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Abstract: Persistent pharmaceutical pollutants (PPPs) have been identified as potential endocrine
disruptors that mimic growth hormones when consumed at nanogram per litre to microgram per litre
concentrations. Their occurrence in potable water remains a great threat to human health. Different
conventional technologies developed for their removal from wastewater have failed to achieve
complete mineralisation. Advanced oxidation technologies such as dielectric barrier discharges
(DBDs) based on free radical mechanisms have been identified to completely decompose PPPs.
Due to the existence of pharmaceuticals as mixtures in wastewater and the recalcitrance of their
degradation intermediate by-products, no single advanced oxidation technology has been able
to eliminate pharmaceutical xenobiotics. This review paper provides an update on the sources,
occurrence, and types of pharmaceuticals in wastewater by emphasising different DBD configurations
previously and currently utilised for pharmaceuticals degradation under different experimental
conditions. The performance of the DBD geometries was evaluated considering various factors
including treatment time, initial concentration, half-life time, degradation efficiency and the energy
yield (G50) required to degrade half of the pollutant concentration. The review showed that the
efficacy of the DBD systems on the removal of pharmaceutical compounds depends not only on these
parameters but also on the nature/type of the pollutant.

Keywords: pharmaceutical residues; water; wastewater; dielectric barrier discharge; advanced
oxidation technologies; chemicals/contaminants of emerging concern (CEC); excilamp

1. Introduction

The availability of clean water is fundamental to the socio-economic development and
maintenance of human health. Surface water has become a source of considerable environ-
mental concern due to growing discharge and detection of chemicals of emerging concern at
nanogram or microgram per litre levels [1–6]. Chemicals of emerging concern (CEC) have

Int. J. Environ. Res. Public Health 2021, 18, 1683. https://doi.org/10.3390/ijerph18041683 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-2075-2707
https://orcid.org/0000-0002-0157-3025
https://orcid.org/0000-0003-1512-2820
https://orcid.org/0000-0002-5738-1241
https://orcid.org/0000-0003-4728-8884
https://orcid.org/0000-0001-5706-3211
https://orcid.org/0000-0003-2192-6702
https://orcid.org/0000-0002-2049-1551
https://doi.org/10.3390/ijerph18041683
https://doi.org/10.3390/ijerph18041683
https://doi.org/10.3390/ijerph18041683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18041683
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/4/1683?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 1683 2 of 42

been explicitly defined by the United States Geological Survey [7] as any synthetic or nat-
urally occurring chemical or microbial constituent previously not detected or historically
known or considered to be a contaminant, but which interferes with hormonal functions
in the body. CEC may also include substances that have long been in the environment but
whose occurrence and importance are recently being elucidated as a consequence of advanced
analytical techniques [8]. Emerging micropollutants include pharmaceuticals, endocrine dis-
ruptors, flame retardants, nanomaterials and perfluorinated compounds [9–11]. An article by
Roh et al. [12] reported swallowing a drug for medical remediation had anticipated effects in
the body, although the final destination of these substances was not considered due to incom-
plete metabolism, part of the drugs may be excreted in urine or faeces may eventually end up
in wastewater treatment plants [13]. Pharmaceuticals and their metabolites get released into
aquatic environments through land-application of sewage sludge effluents from treatment
plants, as well as surface water runoff from industries. A growing concern among water
and wastewater treatment industries about the presence of xenobiotics in water resources
and their removal from water has advocated for effective water treatment. It is important to
mention that the occurrence of pharmaceuticals in the environment has become pervasive,
presenting a life-threatening issue that affects humans and ecosystems [14]. The concentration
of pharmaceuticals and pharmaceutical residues in the environment varies and depends
largely on industrial activities, human consumption patterns, wastewater treatment capacity,
population growth among others [15]. Due to high levels of apprehension concerning the
recent findings of the toxicity of pharmaceuticals at low concentrations, their removal has be-
come a matter of urgency to the water industry and other regulatory agencies. Some physical,
chemical and biological approaches such as filtration, adsorption, precipitation, coagulation
and flocculation have been utilised for wastewater treatment [16–20]. Microbial electrochemi-
cal techniques (MET) are extended remediation techniques that employ Microbial Fuel Cells
(MFCs) or Microbial Electrolysis cells (MECs) and focus on the same chemical principles as
those of coagulation, flotation, Fenton oxidation, chemical oxidation, and adsorption [21,22].
These systems generate hydroxyl radicals and various co-species including sulphates and
hydrogen carbonates that contribute to the removal of persistent organic pollutants [23].
The MFCs and MECs function using microbes to extract electrical power from the organic
constituents, and hence rendering MET energy-autonomous and promising methods for the
future [24]. However, the diversity of MET aiming at different microbial cultures and practical
applications is a challenge in selecting/defining which method is precise and suitable for
specific research query. To comply with stringent environmental regulatory frameworks
and to reduce the pressure on existing limited clean water, alternative treatment techniques
based on advanced oxidation processes (AOPs) need to be developed [10,25]. These AOPs are
viable technologies capable of decomposing biologically recalcitrant and persistent organic
pollutants present in wastewater [26,27], easily accomplished using hydroxyl radicals as
primary non-selective oxidants [28]. The common AOPs reported in the literature include UV
disinfection (photolysis) and various photolytic combinations including UV/H2O2, UV/O3,
UV/H2O2/O3 photocatalysis, electron-beam, plasma technologies, supercritical water oxi-
dation, wet air oxidation, water sonolysis, ultrasound cavitation, electrochemical advanced
oxidation processes (EAOPs), microwave plasma-based AOPs [20,29–31]. Although these
procedures use different systems, they all converge towards the production of powerful but
short-lived non-toxic and non-selective hydroxyls radical (OH.) and other oxidative and
reducing species such as H., O., O2

