive and direct impact on economic growth and technological innovation, while its
direct impact on SO2 emissions is negative, indicating that FDI inflows can promote re-
gional economic growth in China and enhance its technological innovation capabilities.
The findings are in line with the research provided by Aust et al. [58] which indicated that
FDI increases the probability of better trends for African sustainable development goals.
Overall, FDI can ease the pressure of pollution emissions (similar to the results provided by
Jiang et al. [59]), which indicates that FDI’s effect on pollution is the pollution halo effect
in China. The one-lag values of GDP, FDI, and SO2 emissions have a significant positive
impact on their current values, indicating that these variables tend to increase over time.
Omri and Kahouli [7] also observe the lagged values of GDP have a significant and positive
impact on their current values.

More precisely, Specification 1 in Table 4 indicates that at the 1% confidence level,
technological innovation has a significantly positive impact on economic growth, with
1 unit of technological innovation output leading to an increase in economic growth
rate of 0.147 units. Our empirical evidence is consistent with the results reported by
Fan et al. [60] for the mining industry, and this also further confirms the correctness of
national policies for promoting innovative and high-quality development. The effect of
SO2 emissions on economic growth is not obvious, but the significantly positive effect of
capital stock on economic growth still exists. FDI inflows have a significant positive impact
on economic growth, which is consistent with the results obtained by Lee [22], Omri and
Kahouli [7], Hong [24], Yue et al. [26], Peng et al. [25], Gutiérrez-Portilla et al. [61], and
Doğan et al. [62]. The results show that a 1% increase in FDI inflows increases regional
GDP growth by approximately 0.097%. Moreover, considering the performance of control
variables, we conclude that FDI influences economic growth through backward spillover,
which significantly improves the economic growth rate. There is a nonlinear relationship
between financial development and economic growth. Higher openness to trade has a
significant positive impact on economic growth.

Specification 2 in Table 4 shows that both the current GDP and the one-lagged GDP
have significant impacts on technological innovation. The difference is that the one-
lagged GDP has a significantly positive impact on the output of technological innovation,
which indicates that there is a delay in the impact of economic growth on technological
innovation. In contrast, SO2 emissions have a significant negative impact on technological
innovation. The direct impact of FDI on technological innovation output is positive. Erdal
and Göçer [31], Zhang [32], Wang and Wu [33], and Yang et al. [63] have obtained similar
results. However, our results were not statistically significant. The forward and backward
spillover effects of FDI have a significant negative impact on technological innovation at
the confidence levels of 1%. The forward spillover effect of FDI has a negative influence on
innovation output. For a 1% increase in the forward spillover benefit of FDI, innovation
output will decrease by 0.520%. However, for a 1% increase in the backward spillover effect
of FDI, innovation outputs decrease by 0.011%. This indicates that foreign companies have
a strong incentive to prevent the leakage of technical knowledge to domestic upstream
suppliers and downstream enterprises.

In Specification 3 in Table 4, the one-lagged GDP has a significant restraining effect on
the emission of SO2. For a 1 unit increase of the one-lagged GDP, the emission of SO2 will
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decline by 0.346 units. Research reported by Xu et al. [64] shows that economic growth in
the eastern region can reduce SO2 emissions, while Jiang et al. [59] find the urban economic
levels can improve environmental quality in China. Technological innovation can reduce
SO2 emissions significantly. The coefficient of FDI is significant and negative, indicating
that FDI has a pollution halo effect directly (the results reported by Xu et al. [64] also
show that the increases in FDI dependence will curb such discharge). However, FDI can
significantly reduce SO2 emissions of host countries through the forward and backward
spillover effect’s channel. This suggests that foreign enterprises can encourage domestic
upstream firms to achieve cleaner production based on their demand and supply for
high-quality products upstream and downstream of the industrial chain.

Table 5 shows the GMM estimation results of panel simultaneous equations of Equa-
tions (11)–(13), where R represents COD emissions (choe). In general, there is bidirectional
causal links between economic growth and technological innovation, while there are
unidirectional influence relationships between economic growth and COD emissions, tech-
nological innovation, and COD emissions. The one-lag values of GDP, FDI inflow, and
COD emissions have a significantly positive impact on their current values, indicating
that these variables tend to increase over time. FDI has a positive and significant impact
on China’s economic growth and technological innovation, and its significant impact on
economic growth is consistent with the results obtained by Lee [22], Hong [24], Erdal
and Göçer [31], Peng et al. [25], Yue et al. [26], Wang and Wu [33], Zhang [32], and Aust
et al. [58]. Additionally, FDI has a negative and significant effect on COD emissions.

