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Abstract: Bisphenol A (BPA) is considered an endocrine disruptor and has been associated with dele-
terious effects on spermatogenesis and male fertility. Bisphenol F (BPF) and S (BPS) are structurally
similar to BPA, but knowledge of their effects on male fertility remains limited. In this cross–sectional
study, we investigated the associations between exposure to BPA, BPF, and BPS and semen quality in
556 men 18–20 years of age from the Fetal Programming of Semen Quality (FEPOS) cohort. A urine
sample was collected from each participant for determination of BPA, BPF, and BPS concentrations
while a semen sample was collected to determine ejaculate volume, sperm concentration, total sperm
count, sperm motility, and sperm morphology. Associations between urinary bisphenol levels (con-
tinuous and quartile–divided) and semen characteristics were estimated using a negative binomial
regression model adjusting for urine creatinine concentration, alcohol intake, smoking status, body
mass index (BMI), fever, sexual abstinence time, maternal pre–pregnancy BMI, and first trimester
smoking, and highest parental education during first trimester. We found no associations between
urinary bisphenol of semen quality in a sample of young men from the general Danish population.

Keywords: bisphenol; endocrine disruptor; epidemiology; male fertility; semen quality

1. Introduction

Infertility is a reproductive disorder defined as the inability to achieve pregnancy
within twelve months of unprotected and frequent intercourse. The estimated prevalence
of infertility among couples is 15%, with up to 50% attributed to male factors [1,2]. Yet,
the specific etiological factors of male infertility remain elusive in many cases [3]. It has
been proposed that exposure to environmental toxicants, such as endocrine disrupting
chemicals, is an important contributor to male infertility [4].

Bisphenol A (BPA) is a ubiquitous endocrine disruptor mainly used in epoxy resins
and polycarbonate plastics [5,6]. BPA has become a significant health concern since humans
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are exposed through ingestion of contaminated food and water, dermal contact, and by in-
halation of polluted air [7]. In experimental in vitro and in vivo studies, BPA has exhibited
both estrogenic and antiandrogenic properties with deleterious effects on spermatogenesis,
thereby affecting semen quality [5,8–13]. Among male partners of couples seeking fertility
treatment, several studies found that urinary BPA exposure is inversely associated with
semen quality, including sperm concentration, total sperm count, and progressive sperm
percentage of morphologically normal sperm [14–18]. The influence of BPA exposure on
semen quality in the general population has only been investigated in few smaller studies
with equivocal findings [19–25].

Although the estrogenic potency of BPA is still being discussed [26], the endocrine–
disrupting properties of BPA exposure has entailed regulation of BPA production, and
since 2010, BPA has been banned in several industrialised countries [27]. This led to the
development of substances for substitution of BPA, e.g., the structurally similar bisphenol
F (BPF) and bisphenol S (BPS). In experimental studies, BPF and BPS have been reported
to display similar endocrine-disrupting properties as BPA [28–30], but only a single study
has investigated the influence of BPS and BPF exposure, in addition to BPA, on semen
characteristics in humans [31]. The study observed an inverse association between urinary
BPA and BPS concentrations and ejaculate volume, sperm concentration, total sperm count
and motility, but no firm conclusions could be drawn in regards to BPF [31].

We aimed to investigate the association between urinary BPA, BPF, and BPS concen-
trations and semen characteristics among young Danish men from the general population
and hypothesised that higher urinary BPA, BPF and BPS concentrations are associated with
lower semen quality characteristics.