.−, H2O2, etc. that mineralize water contaminants into
simpler by-products. Various AOPs have been employed to oxidize and mineralise organic
pollutants such as dyes, pharmaceuticals, and personal care product into CO2, water, and
harmless organic and inorganic species [4,11,25,32–38]. In most AOPs, series of gaseous,
liquid chemicals including O3, H2O2, catalysts, and external UV sources have been used and
the total decomposition of pollutants often requires extended treatment time. These in return
involve a lot of wet chemistry and some have an increase in the operational costs [39–42].
Alternatively, non-thermal electrical discharge systems have been found very effective due
to the generation of different molecular and ionic free reactive species, UV radiation, and
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shock waves at ambient conditions without chemical additives [43]. The combination of
these species forms a mixture of potent oxidants in the bulk solution that mineralises water
pollutants in a short period [44–47]. AOPs induced by dielectric barrier discharge (DBD) are
considered more effective due to their plasma properties and reactor configurations [47–49].
The prominence of DBDs over other configurations relies mostly on the electron energy
fluctuating between 1 and 10 eV and the electron density that varies between 1012 and 1015

cm−3. DBD systems require less or no chemical additives, regardless of the feed gas such as
air, oxygen, or argon, 1 eV is enough to produce stable UV-light, shock waves, and various
free molecular and radical species including O3, H2O2, O., O2

.−, OH., etc. [20]. The mixture
of these oxidants represents a powerful chemical cocktail that induces complete removal of
water contaminants [4,50]. The decomposition of organic toxins from water using different
DBD configurations with total degradation achieved in reduced plasma exposure times has
recently been reported [51–54]. These investigations clearly show the supremacy of DBD
technologies over co-existing AOPs. This review highlights the abundance of various classes
of pharmaceuticals in water sources and focuses on their removal by different DBD systems
and configurations.

2. Pharmaceutical Residues in Water and Wastewater

The profusion of pharmaceutical residues in aquatic environments has triggered world-
wide environmental research recently, though the appearance and accumulation of these
xenobiotics in water streams are not new, their accumulation in water sources and water
treatment facilities has increasingly been recounted. The presence of these toxins in water
has a globally limited water supply, leading to potable/drinking water. Indeed, the accumu-
lation of pharmaceutical compounds (PhCs) in water and wastewater treatment plants has
rendered the treated effluents non-reusable since the sludge produced is toxic and highly
contaminated with PhCs. The contaminants present in treated effluents show that they could
not be removed by conventional treatment methods and are often discharged into the envi-
ronments without being treated [2,4,5]. The world’s consumption of pharmaceuticals could
be estimated in hundreds of tonnes (t). For instance, in Germany, millions of non-steroidal
anti-inflammatory drugs (NSAIDS) such as aspirin, paracetamol, ibuprofen, and diclofenac
were produced during 2000 and 2001 corresponding to 86 (t) [55]. Besides Germany, France
and Switzerland are also giant consumers of pharmaceutical products (PPs) in Europe [56].
The abundance of PhCs in aquatic environments vary from one country to another and may
depend on the practice of prescription methods [57–59]. In Italy, Ferrari et al. [60] investigated
the accumulation of pharmaceuticals in surface water and sediments in the largest Italian
River Po basin. Out of the 50 samples taken from the sources to the delta and the mouth of its
major effluents, the following trace pharmaceuticals: atenolol, propranolol, carbamazepine,
ranitidine, metronidazole, paracetamol and atorva were detected in the concentration range
of 0.38–3.59 µg/L. The authors claimed that though such concentrations may be disrupting
to aquatic ecosystems, they present a low risk to human beings. Ayman and Isik [61] stud-
ied the occurrence of various (nine) pharmaceutical active compounds (PACs) in hospital
wastewater, sewage wastewater, drinking water and treated water. Results showed that
acetaminophen and caffeine were the most frequently detected compounds with concentra-
tions up to 160 µg/L in both hospital and sewage wastewater although no traces of these
contaminants were found in drinking water.

