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Abstract: In the conduction of trials, a common situation is related to potential difficulties in recruiting
the planned sample size as provided by the study design. A Bayesian analysis of such trials might
provide a framework to combine prior evidence with current evidence, and it is an accepted approach
by regulatory agencies. However, especially for small trials, the Bayesian inference may be severely
conditioned by the prior choices. The Renal Scarring Urinary Infection (RESCUE) trial, a pediatric
trial that was a candidate for early termination due to underrecruitment, served as a motivating
example to investigate the effects of the prior choices on small trial inference. The trial outcomes
were simulated by assuming 50 scenarios combining different sample sizes and true absolute risk
reduction (ARR). The simulated data were analyzed via the Bayesian approach using 0%, 50%, and
100% discounting factors on the beta power prior. An informative inference (0% discounting) on
small samples could generate data-insensitive results. Instead, the 50% discounting factor ensured
that the probability of confirming the trial outcome was higher than 80%, but only for an ARR higher
than 0.17. A suitable option to maintain data relevant to the trial inference is to define a discounting
factor based on the prior parameters. Nevertheless, a sensitivity analysis of the prior choices is
highly recommended.

Keywords: power-prior; poor accrual; Bayesian trial

1. Introduction

Difficulties in the enrolment of the overall trial sample size, as indicated at the design
stage, could be caused by several factors (i.e., high costs, regulatory barriers, narrow
eligibility criteria, and cultural attitudes toward research in almost all research fields).
Effects can be different depending on the population’s characteristics and the intervention
under evaluation [1].

Prior research evaluating the reasons for termination across a broad range of trials
reported that insufficient enrolment is the most common reason, with a frequency ranging
from 33.7% to 57%, depending on the definition used [2,3]. The slow or low accrual problem
is common in clinical research on adults, primarily in oncology [4–6] and cardiology [7],
as well as in pediatric research, in which 37% of clinical trials are terminated early due to
inadequate accrual [8]. Pediatrics is a research field that requires particular attention, since
accrual issues are associated with methodological and ethical challenges [9]. It is essential
to consider that the management and conduct of pediatric trials are more complicated than
those of adult trials in terms of practical, ethical, and methodological problems [10].

From a statistical point of view, low accrual results in a reduced sample size, compro-
mising the ability to accurately answer the primary research question due to a reduction in

Int. J. Environ. Res. Public Health 2021, 18, 2095. https://doi.org/10.3390/ijerph18042095 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-8185-5742
https://orcid.org/0000-0003-1771-4686
https://orcid.org/0000-0002-6736-5392
https://orcid.org/0000-0002-8578-9164
https://orcid.org/0000-0001-7906-0580
https://doi.org/10.3390/ijerph18042095
https://doi.org/10.3390/ijerph18042095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18042095
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/4/2095?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 2095 2 of 16

the likelihood of detecting a treatment effect [11]. The scientific community has conveyed
that early termination of a trial due to poor accrual leads to inefficiency in clinical research,
with consequent increases in costs [12] and a waste of resources, as well as a waste of the
efforts of the children involved in the trial [13].

For these reasons, alternative and innovative approaches to pediatric clinical trial
design have been a recent topic of debate in the scientific community [9,14]. Alternative
methods for pediatric trial design and analysis have been proposed by recent guidelines in
the field, i.e., the ICH (International Council for Harmonisation) Topic E11 guidelines [15],
the guidance for trial planning and design in the pediatric context [16], and the EMA
(European Medicines Agency) guidelines [16–18].

It is noteworthy that data from trials terminated prematurely for poor accrual can
provide useful information for reducing the uncertainty about the treatment effect in a
Bayesian framework [11].

In recent years, Bayesian methods have increasingly been used in the design, monitor-
ing, and analysis of clinical trials due to their flexibility [19,20]. Considering the research
setting described in this work, the Bayesian methods used for accrual monitoring are
also interesting [21]. These methods are well suited to designing and analyzing studies
conducted with small sample sizes and are particularly appropriate for studies involving
children, even in cases of rare disease outcomes [9].

In clinical trials that are candidates for early termination due to poor accrual reasons,
a Bayesian approach may be useful for incorporating the available knowledge on the
investigated treatment effect, reported in the literature or elicited by experts’ opinions [22].
In addition, in a Bayesian setting, prior information combined with data may support the
final inference for a trial conducted on a limited number of enrolled patients [23,24].