2. Materials and Methods
2.1. Study Population and Participants

This cross-sectional study is based on the Fetal Programming of Semen Quality (FE-
POS) cohort [32], a sub-study within The Danish National Birth Cohort (DNBC) [33].
Participants were young adult sons born to women enrolled in the DNBC between 1996
and 1999. An information letter was sent to the sons with residency near Copenhagen
or Aarhus and with a minimum age of 18 years and 9 months. They were encouraged to
participate in the FEPOS cohort if they had descended testicles, and no previous history
of sterilisation or chemotherapy. A total of 21,623 men were eligible for participation,
and between 2017 and December 2019, 5697 men were consecutively invited to complete
an online lifestyle questionnaire, undergo a clinical examination, and provide a semen
and a urine sample. Urine samples from a random subset of 556 men were analysed for
bisphenols and were included for analysis. A full flowchart of the sampling strategy can be
found in Supplementary Material (Figure S1: Flowchart of FEPOS Study Population). Clin-
ical examinations were performed at the Department of Occupational and Environmental
Medicine at Bispebjerg and Frederiksberg Hospital in Copenhagen, Denmark and at the
Department of Occupational Medicine at Aarhus University Hospital in Aarhus, Denmark.

2.2. Urinary Bisphenol A, F and S

Participants provided a single urine sample in a bisphenol-free disposable plastic
cup at one of the two hospital clinics. The urine samples were refrigerated at 3–8 ◦C for a
maximum of 12 h and subsequently pipetted into 2 mL test tubes and stored at −80 ◦C.
Urine samples were analysed for BPA, BPF, and BPS by liquid chromatography tandem
mass spectrometry (LC-MS/MS; QTRAP 5500, AB Sciex Foster City, CA, USA) [34] at the
laboratory at Occupational and Environmental Medicine, Lund University, Sweden. The
laboratory in Lund is a reference laboratory for BPA analysis in urine and is part of the
Erlangen Round Robin inter-laboratory control program. The laboratory was qualified as
an Human Biomonitoring for Europe (HBM4EU) laboratory for the analysis of BPA, BPF,
and BPS. Briefly, the urine samples were treated with ß–glucuronidase and incubated at
37 ◦C for 30 min prior to analysis. Labelled internal standards for each compound were
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used. All samples were analysed in a random order. The limits of detection (LOD) were
0.2 ng/mL for BPA, and 0.03 ng/mL for BPF and BPS. The coefficient of variance of an
included quality control sample were at 8 ng/mL 6% for BPA, at 6 ng/mL 7% for BPF, and
at 6 ng/mL 9% for BPS. Creatinine concentrations were determined in the urine samples
with an enzymatic method at the Department of Clinical Chemistry, Skåne University
Hospital, Lund, Sweden, in order to account for urine dilution.

2.3. Semen Characteristics

Participants provided a single semen sample for analysis with a recommended absti-
nence period of 2–4 days. The samples were collected by masturbation with ejaculation
into a plastic container at home or at the clinic. If the sample was collected at home, the
participants were requested to keep the semen container at 37 ◦C by transporting it close to
the body. Upon receipt, samples were placed immediately in a heated incubation shaker
(37 ◦C) for approximately 30 min and were processed within a maximum of 1–2 h from col-
lection. Ejaculate volume was assessed by weight (assuming a density of 1 g per millilitre)
in a pre-weighed container. Sperm motility was assessed by placing 6 µg of well-mixed
semen under a cover slip on a heated (37 ◦C) microscope slide. In two samples, a minimum
of 200 sperm cells were assessed for motility. A mean value was subsequently calculated for
each motility group: progressive (PR): spermatozoa moving actively, either linearly or in a
large circle, regardless of speed, non–progressive (NP): all other patterns of motility with an
absence of progression, e.g., swimming in small circles, the flagellar force hardly displacing
the head, or when only a flagellar beat can be observed, immotile (IM): no movement, and
total motile (PR+NP) sperm cells [35]. Sperm concentration was determined by manually
counting a minimum of 200 sperm cells in two aliquots of a diluted semen sample using an
Improved Neubauer Hemocytometer (Paul Marienfield GmbH &Co, Lauda-Königshofen,
Germany). Total sperm count was calculated by multiplying the number of spermatozoa
(sperm concentration) with ejaculate volume in millilitre. Morphology was determined at
the laboratory in Lund, Sweden, by estimating the percentage of normal sperm cells.

Both collection and examination of semen samples followed the World Health Or-
ganization (WHO) 2010 standards and requirements [35]. Semen samples were analysed
by two trained biomedical laboratory technologists, blinded to exposure status of the
participants. The technologists participated in an external quality control programme
to ensure compliance with WHO guidelines and ESHIRE External Quality Assessment
Scheme. All comparisons were in line with previous studies and further details can be
found in Keglberg et al. (2020) [32].