A similar study on environmental monitoring was carried out by Rodivic et al. [62] that
developed a practical solid-phase extraction analytical method coupled with GC-MS for the de-
tection of PhCs in river sediments and corresponding surface and groundwater in the Dambe
River and tributaries in Serbia. The research outcome revealed that the pesticides dimethoate
and atrazine were the frequently detected PACs in sediments while carbamazepine and
metamizole metabolites were recurrently prevalent in water samples. Balakrishna et al. [63]
reviewed up to 19 published research articles reporting on the occurrence of pharmaceuti-
cals in Indian aquatic environments mainly activated sludge wastewater treatment plants
(ASWWTPs), hospital WTPs, rivers and groundwater and found various PACs from a dif-
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ferent group of chemicals detectable in Indian WTPs that mostly treat domestic sewage.
Reif et al. [64] conducted a study on the occurrence of emerging micropollutants (EMPs) in
groundwater and streamer sediment in Pennsylvania, about 7 PhCs including acetaminophen,
caffeine, carbamazepine, tylosin, sulfamethoxine and sulfamethoxazole oxytetracycline were
discovered in stream water samples collected from six paired streams sampling sites located
upstream and downstream from animal feeding operations. The concentration of antibiotics
ranged from 135 to 329 ng/L in the sample from the downstream site Snitz Creek in Lancaster
Country. Vidal-Dorsch et al. [65] investigated the abundance of compounds of emerging
concern (CECs) in Southern California coastal waters municipal effluents and marine water.
Among several PhCs, naproxen, gemfibrozil and atenolol were the most frequently detected
in concentrations above 1 µg/L. However, the impact of these contaminants on aquatic or-
ganisms and humans needs further investigation. In Africa, Anderson and Westrom [66]
investigated the occurrence of pharmaceutical toxins in irrigation water from wastewater in
Chirapatre Estates in Kumasi, Ghana. The results demonstrated that malaria treatment medi-
cation and paracetamol were detected in irrigation water derive from wastewater. Olarinmoye
et al. [67] investigated the occurrence of antibiotics, oestrogens and lipid-lowering residues in
surface water sewage from a wastewater treatment plant in Lagos, Nigeria; 37 pharmaceutical
residues in the concentration range of 8.84 to 560 µg/L were observed. it was recommended
that extended environmental monitoring of PhCs in Nigerian regions with high population
densities need to be implemented. Matongo et al. [68] investigated the possible existence of
pharmaceutical residues in water and sediments of the Msunduji River in Kwazulu-Natal,
South Africa. The investigation showed that different groups of pharmaceuticals mainly
antipyretics, antibiotics, antiepileptic and antipsychotic drugs were detected in the samples.
From all groups, ibuprofen was the most abundant residue in wastewater (117 µg/L), surface
water (84.60 µg/L) and sediments (659 ng/L). A similar study was carried out by Agunbiade
and Moodley [69] that detected 8 acidic pharmaceuticals in wastewater, surface water and
sediments from Msunduzi River, Kwazulu-Natal, South Africa. The study proved that aspirin
and nalidixic acid were the most abundant drugs observed in the range of 118 µg/L and
25.2–29.9 µg/L, respectively. These studies demonstrate that pollution of water by pharma-
ceutical toxins is a global crisis that needs to be given attention even though the effect of
these pollutants on humans is still under investigation, their presence in aquatic media may
induce health issues. An extended global estimation of studies claiming the existence of
PhCs in water sources is summarised in Table 1 and shows the estimated global abundance
of pharmaceutical contaminants in water sources. Low occurrence of pharmaceuticals was
recorded in Africa while the abundance of pharmaceutical pollutants in Europe, America and
Asia reported in literature might be because environmental studies in those areas are more
comprehensively done as compared to Africa; where there are insufficient funds and scarcity
of sophisticated equipment to detect PhCs from water sources. Consequently, pharmaceutical
substances have accumulated in water and wastewater matrices making their persistence a
critical issue for the last two decades. Based on these reports, a huge number of treatment
methods have been developed [52,70–75]. Most of these environmental remedies were found
effective however, they offer high operational cost and lack of feasibility and their scalabil-
ity constitute global constraints. In industries and water and wastewater treatment plants
(WWTPs) the production of toxic sludge has been a shocking challenge that requires extended
treatment methods before being discharged into the environment. Effluents from water were
found to be contaminated with new emerging toxins such as pharmaceutical compounds
and other related toxicants that are often present in extremely small concentrations [59,76–78].
This indicates that water from the tertiary stage needs to be treated before being distributed
to different receivers/recipients. The persistence of these pollutants is certainly due to their
accumulation in treatment facilities. It could also be inferred that the existence of these
xenobiotics in minute concentrations in water sources has been proved long ago but their
effect on humans and their ecosystems was neglected. As their effects on aquatic ecosystems
are believed to be detrimental, this in return may also threaten human health even if their
impacts on human genomes are still being studied.
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Table 1. Global occurrence of pharmaceutical compounds in water and wastewater.

Africa

Countries Types of Pharmaceuticals Pharmaceutical Compounds Concentration Sources References

South Africa,
(Kwazulu-Natal)

Antipyretics, antibiotics, lipid
regulators, antipsychotic

anti-epileptic drug

Aspirin nalidixic acid, caffeine,
bezafibrate, clozapine 0.82–118 mg/L Msunduzi river, wastewater [68,69]

Enugu, South-East Nigeria

Antibiotics, oestrogens,
lipid-lowering drugs,

non-steroidal anti-inflammatory
drugs

Diclofenac 8.84–1100 µg/L Wastewater treatment
plants [67]

Chirapatre Estates in
Kumasi, Ghana Paracetamol NA Irrigation water [66]