The coefficients for Specifications 1 and 2 in Table 5 differ only slightly numerically
from those in Table 4, while the coefficient symbols are almost consistent. However, due
to R being defined as COD emissions, the results shown for Specification 3 in Table 5 are
quite different from those in Table 4. Results for Specification 1 show that the direct impact
of FDI on economic growth is significantly positive [7,20,22–24,51,52]. For a 1% increase
in FDI, GDP growth will increase by 0.09%. Specifically, FDI can significantly enhance
economic growth through the backward spillover effect when the horizontal and forward
spillover effects are not significant. An increase of 1% in the backward spillover effect
of FDI can increase the GDP growth rate by 0.02%. Specification 2 shows that the direct
impact of FDI on technological innovation output is positive, and Erdal and Göçer [31],
Zhang [32], Wang and Wu [33], and Yang et al. [63] have obtained similar results. FDI can
inhibit the output of technological innovation through the backward spillover effect, which
still indicates that foreign enterprises strictly block the flow of their technical knowledge to
upstream domestic suppliers.

In Specification 3, GDP can significantly increase COD emissions. The research
provided by Bakhsh et al. [65] similarly shows that GDP is positively related with CO2
emissions. For a 1 unit increase of GDP, COD emissions will increase by 0.278 units.
Notably, technological innovations can significantly reduce COD emissions. The results
reported by Hashmi and Alam [66] and Mensah et al. [67] show that technology has an
inhibitory effect on carbon dioxide emissions. For a 1% increase in technology innovation,
COD emissions can be reduced by 0.069%. In addition, the horizontal and backward
spillover effects of FDI can significantly increase COD emissions, while the forward effect
can significantly restrain COD emissions.

Table 6 shows the GMM estimation results of panel simultaneous equations of Equa-
tions (11)–(13), where R represents ammonia and nitrogen discharge (nhe). Specifications 1
and 2 in Table 6 are only slightly different from the results in Table 5. However, due to R
instead being defined as ammonia and nitrogen discharge, our results exhibit a significant
difference in Specification 3, where GDP can significantly increase ammonia and nitrogen
discharge (similar to the results of Bakhsh et al. [65]). For a 1 unit increase in GDP, ammonia
and nitrogen emissions will increase by 0.429 units. On the other hand, technological inno-
vation can reduce such emissions [66,67]. For a 1% increase in technological innovation,
ammonia and nitrogen discharge will be reduced by 0.2%. The coefficient of FDI is not
significant, indicating that FDI does not have a pollution haven effect or a pollution halo
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effect directly (similarly to the results reported by Shao et al. [68]). However, the backward
spillover effect of FDI on ammonia and nitrogen discharge is significantly negative.

Table 7 shows the GMM estimation results of panel simultaneous equations of Equa-
tions (11)–(13), where R represents the total wastewater discharge (ww). In general, re-
sults for Specifications 1 and 2 in Table 6 are only slightly different from the results in
Tables 4 and 5. The one-lag values of GDP, FDI inflows, and the total wastewater discharge
have a significant positive effect on the current value, which suggests that these variables
tend to increase over time. FDI has a significant direct positive impact on regional GDP
and technological innovation, but its indirect spillover effect inhibits such innovation’s
output, which also shows that foreign companies strictly protect their own patented tech-
nologies. However, we observe that the forward and horizontal spillover effects of FDI
inhibit economic growth, while the backward spillover effect of FDI has a positive effect on
GDP growth.

In Specification 3, GDP can significantly increase the total wastewater discharge
(similar to the results of Bakhsh et al. [65]). For a 1 unit increase in GDP, the total wastewater
discharge will increase by 0.90 units. It is worth noting that technological innovation cannot
reduce such discharge. Our empirical evidence is consistent with the results reported by
Liu et al. [37], and Xu et al. [64]. Moreover, the inflow of FDI has a significant direct
impact on such discharge. This result is consistent with Caglar [69]. Caglar’s [69] findings
imply that FDI inflow induces environmental pollution in India and Morocco. For a 1 unit
increase in FDI inflow, the amount of wastewater discharged will increase by 0.02 units.
Our results are similar to those of Liu et al. [37]. Additionally, the research provided by
Omri and Kahouli [7], Bakhsh et al. [65] show that FDI inflows have positive effects on CO2
emissions. Furthermore, we observe that FDI can significantly increase the total wastewater
discharge through FDI’s backward spillover channel.

5. Conclusions

Although many scholars have studied the interactions among FDI, economic growth,
technological innovation, and pollution, their studies explore only two or three of these
factors. This paper studies all four simultaneously and includes them into the same system
for research. Finally, we comprehensively analyze the influence of FDI on the other three
factors. To make the sample set sufficiently large, this paper uses panel data for 2004–2016
on 30 province-level regions in China (except Tibet) as samples and constructs a dynamic
panel simultaneous equation model for analysis. The aim is to clarify FDI’s impact on
economic growth, technological innovation, and pollution to provide policymakers with
reliable advice on how to guide foreign investment.

In general, there is a two-way causal relationship between economic growth and
technological innovation, and an improvement of the latter can significantly enhance the
former [50]. The positive impact of GDP on technological innovation output is delayed.
Economic growth has a unidirectional influence on environmental pollution. The current
economic growth will increase emissions of four types of pollutants. On the other hand,
the relationship between technological innovation and these types of pollutants is more
complicated. There are “benign feedback mechanisms” between technological innova-
tion output, SO2 emission, and COD emissions, and between the former and ammonia
and nitrogen discharge, i.e., an improvement of the technological innovation level can
significantly reduce COD emissions and ammonia and nitrogen discharge. At the same
time, a reduction of SO2 emission, COD emissions, and ammonia and nitrogen discharge
will further feed back to the output of technological innovation, which will facilitate the
improvement of technological innovation.