2.4. Covariates and Precision Variables

Potential confounding factors were selected a priori based on their anticipated impact
on the association between BPA, BPF, and BPS concentration and semen characteristics.
Directed Acyclic Graphs (DAGs) were used to illustrate the hypothesised causal structure
under study. In addition, precision variables were included in all models to improve
precision of the analysis (Figure S2: Directed Acyclic Graph Used for Identification of
Confounding Factors and Precision Variables).

Information on smoking status (non–smoker; smoker), alcohol intake (less than once
a month; 1–3 times a month; 1–2 times a week; ≥3 times a week), and body mass index
(BMI) (<18.5; 18.5–24.9; ≥25 kg/m2) was obtained through the self-completed FEPOS ques-
tionnaires prior to clinical examination. Information on maternal first trimester smoking
status (smoker; non–smoker) and pre-pregnancy BMI (<18.5; 18.5–24.9; ≥25 kg/m2) was
obtained through a telephone interview completed in the first trimester along with highest
parental educational status (high grade professional; low grade professional; skilled or
unskilled worker; student or economically inactive).

Precision variables included abstinence time (<2 days; 2–4 days; >4 days), spillage
(yes; no), and information on incidences of fever within three months prior to sampling
(yes; no) was provided by the participants in a form accompanying the semen sample
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container. Urine creatinine (mmol/L) was measured and included to control for urine
dilution of bisphenol concentrations.

2.5. Statistical Analysis

Due to local data regulations, it is not allowed to report values based on less than
five observations [36]. Thus, descriptive characteristics for the distribution of urinary
bisphenol A, F, and S concentrations and semen characteristics in our study population,
are presented using pseudo percentiles, which is the average of the actual percentile and
the corresponding two upper and two lower values.

We compared the residuals from standard linear regressions with and without log-
transformed semen characteristics to the residuals from a negative binomial regression.
The negative binomial regression models were checked by comparing the observed dis-
tributions against the model-based distributions from the fitted model using quantile-
quantile-plots (QQ-plots). Then, standardised deviance residuals were plotted against
model-based predictions. The negative binomial regression model provided the best fit
and was used to estimate crude and adjusted ratios (equivalent to percentage change) with
95% confidence intervals (95% CI) between each semen characteristic, and continuous and
quartile divided (Q1–Q4) creatinine-adjusted urinary BPA, BPF, and BPS concentrations.
The adjusted regression analyses included the abovementioned covariates and precision
variables. In addition, the analyses of motility were also adjusted for the number of min-
utes from sample collection to analysis. Samples for which spillage was reported (n = 95)
were excluded from the analyses of ejaculate volume and total sperm count according to
standard practice [35].

Selection weights measure the inverse probability of participation and were employed
to mitigate risk of selection bias due to non-selective participation [37]. Since information
on several baseline characteristics was not available for non-participants in the FEPOS
cohort, information on maternal characteristics from the baseline questionnaires in the
DNBC was used as surrogate markers to estimate the probability of participation. We used
a logistic regression analysis with participation (yes/no) as the dependant variable, and
the previously mentioned maternal and parental confounders as explanatory variables for
participation status. Selection weights were applied to all negative binomial regression
models using robust standard errors. Data analyses were performed using STATA version
16.1 (Metrika Consulting AB, Stockholm, Sweden).

3. Results
3.1. Study Participants

A total of 556 study participants between 18 and 20 years provided semen and urine
samples and were included in the analysis. Baseline characteristics are presented in Table 1.
The majority had a monthly or weekly alcohol intake (82%), were non–smokers (57%),
normal weight (73%), and born to non-smoking (75%) and normal weight (65%) mothers.
Distributions of urinary BPA, BPF, and BPS concentrations, and semen characteristics are
presented in Tables 2 and 3.

