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Abstract: Coronavirus disease 2019 (COVID-19) occurred in Wuhan and rapidly spread around
the world. Assessing the impact of COVID-19 is the first and foremost concern. The inflection
point (IP) and the corresponding cumulative number of infected cases (CNICs) are the two view-
points that should be jointly considered to differentiate the impact of struggling to fight against
COVID-19 (SACOVID). The CNIC data were downloaded from the GitHub website on 23 Novem-
ber 2020. The item response theory model (IRT) was proposed to draw the ogive curve for every
province/metropolitan city/area in China. The ipcase-index was determined by multiplying the IP
days with the corresponding CNICs. The IRT model was parameterized, and the IP days were deter-
mined using the absolute advantage coefficient (AAC). The difference in SACOVID was compared
using a forest plot. In the observation study, the top three regions hit severely by COVID-19 were
Hong Kong, Shanghai, and Hubei, with IPcase indices of 1744, 723, and 698, respectively, and the top
three areas with the most aberrant patterns were Yunnan, Sichuan, and Tianjin, with IP days of 5, 51,
and 119, respectively. The difference in IP days was determined (χ2 = 5065666, df = 32, p < 0.001)
among areas in China. The IRT model with the AAC is recommended to determine the IP days
during the COVID-19 pandemic.

Keywords: item response theory; ogive curve; absolute advantage coefficient; infection point; COVID-
19; forest plot; Kano diagram; choropleth map

1. Introduction

Coronavirus disease 2019 (COVID-19) occurred in Wuhan in December 2019 [1] and
rapidly spread around the world. Which countries/regions were severely affected by
COVID-19 is one of the most frequently asked questions. Using the number of reported
cases is common, but not fair [2,3]. Several pandemic-prevention measures such as lock-
downs, quarantines, mask-wearing, social distancing, contact reduction, and triggering
bold policies on containment and mitigation have been implemented in several countries
to flatten the curve of COVID-19 [4] cases and to decrease the strain on the public and
health care systems in their areas as much as possible. As such, to what extent the effective
control of COVID-19 mitigates the strain during the outbreak is worthy of evaluation.

An index to measure the attainment of the effective control of COVID-19 is thus
required for development; similar to that is the use of bibliometric indicators (e.g., h- and
x-index [5,6]) that consider both publications and citations for the evaluation of individual
research achievements [7,8]. This means that the impact of COVID-19 can be measured
from the two perspectives of inflection point (IP) days and the corresponding cumulative
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numbers of infected cases (CNICs), excluding those excessive CNICs and days of struggling
to fight against COVID-19 (SACOVID).

The SACOVID variable can be measured by the core area under the CNICs until
the IP days. The IP discussed in previous studies [9–13] verified the effective control of
COVID-19. However, the applications and determination of the IP days on SACOVID
were not described in detail (such as providing an MP4 video and the original data to
illustrate the approach in a study). South Korea, for example, is one of the few countries in
the world to have strongly maintained a flat infection curve for more than 50 days, but no
such approach was proposed to determine the IP when extended to a further 50 days in
the previous study [13].

IP refers to a point on a smooth plane curve where curvature changes sign from an
increasing concave (concave downward) to a decreasing convex (concave upward) shape,
or vice versa [14]. The CNIC in a country/region can be modeled on an ogive curve (OC)
to illustrate the pattern and forecast a future epidemic. The IP is defined at the moment
of the outbreak to decrease after a peak [15]. However, there was still no agreement in
determining the IP days, until now.

Several researchers [16–23] have proposed using mathematical models to predict
the number of COVID-19 cases, and the others investigated the IP [9–13]. None of the
researchers properly used the IP days to compare the SACOVID capabilities in the effective
control of COVID-19 because of the difficulties in evaluating IP days [10]. The mean
number of cases on different days yields significantly different IP days, even though the
daily number of confirmed cases (e.g., in the previous 2 or 7 days) can be applied to
estimate the provisional IP days [12,24]. Developing a mathematical model to determine
the IP days during the COVID-19 pandemic is important.