In pediatric trials, for example, the awareness that a treatment is effective in adults
increases the probability of its efficacy in children. This knowledge may be quantitatively
translated into a prior probability distribution [9,14].

However, when there is a small sample size, the final inference may be severely
conditioned by a misleading prior definition [24]. In this framework, the Food and Drug
Administration (FDA) suggests performing a sensitivity analysis on prior definitions [25],
especially for very small sample sizes [26]. In this regard, the power prior approach is
used to design and analyze small trials to control for the weight of historical information,
translated into prior distributions, through prior discounting factors [27,28]. The use
of historical information to define the prior distribution in a nonparametric context is
a method recently used in the literature [29]. Informative prior elicitation is typically a
challenging task even in the presence of historical data (objective prior) [30]. Ibrahim and
Chen [28] proposed the power prior approach to incorporate the historical data in the
analysis of a current study. The method is based on the raising of the likelihood function
of the historical data to a power parameter between 0 and 1 (power parameter). This
parameter represents the proportion of the historical data incorporated in the prior.

Hobbs modified the conventional approach, accounting for commensurability of
the information in the historical and current data to determine how much the historical
information is used in the inference [31]. Other power-prior proposals calibrate the type I
error by controlling the degree of similarity between the new and historical data [32,33].
The prior-data conflict has also been addressed and incorporated in the power prior in a
commensurability parameter defined by using a measure of distribution distance in a group
sequential design clinical trial [34]. A mixture of priors, for the one-parameter exponential
family, has been also considered in a sequential trial, to incorporate the historical data
accounting for rapid reaction to prior-data conflicts by adding an extra weakly-informative
mixture component [35].

In general, the power prior approach is widely used for the design and analysis
of clinical trial data. The method is useful for handling problems related to a lack of
exchangeability between the historical and current data, and the risk that prior information
overwhelms the clinical trial data information [27].
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The optimal amount of discounting factors for an informative prior remains to be
discussed [14].

This study investigated the effects of the prior choices on the final inference, especially
for studies conducted with limited sample sizes, such as pediatric trials. A pediatric trial
candidate for early termination due to underrecruitment, the RESCUE trial, served as a
motivating example for the simulation study proposed.

A set of possible trial outcomes were simulated. The simulation plan was designed to
evaluate the effects of the prior choices on the trial results by evaluating different scenarios
depending on the number of patients involved in the study and the magnitude of the true
treatment effect.

2. Materials and Methods
2.1. Motivating Example

The RESCUE trial was a randomized controlled double-blind trial. The purpose of the
study was to evaluate the effect of adjunctive oral steroids in preventing renal scarring in
young children and infants with febrile urinary tract infections. The primary outcome was
the renal scar absolute risk reduction (ARR) between the treatment arms. The study was
designed expecting an ARR of 0.20 to determine a renal scar reduction from 40% to 20%.

After two years, only 17 recruited patients completed the follow-up for the study
outcome (6 in treatment and 11 in control) due to procedural problems and poor compliance
with the study therapy and final diagnosis [16–18].

2.2. Simulation Plan

The possible trial outcomes were simulated by assuming several scenarios combining
different sample sizes and true ARRs. The simulated data were analyzed via the Bayesian
approach using a beta prior distribution whose parameters were derived from trials con-
ducted in research settings similar to the RESCUE trial. The beta-binomial model was
considered because it is the most widely used approach among the Bayesian methods to
summarize event rates in clinical trials [36]. This parametrization is easily computationally
tractable and is very precise [37].

Informative, low-informative, and uninformative priors were selected for the analyses
according to the discounting levels placed on the prior parameters.

The classical, non-Bayesian approach was considered a benchmark.
This simulation study is defined by:

1. Data generation hypotheses.
2. Analysis of simulated data.
3. Presentation of the results of simulations.

A flowchart synthesizing the simulation plan is reported in Figure S1, Supplemen-
tary Material.