3.2. Urinary Bisphenol Levels

BPA was detected in 95% of urine samples, while urinary BPF and BPS were de-
tected in 92% and 72%, respectively. The median urinary creatinine concentration was
14.31 mmol/mL.

3.3. Associations Between Urinary Bisphenol Levels and Semen Characteristics

Adjusted ratios for semen characteristics according to urinary bisphenol concen-
trations are presented in Table 4, and did not differ notably from the crude ratios. No
associations were observed between urinary BPA, BPF and BPS concentrations divided
into quartiles and ejaculate volume, sperm concentration, total sperm count or sperm
morphology. Modelling BPA, BPF, and BPS as continuous exposures did not reveal other
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findings. For BPA, the proportion of motile (PR+NP) spermatozoa was 7% (95% CI: 2%;
13%) higher in subjects with urinary concentrations in the third quartile (Q3) compared
with BPA concentrations below in the lowest quartile (Q1). For BPF, the proportion of
motile (PR+NP) spermatozoa was 6% (95% CI: 1%; 12%) higher for subjects with BPF
concentrations in the third quartile (Q3) compared with subjects in the lowest quartile (Q1).
Finally, for BPS, subjects in the third quartile (Q3) had 13% (95% CI: −23%; −1%) lower
ejaculate volume (mL) compared with subjects in the lowest quartile (Q1).

Table 1. Characteristics of 556 Participants from the FEPOS 1 Cohort, 2019.

n (%)

Alcohol intake
Missing 38 (7)
Less than once a month 26 (5)
1–3 times a month 205 (37)
1–2 times a week 248 (44)
≥3 times a week 39 (7)

Smoking status
Missing <52 (<0.9)
Non–smoker 320 (58)
Smoker <235 (<42)

Body mass index (kg/m2)
<18.5 (underweight) 45 (8)
18.5–24.9 (normal weight) 407 (74)
>25 (overweight) 102 (18)

Spillage
Missing 6 (1)
No 455 (82)
Yes 95 (17)

Fever ≤90 days prior to sampling
Missing 63 (11)
No 402 (73)
Yes 91 (16)

Abstinence time (days)
Missing <52 (<0.9)
<2 193 (34)
2–4 284 (51)
>4 <782 (<14)

Maternal smoking status at delivery
Missing 14 (2.5)
Non–smoker 417 (75)
Smoker 125 (22.5)

Maternal body mass index (kg/m2)
Missing 25 (4.5)
<18.5 53 (9.5)
18.5–24.9 360 (65)
>25 118 (21)

Parental educational level
Missing 15 (3)
High grade professional 179 (32)
Low grade professional 191 (34)
Skilled or unskilled worker 150 (27)
Student or economically inactive 21 (4)

1 Fetal Programming of Semen Quality; 2 Due to local data regulations, it is not allowed to report numbers smaller
than five, which is why the numbers have been rounded.



Int. J. Environ. Res. Public Health 2021, 18, 1742 6 of 12

Table 2. Distribution of Urinary Bisphenol A, F and S Concentrations and Semen Characteristics
among Study Participants from the FEPOS 1 Cohort, 2019.

n 5th 50th 95th

Bisphenol A (ng/mL) 556 0.22 1.30 9.90
Bisphenol F (ng/mL) 556 <LOD 0.14 2.44
Bisphenol S (ng/mL) 556 <LOD 0.06 1.12

Ejaculate volume (mL) * 455 1.0 2.6 5.4
Sperm concentration (mill./mL) 552 2.1 34.9 130.5

Total sperm count (mill.) * 454 6.3 91.7 390.0
Progressive and non–progressive (%) 542 42.3 71.0 87.0

Morphological normal sperm (%) 541 0.6 6.0 15.0
1 Fetal Programming of Semen Quality. All values are reported as pseudo percentiles calculated from the average
of five observations. Limit of detection (LOD) is <0.2 ng/mL for bisphenol A, and <0.03 ng/mL for bisphenol F
and S. * Participants of which spillage was reported were excluded from ejaculate volume and total sperm count
analyses.