Building a predictive model, determining the IP days, and visualizing the modeling
process for each country/region are the challenges that we encountered. Although many
mathematical models have been prosed [24], all of these emphasized a model accurate to
the epidemic outbreak instead of diagnosis tools (e.g., examining the most unexpected
pattern to the model). The item response theory (IRT) [25,26] is another mathematical
probability model with an OC to explain the relationship between items (an epidemic in
this study) and the person (a country in this study) using two parameters (e.g., slope and
location on an OC), different from those modeling approaches in previous studies [16–23]
using numerous parameters in their model without the property of diagnosis to select the
most best-fit and misfit regions to the model.

Each country (or region) responds to the situation during the COVID-19 pandemic,
which is similar to that in which one person answers one question (or item) in a test (or
questionnaire) based on a statistical probability theory. The item characteristic curve (ICC
or the OC) is the trajectory route of CNIC (on the y-axis) along with ability measures (on
the x-axis as the inflected days extended). The infection days can be converted into a unit
(named probit or logit [27,28]) between −5 and 5 on a continuum scale (on the x-axis from
the left to the right side). The IP can then be determined at the moment of the outbreak
to decrease around the IP [15]. The concept of importance is to create an OC for each
country/area using an objective approach (e.g., modeling parameters) to evaluate the IP.

This study aimed (1) to apply the IRT model to determine the IP days and the cor-
responding CNICs, (2) to develop an index that can be used to evaluate the impact of
COVID-19, and (3) to compare the differences in SACOVID across countries/regions in the
world and provinces/metropolitan cities/areas in China.

2. Materials and Methods
2.1. Data Source

The COVID-19 CNICs were downloaded from the GitHub website [28] for
33 provinces/metropolitan cities/areas in China on we November 2020 (see Appendix A).
All downloaded data are publicly released on the website [29]. Ethical approval was not
necessary for this study because all the data were obtained from the GitHub website.
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2.2. Overall Concepton IRT and IP on an Ogive Curve
2.2.1. The IRT Probability Model

Figure 1 shows the IRT model where the OC was drawn together with the stan-
dardized infected days (denoted by θ) on the x-axis for a region using Equation (1). The
constant factor (1.7) is an adjustment from a probit (Z-score) to a logit scale [27,28]. The
corresponding probability (P(θ)) is shown at the left on the y-axis.
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Figure 1. Determining the Inflection Point (IP) on an ogive curve and the ipcase-index denoted by
the four-point OcPd rectangle using the Item Response Theory model.

Parameters a and b represent the discrimination (i.e., the slope), the item (the epidemic
situation for a region), and difficulty (i.e., a location toward the left means the outbreak
occurred at an earlier stage and to the right indicates the outbreak extended to a later stage).
These two parameters were set between 0 and 4 (i.e., the slope) and −5 and 5, respectively,
when modeling the epidemic situation for each area. Readers are advised to manipulate
these two parameters on their own at the link in [30].

P(θ) =
1

1 + e−1.7∗a(θ−b)
=

e1.7∗a(θ−b)

1 + e17∗a.(θ−b)
, (1)
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2.2.2. CNICs Transformed to a Percentage

The CNICs were transformed into an observed percentage(OPi) from 0 to 1 [31–33]
shown at the right on the y-axis (see Equation (2) and Figure 1), where Oi denotes the ob-
served CNIC and the maximum and minimum are denoted by Max and Min, respectively.

OPi =
(Oi − Min)
(Max − Min)

, (2)

The parameter θ in Equation (1) was transformed from the infected days to the control
ability of COVID-19 on the x-axis from −5 to 5 using Equation (3).

θ = −5 + (ni−1)×
(5 − (−5))

N
, (3)

where N is the observed days and ni represents the ith day. The probability (denoted by
the expected percentage (Ep)) in Equation (1) can be obtained if parameters a and b are
known. The a and b model parameters will be defined in Section 2.3.