Asia

South China
PPCPs, synthetic steroid

oestrogens, endocrine-disrupting
phenols, acidic pharmaceuticals

Nonylphenol, bisphenol A,
triclosan, 2-phenyl phenol,

methylparaben, propylparaben,
salicylic acid, clofibric acid,

Ibuprofen

65 ng/L–1417 ng/L Urbane rivers of the Pearl
River delta [79]

China (Beijing)

Antibiotics, antilipidemic,
anti-inflammatory,

antihypertensive, anticonvulsant,
stimulant, insect repellent,

antipsychotic

Caffeine,
N, N-Diethyl-meta-toluamide

(DEET)
2.2–320 ng/L WWTPs [80]

China Antibiotics, anti-inflammatories,
lipid regulators

Carbamazepine, caffeine, N,
N-diethyl –m-toluamide BLD-6 to 35.31 ng/L Groundwater [81]

Yang pu district, China Antibiotics, analgesics,
antiepileptics, lipid regulators

Caffein, paracetamol,
propranolol, azithromycin,

clarithromycin
100–857 ng/L Urban rivers [82]

Japan Veterinary drugs and antibiotics
Amantadine, carbamazepine,

epinastine, ibuprofen,
iopamidol, oseltamivir acid

NA Finished drinking water [83]

India
Antipsychoactive,

antihypertensive, antimicrobials,
analgesics, stimulants

Carbamazepine, atenolol,
triclocarban, caffeine,

ciprofloxacin, enoxacin,
ketoprofen, erythromycin,

naproxen, diclofenac,
enrofloxacin

NA

Conventional activated
sludge WWTPs, hospital

WTPs, rivers, and
groundwater.

[63]

South Korea Antibiotics, hormones,
antihypertensive, stimulants

Acetaminophen, atenolol,
lincomycin, hormones,

antihypertensive, antiepileptic
>10 µg/L WWTPs, sewage effluent [84]

Malaysia NSAIDs, stimulants Caffeine and diclofenac Non-detected-54 ng/L Langat and Muar Rivers [85]
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Table 1. Cont.

North & Central
America

Countries Types of pharmaceuticals Pharmaceutical compounds Concentration Sources References

Mexico Antibiotics, non-steroidal
anti-inflammatory drugs

Acetaminophen, atenolol,
carbamazepine, clarithromycin,

diclofenac, ibuprofen
0.01–6800 ng/L Sewage effluent,

aquaculture [86]

USA, Pennsylvania
Pharmaceutical compounds,

hormones, organic wastewater
compounds (OWCs)

Acetaminophen, caffeine,
carbamazepine, tylosin,

sulfadimethoxine,
sulfamethoxazole,

oxytetracycline

24–1340 ng/L Pennsylvania Waters [64]

USA, Georgia

Pharmaceuticals and personal
products (PPCPs): Antibiotics,
analgesics, anti-inflammatory,

diuretics, antipyretics,
antihypertension, fragrances,

flame retardants, disinfectants,
antiseptics, and pesticides

Acetylsalicylic acid,
17-Ethinylestradiol,

dimethylaminophenazone,
hydrocodone, Cashmeran,

biphenylol,
Tetrabromobisphenol A

0.0002–230 µg/L Wastewater treatment plant
(WWTP) influents [87,88]

USA, North Carolina

Pharmaceuticals: Antibiotics,
analgesics, diuretics, antipyretics,

anti-inflammatory,
antihypertension

Acetaminophen, caffeine,
tylosin, carbamazepine,

sulfadimethoxine,
sulfamethoxazole,
oxytetracycline,

>ppb Wastewater treatment plant
(WWTP) effluents [89]

USA, Liberty Bay, Puget
Sound, Washington

Herbicides and pharmaceutical
and personal care products

(PPCPs) and flame retardants

N, N-diethyl-meta-toluamide,
caffeine, and mecoprop NA Surface Water and

Groundwater in WWTPs [90]

USA, Southern Nevada Contaminants of emerging
concern Naproxen, gemfibrozil, atenolol >1 µg/L

Municipal wastewater
effluents and marine

receiving water
[65]

South America

Argentina Analgesics, anti-inflammatories
anticonvulsant, Stimulants

Carbamazepine, caffeine and
ibuprofen 0.03–4.2 µg/L Wastewater effluents [91]

Brazil Lipid regulators,
anti-inflammatories

Bezafibrate, gemfibrozil,
ibuprofen, diclofenac 0.1 to 0.5 µg/L Effluents of sewage

treatment plants (STPs) [92]

Colombia
Antibiotics, anticonvulsants,

non-steroidal anti-inflammatory
drugs

Acetaminophen paracetamol,
carbamazepine diclofenac,

ibuprofen
NA Wastewaters effluent and

influent surface waters [93]
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Table 1. Cont.