Table 3. Pseudo Quartile (Q1–Q4) Divided Creatinine-Adjusted Urinary Bisphenol A, F, and S
Concentrations among Study Participants from the FEPOS Cohort, 2019.

BPA BPF BPS

Q1 (ng/mL) <0.68 <0.06 <0.03
Q2 (ng/mL) 0.68–1.30 0.06–0.14 0.03–0.06
Q3 (ng/mL) 1.30–2.74 0.14–0.34 0.06–0.17
Q4 (ng/mL >2.74 >0.34 >0.017

BPA=Bispehol A; BPF=Bisphenol F and BPS=Bisphenol S.

Table 4. Adjusted Ratios of Semen Characteristics According to Urinary Bisphenol A, F, and S Concentrations (ng/mL)
among Study Participants (n = 556) from the FEPOS Cohort, 2019.

BPA BPF BPS

Ratios (95% CI) Ratios (95% CI)) Ratios (95% CI)

Ejaculate volume (mL)

Q1 Reference Reference Reference
Q2 0.97 (0.85; 1.10) 0.91 (0.81; 1.03) 0.97 (0.85; 1.10)
Q3 1.02 (0.88; 1.17) 0.92 (0.80; 1.05) 0.87 (0.77; 0.99)
Q4 1.04 (0.90; 1.19) 0.96 (0.84; 1.10) 1.00 (0.80; 1.13)

Continuous 1.00 (0.99; 1.01) 1.00 (0.99; 1.01) 1.03 (0.98; 1.08)

Sperm concentration (mill./mL)

Q1 Reference Reference Reference
Q2 1.10 (0.90; 1.35) 1.11 (0.92; 1.35) 1.06 (0.87; 1.30)
Q3 0.93 (0.76; 1.15) 1.08 (0.87; 1.34) 0.98 (0.80; 1.19)
Q4 1.07 (0.86; 1.34) 1.05 (0.85; 1.29) 1.04 (0.85; 1.28)

Continuous 1.01 (0.99; 1.02) 0.99 (0.98; 1.01) 0.97 (0.88; 1.07)

Total sperm count (mill.)

Q1 Reference Reference Reference
Q2 1.07 (0.86; 1.33) 1.05 (0.84; 1.30) 1.02 (0.81; 1.27)
Q3 0.93 (0.72; 1.19) 0.97 (0.76; 1.23) 0.91 (0.73; 1.14)
Q4 1.05 (0.82; 1.35) 0.97 (0.76; 1.23) 1.02 (0.81; 1.30)

Continuous 1.00 (0.99; 1.01) 0.99 (0.98; 1.01) 1.04 (0.95; 1.13)

Progressive and non–progressive motility (%)

Q1 Reference Reference Reference
Q2 1.05 (0.99; 1.11) 1.04 (0.98; 1.10) 1.03 (0.98; 1.09)
Q3 1.07 (1.02; 1.13) 1.06 (1.01; 1.12) 1.02 (0.97; 1.08)
Q4 1.04 (0.98; 1.11) 1.04 (0.99; 1.11) 1.02 (0.96; 1.08)

Continuous 1.00 (1.00; 1.01) 1.00 (1.00; 1.01) 1.00 (0.98; 1.02)

Morphological normal sperm (%)

Q1 Reference Reference Reference
Q2 1.03 (0.86; 1.22) 1.09 (0.92; 1.30) 0.98 (0.82; 1.18)
Q3 0.94 (0.78; 1.13) 1.04 (0.86; 1.27) 1.02 (0.85; 1.21)
Q4 1.00 (0.82; 1.21) 1.13 (0.93; 1.37) 1.09 (0.90; 1.31)

Continuous 1.00 (0.99; 1.02) 1.00 (0.99; 1.02) 1.00 (0.93; 1.07)

Estimates marked in bold indicate p < 0.05. BPA = Bispehol A; BPF = Bisphenol F and BPS = Bisphenol S.
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4. Discussion
4.1. Key Results

This is the first study to investigate the association between urinary BPA and its
analogues, BPF and BPS, and semen characteristics among a sample of young adult men
from the general population. Our data did not provide evidence that exposure to BPA,
BPF or BPS was associated with semen characteristics. Statistically significant estimates
were only observed at intermediate levels, and although non-monotonic dose response
associations have previously been observed in relation to BPA exposure [38], no previous
studies have shown non-monotonic dose response associations for the specific endpoints
studied, and no biological explanation seems likely to substantiate these findings. We
therefore consider these results more likely to be attributable to chance findings due to
multiple testing.