2.3. Data Generation Hypotheses
2.3.1. Simulation Scenarios

The simulation plan consisted of 50 scenarios. Each scenario represents a single
combination of the treatment effect (ARR) and the sample size used to generate the data.
Fifty scenarios were considered, since they combined ten different sample sizes (ranging
from 15 to 240) within five assumed ARRs (Table 1). The ARR ranged from −0.07 to
−0.27, with an increment of 0.07, according to the treatment effects suggested by the
literature [38,39].
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Table 1. Simulation scenarios.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sample
size 15 40 65 90 115 140 165 190 215 240 15 40 65 90 115 140 165 190 215 240 15 40 65 90 115

True
ARR 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.17 0.17 0.17 0.17 0.17

Scenario 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Sample
size 140 165 190 215 240 15 40 65 90 115 140 165 190 215 240 15 40 65 90 115 140 165 190 215 240

True
ARR 0.17 0.17 0.17 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27

ARR=Absolute Risk Reduction.

2.3.2. Data Generation within Scenarios

For each scenario, the trial data were randomly generated 5000 times. The data were
drawn from a binomial random variable, assuming a true event rate in the control arm of
πcontrol = 0.33. This event rate is in-between the results provided by Huang et al. [38] and
Shaikh et al. [39] for the control group.

The treatment arm data were generated using a binomial random variable hypoth-
esizing an ARR, one for each experiment, in compliance with the simulation plan pro-
vided in Table 1, where the sample size is showed overall. However, it is assumed that
the control arm contains 60% of the sample size to reflect the group imbalance in the
motivating example.

2.4. Analysis of the Simulated Data

The 5000 randomly generated data points were analyzed via the Bayesian method by
considering: (1) the informative prior, (2) the low-informative prior, and (3) the uninforma-
tive prior. A frequentist analysis was performed for comparison purposes.

The data were simulated 5000 times by a binomial random variable in a frequentist
approach. For each of the repeated simulations, the ARR was calculated and the binomial
confidence interval was estimated.

2.4.1. Prior Definition

A mixture of beta priors was considered for the outcome evaluation, using data
provided by the literature [38,39]. The clinical trial results were combined in a mixture
of distributions. The beta distributions comprising the mixture of priors for each scar
event rate in the treatment and control groups were derived from other trials’ historical
information [27].

The functional form of the distribution is characterized by the shape α and scale β

parameters Π ∼ Beta(α,β) [40], where Π is the parameter that characterizes the event
rate on which to make inference. The shape value α is defined by the number of events
x observed in other trials, while the β value corresponds to the number of subjects not
experiencing the event (n− x) [41].

1. Huang et al. [38] reported probabilities of scarring of π̂treat (Huang) = 6
18 = 0.33

and π̂control (Huang) = 39
65 = 0.66 in the treatment and control arms, respectively.

Considering this information, the informative beta prior can be derived as:

Πtreat (Huang) ∼ Beta(6, 12)

Πcontrol (Huang) ∼ Beta(39, 26)

2. Shaikh et al. [39] reported, instead, probabilities of scarring of π̂treat (Shaikh) = 0.098
(12|123) and π̂control (Shaikh) = 0.168 (22|131) in the treatment and control arms,
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respectively. Considering this information, the informative beta prior can be derived
as:

Πtreat (Shaikh) ∼ Beta(12, 111)

Πcontrol(Shaikh) ∼ Beta(22, 109)

The information was combined in a mixture of beta priors:

• For the treatment arm, the beta mixture is defined as:

Πtreat = γΠtreat (Huang) + (1− γ)Πtreat (Shaikh)

The expected value for the mixture random variable is, for the treatment arm, a
weighted mean of the expectations over the mixture components:

E
[
Πtreat ] = γE[Πtreat(Huang)

]
+ (1− γ)E[Πtreat(Shaikh)]

If we denote the beta shape αtreat(Huang) and αtreat(Shaikh), respectively for the Huang
and Shaikh studies, and βtreat(Huang) and βtreat(Shaikh) the scales for the considered
studies, the mixture expected value may be computed as:

E[Πtreat ] = γE
[
Πtreat(Huang)

]
+ (1− γ)E

[
Πtreat(Shaikh)

]
E[Πtreat ] = γ

αtreat(Huang)

αtreat(Huang)+βtreat(Huang)
+ (1− γ)

αtreat(Shaikh)

αtreat(Shaikh)+βtreat(Shaikh)

= γ
6

6 + 12
+ (1− γ)

12
12 + 111

If we assume an equal weight value γ = 0.5, E[Πtreat ] = 0.215.
• The mixture variance is given by:

Var[Πtreat ] =
[
γ
(

Var
[
Πtreat(Huang)

]
+ E

[
Πtreat(Huang)

]
− E[Πtreat ]

)]
+

+
[
(1− γ)

(
Var
[
Πtreat(Shaikh)

]
+ E

[
Πtreat(Shaikh)

]
− E[Πtreat ]

)]
where the variances of the mixture components are:

Var
[
Πtreat(Huang)

]
=

αtreat(Huang)βtreat(Huang)

(αtreat(Huang)+βtreat(Huang))
2(αtreat(Huang)+βtreat(Huang) + 1)

Var[Πtreat(Shaikh)] =
αtreat(Shaikh)βtreat(Shaikh)

(αtreat(Shaikh)+βtreat(Shaikh))
2(αtreat(Huang)+βtreat(Shaikh) + 1)

Equal weight was assumed for the components of the mixture, therefore, γ = 0.5,
E[Πtreat ] = 0.215, and SD[Πtreat ] = 0.08.

• For the treatment arm, the mixture is defined as:

Πcontrol = γΠcontrol (Huang) + (1− γ)Πcontrol (Huang)

with E[Πcontrol ] = 0.38 and SD[Πcontrol ] = 0.05 and γ = 0.5.

2.4.2. Discounting the Priors: The Power Prior Approach

Different levels of penalization (discounting) were provided for the historical in-
formation using a power prior approach [28] to perform a sensitivity analysis on the
prior choices. The historical information can be included in the final inference using a
Beta(α1,β1) prior, where:

α1 = 1 + α0d0
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β1 = 1 + β0d0

The α0 and β0 values are the parameters defined by the number of successes and
failures derived from the literature and are α0 and β0, respectively. The value d0 defines
the amount of historical information to be included in the final inference. The discounting
factor is otherwise defined as (1− d0) × 100 and represents the level of penalization
(discounting) of the historical information derived from other studies.

1. If d0 = 0, the data provided by the literature are not considered, indicating a 100%
discount of the historical information. According to this scenario, the prior is an
uninformative Beta(1, 1) distribution.

2. If d0 = 1, then all of the information provided by the literature is considered in setting
the prior, indicating a 0% discount of the historical data.

Analyses of the simulated trials were conducted using three different priors:

• Power prior without discounting (informative, d0 = 1). A beta informative prior was
derived considering the number of successes and failures found in the literature [42],
as defined in the method section.

• Power prior 50% discounting (low-informative, d0= 0.5). The beta prior with a 50%
discount, defined in the literature as a substantial-moderate discounting factor [43],
was defined based on the beta parameters comprising the mixture of priors specified
in the informative scenario.

• Power prior 100% discounting (uninformative, d0= 0). A mixture of Beta(1, 1) priors
was defined.

Effective Sample Size (ESS) Calculation

The ESS was computed on the mixture of beta distribution by using the Morita
approach to quantify the prior influence on the final inference using the RBesT package in
R (R Foundation for Statistical Computing, Vienna, Austria) [44]. For the mixture of beta
prior (equal weight) without power prior discounting (d0 = 1), an ESS of 55 and 98 was
achieved for treatment and control arm. However, discounting the beta parameters for
d0 = 0.5 (low-informative prior), the ESS is equal to 24 and 48.

The prior distributions are presented in Figure 1.

2.4.3. Posterior Estimation

A beta-binomial model was employed to analyze the difference in event rates between
arms [45]. The posterior distribution for the ARR outcome requires the estimation of the
posterior distribution of the scar proportion in each arm separately, and was computed
with the following Markov chain Monte Carlo (MCMC) resampling procedure [46]:

• A first resampling of the proportion of scarring Π∗treat from Πtreat|Xtreat , which is the
posterior distribution for the treatment group.

• A second resampling of Π∗control from Πcontrol|X2 .
• The posterior distribution for the parameter related to the difference in proportions

was obtained by calculating ARR = Π∗treat −Π∗control from the distributions previously
resampled [47].

The resampling procedures were performed using an MCMC estimation algorithm,
as indicated in the literature [46], using 3 chains, 6000 iterations, and 1000 adaptations.

An example of the inference results is reported in the Supplementary Material, show-
ing the priors and the posterior distributions calculated on a single database generated by
assuming an ARR equal to 0.17.