Europe

Countries Types of pharmaceuticals Pharmaceutical compounds Concentration Sources References

Finland Antibiotics, antiepileptic,
anti-inflammatories

Ciprofloxacin, norfloxacin and
ofloxacin carbamazepine

diclofenac, ibuprofen,
ketoprofen, naproxen

NA Sewage Treatment Plants
effluents, Surface Waters [94]

France

Psychostimulants, non-steroidal
anti-inflammatory drugs,

iodinated contrast media, and
anxiolytic drugs

Ciprofloxacin, norfloxacin and
ofloxacin carbamazepine

diclofenac, ibuprofen,
ketoprofen, naproxen

NA Surface water [55]

Germany Antibiotics Penicillins, carbamazepine,
clofibric acid, iopromide NA

Sewage treatment plant
(STP) discharges,

groundwater,
Wastewater and household

waste

[95]

Italy Antibiotics, anti-inflammatory Propranolol, paracetamol 0.001 to 284 ug/L NA [60]

Netherland Antibiotics, anticonvulsants Carbamazepine, erythromycin 0.31–0.90 ug/L Sewage Treatment Plants
effluents, surface water [96]

Portugal Antibiotics, anticonvulsants,
anti-inflammatory

Ibuprofen, sulfamethoxazole,
ketoprofen, carbamazepine,

fluoxetine
NA

Influents and effluents of
two wastewater treatment

plants
[97]

Romania Antibiotics, anticonvulsants,
anti-inflammatory

Sulfamethoxazole, diclofenac,
carbamazepine, trimethoprim,

thiabendazole, clotrimazole
5 to 50 ng/ L Rivers [98]

Serbia Antibiotics, anticonvulsants,
anti-inflammatory

Sulfamethoxazole,
carbamazepine, trimethoprim NA River sediments, surface,

and groundwater [62]

Spain Anti-inflammatories,
antidepressant

Ketoprofen, naproxen,
fluoxetine 0.3–324.7 ng/L Wastewater treatment

plants discharges [99]

Switzerland Antibiotics, anti-inflammatories Diclofenac, carbamazepine NA Wastewater, groundwater [100]

Turkey Antibiotics, anticonvulsants,
anti-inflammatory

Acetaminophen, carbamazepine,
hospital wastewater up to 160µg/L Sewage-treatment plant

discharges [61]

United Kingdom Sewage treatment plants and
wastewater Ibuprofen and ciprofloxacin NA

Sewage treatment plant
(STP) discharges,

Groundwater
[101]
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2.1. Types of Pharmaceutical Remains in Water and Wastewater Sources

Antibiotics and their occurrence in the environment were reported in higher mg/L
in hospital sewages, minor mg/L in municipal effluents, and ng/L in the surface, ground
wastewater, and in tap water, respectively [102]. A particular group of pharmaceuti-
cals has attracted environmental scientist’s attention due to their resistance to bacteria
in WWTPs [100]. For example, antibiotics such as sulfonamides and fluoroquinolones
may be toxic to aquatic creatures and their phytotoxic behaviour might be problematic
to the environment. In addition to antibiotics, Non-Steroidal Anti-Inflammatory Drugs
(NSAIDS) is another class of pharmaceuticals that exhibit pain-relieving, antipyretic and
anti-inflammatory properties [103]. The presence of pharmaceuticals such as aspirin, ac-
etaminophen, diclofenac, ibuprofen, naproxen, ketoprofen has been observed in drinking
water. Clofibric acid commonly used as blood lipid regulator has also been currently
reported. This active metabolite has been detected in wastewater treatment plants, ground-
water, and tap water in tens of mg/L [78]. This is probably due to its persistent characteristic
and high mobility in the aquatic environment [78]. Gemfibrozil and bezafibrate have also
been identified in surface water. An additional group of antihypertensive drugs often
used to lower blood pressure include beta-blockers such as metoprolol, atenolol propra-
nolol, and diuretic furosemide, as well as ACE inhibitors, calcium channel blockers, and
angiotensin II receptor antagonists, have repeatedly been detected in tens of mg/L in
the ground, surface and drinking water [104–106]. An additional pharmaceutical active
compound known as carbamazepine mainly used for epilepsy treatment has been detected
in groundwater and drinking water sources in tens of mg/L. Carbamazepine metabolites
are stubborn in WWTPs and these toxins often end up detectable in drinking water sup-
plies [107] as well as primidone another antiepileptic detected in surface water and drinking
water. Pharmaceuticals used in hormone-replacement therapy and oral contraceptives in
veterinary medicine focusing on growth enhancement such as 17 β-estradiol, estrone and
17 α-ethinylestradiol were identified in the river, ground and drinking waters [108]. The im-
pact of these endocrine disruptive compounds (EDCs) on aquatic organisms were also
highlighted. The pharmaceutical compounds reviewed above considered as the principal
types of water contaminants and were presented in Table 2. As a consequence of the grow-
ing accumulation of persistent organic pharmaceuticals, their removal from different water
sources using advanced oxidation processes constitutes an essential component of research
and development in water and wastewater treatment sectors [109–111]. Research studies on
surface water treatment have shown that pharmaceuticals are non-biodegradable in sewage
treatment plants [112]. The direct discharge of untreated municipality wastewater, manu-
facturing effluents, and indiscriminate dumping of unused medicines remain the principal
outlet for pharmaceuticals prevalent in the environment as summarized in Table 2 [113].
Based on the effects of pharmaceuticals on humans and aquatic species, various water treat-
ment methods such as filtration, coagulation/flocculation, and biological, and adsorption
(activated carbon), ion exchange and reverse osmosis have been applied. However, these
methods might require a lot of wet chemistry and the equipment required for their scale-up
could be expensive and could limit their application in the remediation of pharmaceutical
compounds. Therefore, extended efficient treatment procedures are required for water
purification. Plasma technologies plus combined advanced oxidation techniques could
promote direct mineralization of pharmaceutical pollutants in aquatic media.