4.2. Strengths and Limitations

The main strength of our study is the large study sample of young men from the
general population. Although the participation rate in FEPOS was 19% of which a random
set of urine samples were analysed (10%), we were able to take non-participation into
account by use of selection weights in the analyses. Moreover, the participants were
all young men aged 18–20 years, thus their probability of having attempted to achieve
pregnancy and hence be aware of their fertility is considered negligible. All subjects were
most likely unaware of their level of bisphenol exposure which further minimises the risk
of selection bias [39]. Urine and semen samples were analysed in blind, and routine internal
and external quality control was performed revealing high precision and repeatability,
hence, diminishing random measurement error.

Due to the cross-sectional design, we relied on a single urine and semen sample from
each participant. As the spermatogenic cycle lasts for approximately 90 days, the measured
urine levels of bisphenols could have been determined outside sensitive time points [19].
Some studies have found large between-day variability in urinary BPA levels [40,41], but
Mahalingaiah et al. (2008) report that a single urine sample may adequately predict long-
term exposure [42]. We might also expect a certain degree of intra-individual variation
in semen characteristics that cannot be accounted for in the present study. This variation
could occur due to random biological variation or the fact that spermatogenesis is more
vulnerable to exogenous factors during specific phases, both arguing for repeated sampling
as a more reliable indicator for semen quality characteristics. Nevertheless, two studies
investigated intra-individual variations of semen characteristics and provided evidence
that a single sample may in fact be representative [43,44].

Finally, a major and unique strength in our cross-sectional study was that we were able
to control for factors during prenatal life. For instance, maternal smoking and overweight
have been suggested to impair gonad development in male offspring affecting semen
quality in the long term [45–47], and were therefore controlled for in the statistical analyses.

4.3. Findings in Relation to Other Studies

Both in vitro and human studies have reported altered semen characteristics in regard
to BPA exposure [48,49]. However, findings from human epidemiological studies remain
equivocal which could partly be explained by the disparity in exposure levels (Table S1:
Overview of Epidemiological Studies Investigating the Associations Between Bisphenols
and Semen Characteristics). Furthermore, we still lack evidence on whether BPF and BPS
have the same magnitude of potency as BPA.

Similar to our study, Lassen and colleagues performed a cross-sectional study in 2014
including 303 young Danish men attending military service, and examined the association
between urinary BPA and semen quality [23]. Although their median BPA concentration
was 2.5-fold higher than ours, they only found a statistically inverse association between
urinary BPA and percentage of progressive motile sperm cells, while findings for other
semen characteristics were not significant [23]. In a Spanish cross-sectional study by
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Adoamnei et al. including 215 male students aged 18–23, a negative association between
urinary BPA and sperm concentration (mill./mL) (ß = −0.04), and total sperm count (mill.)
(ß = −0.05) was reported, while other semen parameters were unaffected [19]. Furthermore,
no statistically significant associations between urinary BPA concentrations and semen
characteristics were reported in an American cross-sectional study by Mendiola et al.
(2010) which included 375 male partners of pregnant women with a median urinary BPA
concentration of 1.5 ng/mL [24]. This is in line with findings in a more recent cross-sectional
study among 105 men recruited from an Italian fertility clinic with remarkably greater
median urinary BPA concentration of 0.1 µg/gCr [7].

A wider range of semen quality measures were affected in the cross-sectional study
by Meeker et al. (2010) who reported an inverse association between urinary BPA concen-
trations and sperm concentration, abnormal sperm morphology, and motile sperm among
190 American male partners of couples seeking fertility treatment [15]. Since the design
and median urinary BPA concentration is equal to ours (1.30 ng/mL), we suspect that the
equivocal findings among the current literature could be explained by other factors than
urinary BPA-levels, as discussed below.