The computations were performed using OpenBUGS (Free Software Foundation,
Boston, MA, USA) [48] and R version 3.3.2 [49]; the simulation R codes are reported in the
Supplementary Material.
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Figure 1. Prior distributions: The prior distributions are defined by an equal-weighted mix-
ture (γ = 0.5) of beta priors. The components of the mixture prior are, for the treatment arm,
Πtreat (Huang) ∼ Beta(6, 12) and Πtreat (Shaikh) ∼ Beta(12, 111). The mixture of priors (γ = 0.5 ) for
the control arm is defined by Πcontrol (Huang) ∼ Beta(39, 26) and Πcontrol(Shaikh) ∼ Beta(22, 109). No
discounting on the beta priors parameters has been provided (d0 = 1) for the Informative priors.
The information has been partially discounted for the low-informative prior scenario (d0 = 0.5). The
priors parameters are full discounted for the uninformative prior scenario (d0 = 0), collapsing to a
Beta(1, 1) distribution.

2.4.4. Convergence Assessment

The Geweke method [50] was considered to assess the convergence of the MCMC
results within iterations. Geweke’s statistics test was computed for each analysis con-
ducted on the simulated data. Geweke’s Z-score plot was also visually inspected to assess
the convergence.
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2.5. Results of the Simulations

Four sets of 200 results summarizing 50 scenarios in combination with four methods
of analysis were defined as:

1. The proportion of the 5000 simulated trials for which the credibility intervals (CIs), or
confidence intervals, for a frequentist analysis do not contain an ARR equal to 0. The
proportion of intervals not containing the 0 and containing the data generator ARR
was also calculated.

2. The mean length across 5000 simulated trials of the CI.
3. The mean of the posterior median estimate across 5000 simulated trials or the mean

of the point-estimated ARR across 5000 simulated trials for the frequentist analysis.
4. The mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
t=1

∣∣∣∣ARRtrue − ˆARRt

ARRtrue

∣∣∣∣
ARRtrue is the true treatment effect considered to generate the data; ˆARRt is the
estimated treatment effect (posterior median, or point estimate, for the frequentist
analysis) achieved for each simulation t within the n = 5000 simulated trials.

3. Results

The proportion of 5000 simulated trials ensuring that the 95% CI does not contain
an ARR equal to zero is greater than 90% for all of the informative scenarios, even if
the sample size is smaller than 50, except for the 0.07 true ARR. For the 0.07 ARR, this
proportion declines as the data used to estimate the likelihood increases (Figure 2, Panel
A). This proportion is higher than 80% only for sample sizes greater than 70, and the
true ARR is greater than 0.17 for the low-informative priors (Figure 2, Panel B). The
pattern of the simulation results is similar, considering the proportion of simulations for
which the CI does not include the 0, and includes the true data generator ARR (Figure S3,
Supplementary Material).

Similar behavior is observed among the uninformative Bayesian (Figure 2, Panel C)
and frequentist (Figure 2, Panel D) estimates, for which this proportion reaches 80% for an
ARR greater than 0.22 and sample sizes greater than 120.

The 95% CI length decreases as the sample size increases for all of the Bayesian
parametrizations and the frequentist estimates (Table S1, Supplementary Material). The
informative (Figure 3, Panel A) and low-informative priors (Figure 3, Panel B) showed more
variability in the posterior length of the CIs across different true ARR values. The CI lengths
are more similar for different data generation ARR assumptions for the uninformative
(Figure 3, Panel C) and frequentist (Figure 3, Panel D) simulations. In general, especially
for smaller sample sizes, the estimates are less precise for the frequentist and Bayesian
uninformative prior scenarios than for the informative and low-informative prior estimates
(Table 1).

The posterior median ARR estimates are influenced by the prior choices, especially
for the informative prior. The estimated ARRs are similar to each other for smaller sample
sizes across the true treatment effect, while the posterior median ARR estimates converge
to the true ARR for larger sample sizes (Figure 4, Panel A). A similar pattern is observed for
the low-informative scenarios; however, for smaller sample sizes, greater variability in the
posterior median estimates is observed across the different ARRs used to generate the data
(Figure 4, Panel B). The ARR is overestimated for small sample sizes in the uninformative
prior scenarios (Figure 4, Panel C). Instead, the frequentist estimates across the simulated
trial are similar to the true treatment effect for all of the sample sizes (Figure 4, Panel D).