2.2.3. The Feature of an Ogive Curve

The IP is located between Stages II (outbreak from Points O to A) and III (post-peak
from Points B to Q) [15]. Figure 1 shows the relationship between IP days and the CNICs
present on the x-axis and y-axis on the right, respectively.

2.2.4. Transforming EPi Back to the Original CNIC

On the basis of Equation (2), the expected CNIC can be obtained using Equation (4):

Expected CNICi = EPi × (Max − Min) + Min, (4)

where EPi is denoted by P (θ) in Equation (1).

2.3. Building the Model and Estimating Parameters

Several formulas and functions (on the basis of Equations (1)–(4)) were put in Microsoft
Excel and demonstrated in MP4 videos (see Appendices A and B).

2.3.1. Properties of the Ogive Curve

The earlier IP drives the OC toward the left. The IP-day variable thus affects the
SACOVID (Figure 1) [30].

2.3.2. Parameter Estimation

The Microsoft Solver add-in tool was used to estimate the parameters (Appendix C)
through the following steps:

A. Objective: To minimize the total residuals using the Microsoft function below:

SUMXMY2 ([OPi − Epi] × [OPi − Epi]) =
n

∑
i=1

(OPi– Epi)2. (5)

B. Parameters to estimation: Parameters a and b in Equation (1) are calibrated in the
model.

C. Constrained terms: The parameters (i.e., a and b) are set in a range between (0, 4) and
(−5, 5), respectively.

D. Data arrangement: The observed CNICs on the y-axis were transformed into the
percentage in Equation (3). The residuals can be computed in Step A. For example,
the θ (0 ∼= IP) on the scale (x-axis) can be obtained using Equation (3) when the day
is 50 and the total infected days is 100. The OP50 = 0.5 if the CNICi is 50 cases and
when Max is 100, Min is 0, and the footnote i in Equation (2) is 50 on the x-axis. The
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Epi in Equation (1) is determined by the known parameters a (=1) and b (=0) after
performing Step E. The model residual is equal to 0 at the θ (=0) on the x-axis in this
example.

E. Perform the Solver add-in: The Microsoft Solver add-in [34–36] was used to estimate
the model parameters (Appendix B). The OC can be plotted to predict the potential
CNIC and to determine the IP days (see next section).

2.4. Searching IP

The IP search method is based on an IRT model fitted to the data. The IP is deter-
mined by the computation of the absolute advantage coefficient (AAC) or the dimension
coefficient [37–39] in Equation (6).

AAC =

γ3
γ2
γ2
γ1

, (6)

where AAC is determined by the three consecutive EPi (denoted by γ1, γ2, and γ3 in
Equation (6); Figure 1). The IP is then positioned at the minimum across all possible AACs
on an OC.

2.5. Tasks to Validate and Present Data
2.5.1. Task 1: Comparison of Two Scenarios in IRT Models

Not all cases involve the four phases of the OC during the COVID-19 pandemic
(Figure 1). The best-fit model (with minimum total residual), for example, might be
parameterized at Stage II (i.e., Epi = 0.5 = compressed coefficient [CR] at θ = 5) or earlier at
Stage I. The OPi and the CNICi are, therefore, redefined by Equations (7) and (8).

OPi =
(Oi − Min)
(Max − Min)

× CRi, (7)

Expected CNICi = Epi ÷ CRi × (Max − Min) + Min. (8)

A paired t-test was performed to examine the differences in residuals between two
scenarios (e.g., IRT and IRT–CR models).

2.5.2. Task 2: The IPcase Index Used to Measure the SACOVID

We used the IPcase index (the square root of IP days multiplied by the corresponding
CNIC) referring to the area (e.g., OcPd in Figure 1), a different approach to using the CNIC
to measure the SACOVID. Only two values of IP day and CNIC were considered. The
excessive days and CNICs were not included. This is similar to the bibliometric indicators
(e.g., h- and x-index [5,6]) used to measure individual research achievements without
considering the excessive sections of publications and citations. A choropleth map [40] was
used to compare the ipcase-index for each country/region; a darker color represents more
SACOVID on the basis of the IPcase index.