As to the impact of FDI, we observe that FDI has a positive and direct impact on
economic growth [7,22,24–26,61], and it is statistically significant. Moreover, compared
with the horizontal and forward spillover effects, FDI has a significantly positive pull effect
on the domestic economy through the backward spillover effect [31–33]. FDI also has a
positive and direct impact on the improvement of the regional technological innovation
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level [63]. However, the indirect spillover effect of FDI on innovation is not statistically
significant [40], which reflects the foreign companies’ strict protection of their own technical
knowledge. Finally, FDI can directly reduce SO2 and COD emissions while increasing
the total wastewater discharge, and the channels through which FDI indirectly affects the
discharge of the three pollutants are complicated. However, FDI effects ammonia and
nitrogen discharge mainly through the indirect way.

Based on the results of our empirical analysis, we conclude that FDI has positive effects
on economic growth and technological innovation in various regions of China. Therefore,
relevant departments should continue to develop foreign investment policies, create a
better investment environment, and guide foreign investment to serve China’s high-tech
industries. As to environmental pollution, the inflow of FDI has a direct impact on the
increase in regional wastewater discharge. However, the direct effect of FDI on the emission
of SO2, COD is significantly negative, indicating that FDI has a pollution halo effect on
them directly. Different treatment methods should be used for different pollution types.
Our research results confirm that foreign direct investment and technological advancement
can simultaneously reduce SO2 emissions and COD emissions. The possibility of reducing
ammonia and nitrogen discharge by increasing FDI backward and forward spillover is
confirmed by our study.
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Appendix A. Calculation of Three-Way FDI Spillover

Appendix A.1. FDI’s Forward Spillover

Theoretically, the forward spillover effect of FDI represents a recognition that upstream
foreign enterprises can influence downstream domestic firms by providing high-quality
and high-tech inputs. Considering the availability of provincial data in China, we define
the provincial forward FDI spillover effect as follows, consistently with Han and Wu [36]
and Wei et al. [40]:

f sit =
SV f

it − EV f
it

SVit − EVit

where f sit represents the forward FDI spillover. SV f
it measures the revenue of foreign-

funded industrial enterprises. EV f
it denotes the export revenue of foreign-funded enter-

prises. SVit and EVit represent, respectively, the industrial revenue, and the total export
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revenue in province i. The direct consumption coefficients at the provincial level are
unavailable, and some input–output data are missing as well. Here, we use the ratio of
foreign enterprises’ revenue in the host country (SV f

it − EV f
it ) to the total domestic revenue

of regional enterprises (SVit − EVit) to represent the forward FDI spillover. As before,
provinces are indexed by subscript i (i = 1, . . . , N), while t represents the time period
(t = 1, . . . , T).

Appendix A.2. FDI’s Backward Spillover

Backward spillover reflects to a certain extent the demand of downstream foreign-
funded enterprises for upstream intermediaries or services. As buyers, foreign-funded
enterprises can improve the technical level of domestic suppliers by transferring technol-
ogy. The formula for backward spillover, used by Han and Wu [36], Wei et al. [40], and
Javorcik [17], is as follows:

bsit =
CO f

it − IO f
it

COit − IOit

where bsit represents backward FDI spillover. CO f
it measures the main operating costs

of foreign-funded enterprises. IO f
it denotes the import value of such enterprises. COit

and IOit represent, respectively, the total main operating cost in region i, and the total
import value in province i. The direct consumption coefficients at the provincial level are
unavailable, and some input–output data are missing as well. Here, we use the ratio of
foreign enterprises’ revenue in the host country (SV f

it − EV f
it ) to the total domestic revenue

of regional enterprises (SVit − EVit) to represent the forward FDI spillover. As above,
provinces are indexed by subscript i (i = 1, . . . , N), while t represents the time period
(t = 1, . . . , T).

Appendix A.3. FDI’s Horizontal Spillover

The horizontal spillover effect refers to FDI spillovers within the same industry, i.e.,
the phenomenon whereby domestic enterprises achieve technological progress by imitating
the technology of foreign-funded enterprises or employing skilled workers. Considering
the method proposed by Han and Wu [36], Wei et al. [40], and Javorcik [17] and taking into
account the unavailability of the direct consumption coefficients at the provincial level in
China, we calculate the horizontal spillover as follows:

hsit =
SV f

it
SVit

where hsit represents the horizontal FDI spillover. SV f
it and SVit measure, respectively,

the revenue of foreign-funded industrial enterprises and the industrial revenue in region
i. The direct consumption coefficients at the provincial level are unavailable, and some
input–output data are missing. Here, we use the ratio defined above to represent the
forward FDI spillover. As above, provinces are indexed by subscript i (i = 1, . . . , N), while
t represents the time period (t = 1, . . . , T).
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