The MAPE estimate decreases as the sample size increases for all the prior parametriza-
tions (Table S1, Supplementary Material). A lower true ARR (i.e., 0.07) ensures a decreasing
effect that is more evident than a higher true ARR (Table S1, Supplementary Material).



Int. J. Environ. Res. Public Health 2021, 18, 2095 9 of 16

Also, the MAPE seems to be constant for a higher true ARR in informative (Figure 5,
Panel A) and low-informative prior (Figure 5, Panel B) simulations. For the uninformative
(Figure 5, Panel C) and frequentist scenarios (Figure 5, Panel D), instead, a reduction in
MAPE is also evident for higher true ARR values. The MAPE values are higher for the
frequentist scenarios than all of the Bayesian estimates, including those provided via the
uninformative prior (Table S1, Supplementary Material).
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The hypothesis of the stationarity of the chain was not rejected according to Geweke’s
statistic for all of the analyses conducted on the simulated data and for all of the prior
parametrizations. The Z-scores within iterations was also visually inspected. An exam-
ple within simulations (ARR = 0.07 and sample size = 65) is reported in the Figure S2,
Supplementary Material. The Z-score lies within the acceptance stationarity region (±2)
or all chains and all the prior parametrizations; the pattern is very similar for all the
considered scenarios.

An example of a possible inference result is shown in the Supplementary Material.
The posteriors were calculated for a generated trial data reporting 8 events over 56 in the
treatment arm (π̂treat = 0.14) and 30 events over 84 in the control arm (π̂control = 0.36). The
data generator ARR is 0.17, while the observed ARR is 0.22. Considering the different
priors, the inference results are located in mean on the same event rate; however, the
uncertainty in the posterior distribution increases, considering the uninformative prior
assumption (Figure S4, Supplementary Material).
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4. Discussion

Regulatory agencies advocate an increase in pediatric research, which is motivated by
the need for more information on treatment labeling to guide pediatricians and to offer
more suitable and safe treatments for children [14]. However, in various cases, pediatric
trials have demonstrated difficulties in enrolling participants [51]. The RESCUE trial
represents a typical example of a complex trial in pediatric research affected by poor
accrual. The difficulties encountered in the enrolment and retention of participants are
related to procedural problems related to the study protocol [51,52] and poor adherence to
the therapy.

Bayesian data analysis may overcome challenges in the conduction of trials similar
to the RESCUE study, allowing investigators to combine information provided by current
trial data with evidence provided by the literature, as recommended by regulatory agencies
to deal with small sample sizes [15].

The present findings show that Bayesian inference can detect a small treatment effect
for small sample sizes (lower than 50), even if the prior is fully uninformative compared
to a maximum likelihood approach. This result confirms the potential benefits of using a
Bayesian method on small sample sizes. However, the literature suggests paying attention
to the use of uninformative prior distributions for small clinical trials, because there is the
possibility of including in the final inference extreme treatment effects that are potentially
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unexpected from a clinical point of view. For this reason, it is suggested to use evidence
from previous trials to inform these prior distributions [53].

For this reason, a key issue in Bayesian analysis is the choice of prior. This simulation
study demonstrated that, especially for small studies, the trial results could be influenced
by the prior choices and weakly influenced by the data when using fully informative priors.
In particular, a prior distribution incorporating favorable treatment effect information on
small sample sizes is likely to conditionate the inference in favor of the treatment, even if, in
truth, the effect is null or minimal. All of this implies that the prior in these contexts should
be defined by using validated empirical evidence [27]. Conversely, this study suggests
that the full informative prior elicited by considering large effect size tends to direct the
inference towards the existence of a treatment effect for all the sample size scenarios. For
this reason, we recommend, especially when the treatment effect hypothesized for the
study design is large and the sample size is small, the use of a low-informative prior for
achieving more data-driven results.

The situation is different if a discounting factor is placed on the prior parameters.
Looking at the estimated values of ESS, the historical information retained in the prior
in the low-informative scenario is halved, compared to the informative parameterization.
This implies that the inference is more data-oriented, assuming a discounting of 0.5. The
probability of confirming the trial results is demonstrated to be more data-dependent and,
for sample sizes less than 50, is higher than 80% only for ARRs higher than 0.17.