2.5.3. Task 3: Comparisons of IP Days and CNICs in China

Choropleth maps were used to compare the IP days and CNICs of the provinces,
metropolitan cities, and areas in China [40]. The Kano diagram [8,41] was used to describe
the characteristics of the region toward CNIC-oriented, neutral, or IP-oriented.

The individual standard error (SE) determined by the root of the model residual was
applied to estimate 95% confidence intervals using a forest plot [42,43]. The overall effect
was determined by considering the weights of variance in individual areas. The Q-statistics
and Z-score were used to examine the difference in IP days among areas in China.

The top three most-fit and misfit provinces, metropolitan cities, and areas were partic-
ularly selected to present their IP days on the OC plots.
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2.6. Statistical Tools and Data Analysis

A visual representation of the forest plot displaying the comparison of the differ-
ence in IP days among provinces, metropolitan cities, and areas in China was plotted
online on Google Maps. The IRT modeling process was executed in Microsoft Excel
(Appendices B and C). The IRT mode for diagnosis in COVID-19 for regions was proposed.

3. Results
3.1. Comparison of Two Scenarios in IRT Models

The residuals are significantly different between the two study scenarios (t = 3.62,
df = 32, p = 0.0005) with means (0.83 and 1.16) and variances (0.58 and 0.95) for IRT and
IRT–CR models, repsectively, indicating that the CR plays a critical role in making the
IRT–CR model possess fewer residuals than the two-parameter IRT model. The following
analyses were based on the IRT–CR model.

3.2. Density of IPcase Index Around the World

Figure 2 shows the density of IPcase indices across the globe. We see that the top three
are from India, Russia, and Brazil, with indices of 35,243, 32,415, and 31,897, respectively,
connected by three blue lines. China was effected relatively mildly by COVID-19 compared
with other countries/regions in the world on the basis of the colors shown in Figure 2.
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Figure 2. The density of the IPcase index used to measure the SACOVID on countries/regions in the
world.

3.3. The Most Infected Case Numbers and Longer IP Days in China

We infer that the majority of CNICs on the basis of the two perspectives of IP days
and CNICs separated individually were in Hubei (including Wuhan), followed by Hong
Kong and Guangdong (Figure 3). Shanghai has longer IP days, followed by Liaoning and
Hong Kong (Figure 4). The NCIC in Figure 3 is not the corresponding NCIC on the basis of
the IP days.
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3.4. Association between IP and the Corresponding CNIC

All provinces/metropolitan cities/areas are distributed in a Kano diagram in Figure 5.
We can see the IPs and their corresponding CNICs on the x- and y-axes. Hong Kong,
Shanghai, and Hubei are the top three entities with the highest IPcase index sized by
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bubble at 1744, 723, and 698, respectively. Hubei (including Wuhan) has a lower IP day
(18) but a large CNIC (27,100). The Kano diagram [8,41] could be complementary to the
choropleth map [31], which cannot differentiate whether the entity attribute leans toward
the IP in green, CNIC in red, or the neutral in yellow bubbles [7,8].
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3.5. Using the Forest Plot to Compare IPs

A forest plot was used to compare the IPs sorted by the model residuals (Figure 6). A
distinct difference in IP days was determined (χ2 = 5,065,666, df = 32, p < 0.001; Z ≤ 100,
p < 0.001) among areas in China.

We observed that the top three areas having aberrant CNIC patterns were Yunnan,
Sichuan, and Tianjin, with IP days at 5, 51, and 119, respectively (Figure 7). The provinces of
Anhui, Hunan, and Henan had the most model-data-fit regions (having a smaller number
of residuals) with IP days of 12, 11, and 12, respectively (Figure 8). The IP-day variable for
Hubei (including Wuhan) was 18.
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3.6. Online Dashboards Shown on Google Maps

All those line plots would appear once the area in the choropleth maps (e.g., Figures 2–4)
are clicked using the links in [36–38]. Similarly, those links [44–48] regarding the plots in
Figures 5 and 6 are shown in Google Maps.