2.2. Effect of Pharmaceutical Substances in Aquatic Environments on Health

The disproportionate utilization of numerous types of pharmaceutical substances has
increased the direct or indirect contamination of water sources and the bio persistence of
these pharmaceutical remains in water sources offer potential risks on the modification of
living organism genomes and possibly long term effects on human health [59,114].
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Table 2. Pharmaceuticals commonly found in the aquatic environment [113].

Penicillin-Type
Antibiotics Anti-Inflammatory Drugs /NSAIDS Beta-Blockers/

Antihypertensive Steroids and Hormones Lipid Regulators Anticonvulsants/Antiepileptic Antidepressants Cancer Therapeutics

Amoxicillin Acetaminophen Atenolol Diethylstibestrol Bezafibrate Carbamazepine Diazepam Cyclophosphamide
Ampicillin Aspirin (acetylsalicylic acid) Betaxolol Diethylstibestrol acetate Clofibric acid Dilantin Furosemide Ifosfamide

Chlortetracycline Diclofenac Diltiazem 17-α-ethinyl estradiol Fenofibrate Phenobarbital Fluoxetine
Ciprofloxacin Codeine Enalapril 17-β-estradiol estrone Gemfibrozil Primidone Meprobamate
Erythromycin Ibuprofen Furosemide Estrone Paroxetine
Flumequine Indomethacin Losartan Mestranol
Lincomycin Metamizole Metoprolol

Penicillin Naproxen Nadolol
Ofloxacin Phenazone Propranolol
Oxacillin Sotalol

Oxytetracycline
Spiramycin

Streptomycin
Sulfamethoxazole

Trimethoprim
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Urban wastewater polluted with medical substances has been identified as one of the
major sources of pharmaceutical toxins [71] as well as the pharmaceutical contamination
derived from pharmaceutical industries and the dumping of unused drug excesses in
hospitals and households. Martín et al. [115] also reported that human excretions con-
taining defecated pharmaceuticals circulate through the sewage system and end up in
wastewater treatment plants (WWTPs). These were viewed as one of the principal sources
of water pollution. Jones et al. [71] and Sirés and Brillas [114] reported that the recalcitrant
behaviour of pharmaceuticals in water is because after biodegradation, deconjugation,
sorption, and photodegradation processes, up to 90% of pharmaceutical residues consisting
of unmetabolised and metabolized bio recalcitrant fragments were still present in final
effluents of water and wastewater treatment plants (WWTPs). As WWTPs technologies
have not been designed for such minute compounds, they are therefore transferred to
receiving surface waters such as rivers and even to drinking water [55,78]. WWTP slurry
containing nondegradable pharmaceuticals is also utilised as manure that contaminate
surface water when emitted veterinary pharmaceuticals via fertilizer application is run-off
and leaching takes place, affecting ground and surface water. Water contamination largely
contributes to environmental pollution across the globe due to its significant impact.

Kümmerer [59] stated that the release of toxic water into the environment could po-
tentially impact the biological systems and a few studies have highlighted irrevocable
alterations caused by pharmaceutical contaminants in some micro-organisms [110,116].
The unexpected genomic changes in bacteria make them even more resistant towards phar-
maceutical biotoxins as the unmetabolised and metabolized pharmaceutical remainders
agglomerate and often form complexes such as beta-blockers whose toxicity has rarely
been anticipated [117].

Pharmaceuticals can transform to endocrine (EDCs) which are well known to inhibit
human genetic systems and as a result, the existence of carcinogenic pharmaceuticals
in water treatment facilities may eventually obstruct the distribution of clean water to
receivers. The complete decomposition of pharmaceuticals is mandatory to avoid potential
health risk on human beings.

The appearance of pharmaceuticals in influents and treated effluents shows that
traditional bioremediation and physicochemical remediation methods such as coagulation,
volatilization, adsorption, sedimentation, and filtration are incompetent to fully destroy
these emerging disruptors [71,72]. Even though chlorination and UV irradiation processes
are often used for disinfection of final effluents in treatment plants [72,78], robust oxidative
systems/protocols are crucially required for the total removal of pharmaceutical pollutants.

3. Overview of the Plasma Process

Solid, liquid, gas and plasma have been widely recognised as the principal states
of matter for decades. Currently, plasma often known as the fourth state of matter is
derived from gas through ionisation, dissociation, and excitation of atoms and molecules
rigidly bonded in the gaseous state. According to Akishev et al. [118] plasma consists
of various gaseous particles such as energetic electrons, ions, and neutral active species
mainly gaseous molecules, free radicals, metastable species and UV-photon. Plasma can be
categorised into thermal plasma and non-thermal plasma as shown in Figure 1.
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3.1. Thermal Plasma

Thermal plasma (TP) is an electrical discharge process that occurs at high tempera-
tures (T ≈ 300–106 K ≈ 26.85–49,726.85 ◦C). In thermal plasma, the electron temperature
is approximately equal to that of ions and gas temperature (Te ≈ Ti ≈ Tg ≈ 15,000–106