A prospective follow-up design may better capture BPA effects in relevant exposure
window, since BPA has a short half-life compared to the duration of the spermatogenic
cycle of about three months. Goldstone et al. (2015) performed a prospective cohort study
including 501 male partners of couples attending fertility treatment. A single urine sample
(median BPA = 1.62 ng/mL) and two semen samples were collected at the participants
homes. No associations were reported despite separation in time for semen sampling [22].
A similar sampling strategy was used by Pollard et al. (2019) who collected multiple urine
samples (GM = 2.5 ng/mL) from 161 fertile men using a home-based kit. No statistically
significant associations were observed [25]. Contrarily, Li et al. (2011) performed a prospec-
tive cohort study on 218 factory workers from four regions in China by collecting two urine
and two semen samples (pre– and post–shift). They found an inverse association between
urinary BPA and sperm concentrations, total sperm count, and motility. Differences were
only statistically significant when the study population was restricted to those who were
highly exposed to BPA through their occupation and had a median urinary BPA concen-
tration of 38.7 µg/gCr compared to factory workers with lower BPA exposure (median
urinary BPA of 1.4 µg/gCr) [21].

The effects of BPA exposure may also be explained by the degree of infertility among
men being studied. This has been illustrated by the Czechish research group Vitku et al.
(2015; 2016) who investigated BPA concentrations in plasma and seminal fluid in men
with different degrees of infertility. They found that seminal BPA levels increased with
increasing severity of infertility, and that plasma levels of BPA were significantly higher
in the groups of slightly and moderately infertile men in comparison with healthy men,
and also severely infertile men [17,18]. According to the authors, one possible reason for
not finding a clear dose–response relationship between BPA plasma levels and infertility is
the role of other factors causing severe infertility, such as genetic or anatomic causes or the
result of infections.

The findings are supported by a Greek case-control study reporting stronger asso-
ciation between urinary BPA levels and sperm motility in infertile compared to fertile
men [50]. Mantzouki et al. (2019) reached a different conclusion when comparing serum
BPA in fertile and infertile men from Greece, since no difference in semen characteristics
was reported [51]. However, one must keep in mind that urinary BPA levels do, to a greater
extent, reflect the excretion rate of BPA, while measurements of plasma BPA rather reflect
its bioavailability. Furthermore, seminal BPA seems to be more appropriate for studying
physiology and pathophysiology in the testis [17]. In addition, bisphenol levels are lower
in serum than urine samples, and bisphenol F and S are often <LOD in serum, but can
be determined more precisely in urine [51]. We therefore chose urine as our source for
bisphenol measurements as a proxy of the internal level of exposure.
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Only a single study has investigated the association between urinary BPA, and its
analogues BPS and BPF, and semen characteristics in male partners of couples seeking
fertility treatment. While urinary BPF concentrations were undetectable in most partic-
ipants, urinary BPA (median = 0.80 ng/mL) and BPS (median = 0.30 ng/mL) concen-
trations were associated with lower ejaculate volume, sperm concentration, total sperm
count and motility. Inverse associations between urinary BPS and semen characteristics
were strongest among overweight and obese men after BMI stratification (<25 kg/m2 vs.
≥25 kg/m2) [31].

An obvious dose–response relationship between the level of bisphenol exposure and
impaired semen quality cannot be fully identified in the current literature. However, a
tendency towards harmful effects on semen characteristics of BPA exposure in particular
seems clear, and thus the analogues, BPF and BPS, must be further investigated in larger
epidemiological follow-up studies. Finally, one cannot rule out that publication bias may
further contribute to the equivocal findings since fertility studies are cost-intensive and
time-consuming.

5. Conclusions

In conclusion, we found no association between urinary BPA, BPF, and BPS and
semen quality in young adult men from the general population. It seems likely that
our exposure levels were too low to find possible effects on semen quality, and hence
future studies should preferably have a clearer exposure range including a group of highly
exposed subjects.
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