4. Discussion
4.1. Principal Findings

A difference was found in residuals between IRT–CR and IRT models, indicating
that the IRT–CR model better fit the epidemic data compared to the IRT model. More
parameters make the model a better fit for the data [49,50].

We used the IPcase index to analyze the impact of COVID-19 (Figure 5). The results
showed that Hong Kong, Shanghai, and Hubei are the top three cities most affected by
COVID-19, with IPcase indices of 1744, 723, and 698; respectively, quite different from the
results in IP or CNIC (Figures 3 and 4) alone in analyses. Using the single CNIC [2,3] to
compare the negative impact of COVID-19 is problematic and unreasonable.

The provinces of Yunnan, Sichuan, and Tianjin are the top three entities with the most
aberrant patterns, with IP days of 5, 51, and 119, respectively, suggesting that the irregular
response patterns are worthy of further investigation using person-fit statistics in reporting
and analyzing data [51–53]. The most model-data-fit areas were Anhui, Hunan, and Henan,
with IP days of 12, 11, and 12, respectively, including Hubei (and Wuhan) with 18 IP
days, similar to South Korea, which has successfully maintained a flat infection curve [13].
However, the IP-determination scheme is scientifically and appropriately suitable as a
test of effective control of COVID-19, compared to the eyeball method used in a previous
study [13].

Google Maps show and demonstrate an online dashboard that compares the IP days
and IPcase index across provinces, metropolitan cities, and areas in China [44–48]. This is a
modern and innovative data representation and is better than the traditional static-image
display [54].

4.2. Contribution of This Study

No studies have used both IP days and the corresponding CNIC (or IPcase index) to
analyze the effective control of COVID-19, aside from the CNIC and the fatality rate that
were used to evaluate the SACOVID [2]. We used the principle of bibliometric indicators
(e.g., h- and x-index [5,6]), considering both IP and CNIC dimensions for the evaluation of
SACOVID. Figure 2 shows the IPcase index on the choropleth map, and the OC appears
when the region of interest is clicked. The IPcase index can be applied to the interactive
web-based dashboard [55] (developed by Johns Hopkins University to track COVID-19 in
real-time) and other epidemic fields in the future.

Several mathematical models [16–23] have been proposed to predict the CNIC, and
some IP determinations have been addressed [9–13], but none used the IRT to develop a
predictive model during the COVID-19 pandemic using the IP search and compare the
IPs (or propose the IPcase index) in practice. The epidemic CNIC in most regions in this
study can be fitted rather well using the IRT–CR model. The IP search method [37–39] is
unique and feasible compared with methods using the average of the previous several
daily numbers of confirmed cases (e.g., the mean in recent 2 or 7 days) [12,25].

The choropleth map [39] can be complemented by a Kano diagram [8,41] with more
IP or CNIC attribute details. The online forest plot [42,43] is another feature that compares
the SACOVID across regions. Google Maps show an online dashboard that compares the
impact hit of COVID-19 across the entities [36–38]. Readers are invited to examine them in
detail on their own dashboards.
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4.3. What It Implies and What Should Be Changed

Over 96,500 articles published in the PubMed database were searched by using the
keyword “COVID-19” in the title [56]. No such comparisons were made using the IPcase
index (or IP days) to present the impact hit by COVID-19, until now.

The uses of novel graph-based data models [57] and recommendation techniques [58]
have shown promise in recent years. The online-dashboard-type representation used in
epidemiology is proposed for future studies, and not limited to the COVID-19 pandemic
as we performed in this study.

The capacity for effective control of COVID-19 should be calculated as the one [13]
reported by South Korea, which has successfully maintained a flat infection curve for more
than 50 days. However, if South Korea is selected on the choropleth map [44] and the newly
computed IP is applied up to 23 November 2020, the IP days is 345, which is considerably
longer than the IP in Hubei (China) at 18. The reason is the second wave of COVID-19
occurring in South Korea at the end of 2020.