K ≈ 14,726.85–999,726.85 ◦C, corresponding to the ionization energy range of 10–15 eV).
One of the major advantages of TP is the production of highly energised electrons with an
approximate density ne ≥ 1020 cm−3 [121]. Thermal plasma is often induced by various
electrical discharges including free burning arcs, transferred arcs or non-transferred plasma
torches, AC or transient arcs (lamps, circuit-breakers, or pulsed arcs); radiofrequency
(RF) and microwave (MW) discharges at near-atmospheric pressure; and laser-induced
plasmas (LIP) [122–125]. Hur et al. [126] investigated the characteristics of TP by numerical
and experimental modelling of transferred plasma torches at atmospheric conditions to
determine the effect of working parameters and their corresponding electrode arrange-
ments on waste remediation. The results showed that for any TP torch configuration,
optimisation of operating variables is necessary to achieve desirable waste conversion and
following Yuan et al. [127]. Thermal plasma configurations have extensively been used in
diverse aspects of environmental remediation. Sobacchi et al. [128] investigated the produc-
tion of hydrogen via partial oxidation/reforming of liquid gasoline-like fuels by thermal
plasma/catalytic system. The authors claimed that the catalyst demonstrated excellent
activity in terms of hydrogen production at temperatures greater than or equal to 800 ◦C
(1073.15 K). On the other hand, the oily waste sludge (OWS) is a toxic residue regularly
produced in petrochemical industries and is considered as a harmful waste that requires
absolute treatment. Torres et al. [129] applied a non-transferred plasma torch (NTPT) and
transferred plasma torch (TPT) for the treatment of OWS at the applied conditions (OWS
solution injection feed rates varied from 0.25 to 5.8 g min−1, plasma torch power ranging
from 1 to 10 kW and plasma gas flow rate of 20 m3 h−1). Their outcome indicated that
99.99% degradation of organic substances and 95.5% volume reduction were achieved.
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The gaseous residual by-products obtained had low molecular weight and were claimed to
be non-hazardous and could be discharged in landfills. This was further complemented by
Fabry et al. [130] who reported that thermal plasma induced by DC or AC plasma torches
is an adequate method for the conversion of waste to energy and can certainly be used for
the remediation of numerous wastes including municipal solid wastes, heavy oil, used car
tires and medical wastes by gasification processes. On the other hand, Chandran et al. [131]
investigated the efficiency of radio frequency (RF) plasma on nitridation that involved the
incorporation of nitrogen onto the surface of the polycrystalline diamond at varied temper-
atures (250, 500, 750, 1000 ◦C). The results of their research showed that nitrogen content
in the diamond surface declined with an increase in temperature during the nitridation
process. Nevertheless, the incorporation of nitrogen into the diamond surface by RF plasma
was successful. Recently, Belov et al. [132] studied the dissociation of carbon dioxide in
a microwave plasma reactor operating in a pressure range of 200 mbar–1 bar and gas
inlet configurations. Their results showed that in the direct flow configuration, the lowest
conversion ~3.5% at 200 mbar and 2% at 1 bar were obtained at exhaust temperatures of
up to 1000 K (726.85 ◦C). Alternatively, the highest conversion of 38% at 200 mbar and
6.2% at 1 bar, with energy efficiencies of 23% and 3.7%, respectively were achieved during
the post-discharge cooling step introduced for the reverse gas inlet regime. The studies
reviewed above showed that thermal plasma and its various properties and configurations
are effective for solid and liquid wastes recovery, hydrogen production, CO2 conversion,
etc. that perhaps other treatment systems would not be able to achieve. However, it could
be noticed that most of these investigations were carried out in the temperature range of
250 to 1000 ◦C (523.15–1275.15 K) or even higher than these values and hence are energy
demanding. Also, the scalability of TP configurations to the industrial level to treat large
volumes of water and wastewater could be costly. So, handling such high-temperature
values at small lab scales for water and wastewater treatment could be challenging and
contradictory to the development of ideal low energy consumption technologies.

3.2. Non-Thermal Plasma

Non-thermal plasma (NTP) refers to electrical discharge occurring in the temperature
range of 300–50,000 K ≈ 26.85–726.85 ◦C). In non-thermal plasma, the electron tempera-
ture is much greater than the ions and gas temperature (Te » Ti ≈ Tg ≈ 10,000–50,000 K
≈ 14,726.85–49,726.85 ◦C, with a corresponding ionisation energy range of 1–10 eV and
electron density in the range of 109–1015 cm−3). Non-thermal plasma is subdivided into
four categories namely corona discharge (CD), dielectric barrier discharge (DBD), glow dis-
charge (GD), and atmospheric pressure plasma jet discharge (APPJ). The plasma properties
presented in Figure 1 are based on the temperature difference between thermal (≤106 K)
and non-thermal (≤50,000 K) parameters. Although various AOPs have been widely
used for the effective removal of water contaminants/organic pollutants, the incomplete
degradation of pollutants leading to toxic intermediates can result in detrimental effects
than parent compounds; hence alternatives for total oxidation of targeted contaminants are
highly required.