As the power prior parameter increases, the prior becomes more informative, and the
estimated precision (length of CI) increases. Looking at the differences between observed
and estimated ARR, the inferential results, comparing the various parameterizations of the
prior discounting factor, tend to converge toward the same conclusions in the direction of
the generating data effect size starting from a sample size of 150 subjects. All this implies
that, for studies conducted on a considerable number of patients, it is possible to tune
the prior toward a more informative solution (d0 > 0.5), obtaining results representing a
suitable compromise between the available historical information and what is suggested
by the data.

In the literature, some reasons are addressed for a suitable discounting of historical
prior information. First, the historical data and the current trial evidence may be hetero-
geneous concerning the study design and conduct [28]. Moreover, as also demonstrated
by this simulation analysis, especially for small trials, an informative historical prior may
overwhelm the current trial evidence [27].

Another issue outlined in this paper is the potentially misleading information on the
treatment effect provided by the posterior median effect for a sample size smaller than
50 patients. This source of bias is evident not only for informative inference but also for
low-informative and uninformative analyses. Conversely, the frequentist point estimate is
unbiased in terms of the mean because of the proportion estimator’s asymptotical unbi-
asedness over repeated resamples. However, in the frequentist approach, the variability of
results across sample replications is very high for small samples, even though the effect,
on average, is unbiased [54]. Bayesian estimates, on the other hand, return scenarios
of inferential results that are less variable, especially if a minimum amount of historical
information is incorporated into the prior.

The frequentist approach considers all the parameters to be fixed; the data are a
realization of a random variable. Instead, Bayesian methods assume that all the parameters
are random and the data are fixed [54]. This point of view leads to incorporating the
available knowledge on the prior parameters into a probability distribution. For this
reason, it is important to ensure that the information on which informative priors are based
is accurate; otherwise, the resulting estimates and posterior standard deviations could be
biased if misleading informative priors are utilized [55].

In this regard, the Bayesian approach leads to thinking about inference in terms of a
probability distribution on the treatment effect, rather than a point estimate or confidence
interval. Therefore, a Bayesian approach is oriented toward a progressive uncertainty
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reduction (on a posterior probability distribution) in treatment effect estimation. Historical
information contributes sequentially to the reduction of this uncertainty [56]. The uncer-
tainty can be measured in terms of the CI width. The simulation results demonstrate a
narrower CI for small sample sizes (similarly across different true ARRs) for Bayesian
analyses compared to the frequentist approach. This effect has also been reported in the
literature [57].

The present results show that Bayesian methods can outperform frequentist methods
with small samples by providing increased efficiency and an increased ability to determine
non-null effects. However, the appropriate prior distribution choice, especially on small
datasets, plays a fundamental role. Researchers might need to consult experts, meta-
analyses, or review studies in the area of interest to obtain informative, accurate priors that
can meaningfully contribute to posterior distributions. Furthermore, a sensitivity analysis
on priors (i.e., defining the robustness of conclusions that may be affected by decisions
made on the priors) is highly recommended for pediatric trials [14], which is in line with
the literature [24] and FDA recommendations [25].

Study Limitations

This study was conducted considering only the conjugate prior beta setting. It may be
interesting to explore the impact of inference in the posterior case obtained in a nonclosed
form. For example, instead of directly placing a parameter derived on the beta prior, it
may be advisable to consider expert elicitation about treatment effects to define the specific
prior distribution. Moreover, future research development is needed to investigate the
effect of an eventual prior-data conflict on the trial results according to different study size.

5. Conclusions

Bayesian inference is a flexible tool compared to frequentist inference, especially
for trials conducted in a poor accrual setting. A full informative Bayesian inference,
conducted on small samples, can generate data-insensitive results. On the other hand, the
use of an uninformative prior distribution may include, in the final inference, clinically
unproven extreme treatment effect hypotheses. A power prior approach on sample sizes
smaller than 50 patients seems to be a good compromise between these two methods.
However, the choice of parameters and discounting factors should be negotiated with
expert pediatricians and should be guided by an appropriate consultation of the scientific
literature. In agreement with the FDA recommendations, a sensitivity analysis of priors is
highly recommended.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-460
1/18/4/2095/s1, Figure S1: Simulation Plan, Figure S2: Geweke’s Z-statistics for Informative, Figure
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Table S1: Simulation results according to the prior choices, and Simulation Codes.
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