The animated dashboards designed for this study also surpass the static images in
relevant articles [54]. One picture is worth 1000 words [59]. We hope that future related
research will be able to make use of Kano diagram visualizations, choropleth maps, and
forest plots displayed on dashboards as we have in this study.

4.4. Strengths of This Study

First, the comparison of effective control of COVID-19 in regions can be calculated
using the IPcase index in our proposed IP scheme using AAC to search for IP on a given
OC. Aberrant misfit model areas (e.g., those in Figure 7) should be further explored because
their model residuals deviated significantly from our expectations.

Second, no MP4 videos on how to model CNIC and estimate the parameters have
been given to readers for replicating the study in the future, particularly MS Excel readers.

Third, using the Microsoft Solver add-in is a common approach, but only a few were
shown in previous studies [34–36] to model the epidemic situation for each region. Data
and model building videos in Microsoft Excel are provided in Appendices A and C. The
approach of searching IP days for regions affected by COVID-19 is easy to understand.

Fourth, the IRT model applied to diagnose the most misfit regions in COVID-19 for
policymakers is the merit of this study.

4.5. Limitations and Future Studies

Our study has some limitations. First, data were downloaded from Google Sheets
on a daily basis. Many regions with mild and asymptomatic cases were not detected and
documented [60–64]. For instance, SARS-CoV-2 may exist in a population without clinical
cases for a long period [64]. The model building and IP search would be biased.

Second, the minimal AAC [37–39] is defined as the location of IP on an OC that will
affect the corresponding CNIC to compute the IPcase index. Although the AAC is objective
and viable, it is necessary to compare the difference in effect using the mean of the previous
several daily case numbers (e.g., within 2 or 7 days) [12,24] in the future.

Third, the case number is changeable and varied day by day. The model parameters
during the COVID-19 pandemic in countries/regions should be optimized on a daily or
weekly basis to make the ipcase-index as accurate as possible.

Fourth, the Microsoft Solver add-in is not a unique approach to estimate model
parameters. Many other methods can be applied to estimation, such as warm’s weighted
mean likelihood estimate [65], anchored maximum likelihood estimation [66], and weighted
likelihood estimation [67]. They are worthy of comparison in the future.

Fifth, visual dashboards are shown on Google Maps. However, these achievements
are not free of charge. For example, the Google Maps application programming interface
(API) requires a paid project key for the cloud platform. Thus, the limitations of the
dashboard are that it is not publicly accessible and it is difficult to mimic by other authors
or programmers for use in a short period of time.
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Last, although IRT is common and popular in the educational and psychometric field,
many readers in public health are unfamiliar with IRT. The IRT–CR model consists of two
parameters and CR adjustments in the model build that need some effort to understand
and mimic through data and MP4 videos provided in Appendices.

5. Conclusions

We used the IRT model to assess the IPcase index for each region on the negative
impact of COVID-19, and to compare the difference in SACOVID between all regions of the
world and China. Three visual representations of the choropleth map, the Kano diagram,
and the forest plot were demonstrated to display the results for a better understanding of
the comparison of disease outbreak situations, including the diagnosis of best-fit and misfit
regions during the COVID-19 epidemic. The IRT model incorporated with the AAC is
recommended for other epidemic outbreaks for determining the IP and the corresponding
CNIC, not just limited to the COVID-19 as illustrated in this study.
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Appendix A

Data source and model building at https://github.com/CSSEGISandData/2019-nCoV
(accessed on 10 January 2021) .

Appendix B

MP4 video of how to build the IRT model at https://youtu.be/2HlzNO1v_OQ
(accessed on 10 January 2021).

Appendix C

MP4 video of how to model COVID-19 at https://youtu.be/zgrAW8WfgTE (accessed
on 10 January 2021).
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