Non-thermal plasma (NTP) in its diverse configurations has been widely used in
various sectors for waste treatment and decontamination purposes. Murugesan et al. [133]
reviewed the physical and chemical properties of non-thermal plasma and their application
in the removal of organic pollutants and microbes. The authors conveyed that the chemical
cocktail consisting of UV radiation and diverse reactive species render non-thermal plasma
an adequate treatment method that is economically feasible and has been applied in various
areas of environmental remediation. NTP used in combination with adsorbents, catalysts,
electrolysis, biodegradation, ultrasonication, ozonisation and ultrafiltration processes could
be promising methods for the removal of persistent pollutants and microorganisms from
polluted waters, and this was also endorsed by Zeghioud et al. [134].

For instance, Zeng et al. [135] studied the degradation of ibuprofen (IBP) pharma-
ceutical drug in aqueous solution by cylindrical wetted-wall corona discharge reactor.
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In their study, the effect of parameters including initial concentration, pulse repetition rate
were investigated. The outcome of their study showed that the highest degradation of
91.7% of 60 mg/L IBP was achieved after 80 min of plasma exposure corresponding to
an energy yield of 6.9 g/kW h. IBP degradation followed the first-order reaction rate of
30.3 × 10−3 min−1. The resultants IBP by-products identified by high liquid performance
chromatography (HPLC) were amenable and their degradation mechanistic pathways
show that IBP was almost totally decomposed to H2O, CO2, and simpler salts. Another
investigation focusing on oxidation of a wide range of pharmaceuticals from real wastewa-
ters (raw sewage from a public hospital and biologically treated wastewater of a health-care
institute) by gas-phase pulsed corona discharge was carried out by Ajo et al. [136]. Their
results showed 87% removal of pharmaceutical residues from raw sewage with reason-
able energy consumption of 1 kWh−3 while 99.99% removal of pharmaceutical toxins
in biologically treated wastewater was reached at low energy of 0.5 kWh−3. A similar
study involving the treatment of wastewater containing various pharmaceuticals including
carbamazepine, diatrizoate, diazepam, diclofenac, ibuprofen, 17α -ethinylestradiol and
trimethoprim by corona discharge was also conducted by Banaschik et al. [137] and en-
hanced the removal percentages of pharmaceuticals up to 99.99%. Extended use of corona
discharge for the removal of pharmaceuticals in wastewater effluents has been outlined
in the literature [138,139]. However, it can be pointed out that in these corona discharge
configurations the high voltage electrode (HV) is likely in direct contact with the effluent
being remediated and could be attacked by oxidative species produced in solution.

On the other hand, Gadri et al. [140] developed atmospheric uniform glow discharge
plasma that was tested for sterilisation and surface decontamination. The authors informed
that this discharge is typical non-thermal plasma with conventional features like DC normal
glow discharge that operates in air at low pressure. Gadri et al. [140] claimed that their
plasma system generates various active species responsible for surface disinfection and
sanitization. They reported that their technology is feasible, cost-effective, and appropriate
for the cleaning of three-dimensional workpieces such as medical instruments. Glow
discharge plasma has been used for various purposes from food packaging and screening
of contaminants in foodstuff to fabrication, modification and treatment of nanomaterials
with improved properties [141–145].

Conversely, Rashid et al. [146] investigated the treatment of textile wastewater by
underwater parallel-multi-tube air discharge plasma jet with an input power of 16 W,
voltage varied from 0 to 10 kV at a frequency of 4 kHz. The model wastewater used in
their study consisted of three types of industrial-grade textile dyes including remazol
blue (RB), remazol red (RR) and remazol yellow (RY). The results showed that almost
70% degradation of all dyes was achieved within 10 min of plasma treatment while the
remaining 30% required prolonged plasma exposure to reach completion. The authors
found that during the treatment process, solution pH decreased, while the conductivity
increased with the increase of treatment time. The three reactive species O3, H2O2 and
NO3

− were identified by optical emission spectroscopic (OES) and their concentration
decreased in the plasma system during treatment, hence showing their involvement in
the degradation of the model dye pollutants. The authors further show that amines
and alkynes were likely the main by-products that were formed via oxidation of azo-
bonds and nitrogen-containing functional groups probably induced by O3 and OH. [54].
The longer time required to reach total degradation of dyes beyond 10 min of plasma
treatment was certainly due to the recalcitrance behaviour of the degradation intermediate
by-products in the effluent that was being treated. Thereafter, the authors claimed that
their technology is environmentally benign and could be explored in wastewater treatment
facilities. Similar investigations using plasma jet for wastewater remediation have also
been reported in the literature Xin et al. [147]. Apart from this, plasma jet has also been
used in mass spectrometry analysis for direct detection of compounds from surfaces and
complex matrices [148].
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Marković et al. [149] studied the degradation of ibuprofen (IBP) by falling water film
dielectric barrier discharge reactor set at the applied voltage of 17 kV, frequency of 300 Hz,
and a 65 W with and without homogenous catalyst (Fe2+). The experiments were carried
out at atmospheric pressure and room temperature. The results of their study showed that,
after 15 min of plasma run, 80% degradation of 60 mg/L IBP was achieved with DBD alone
while 99% decomposition of IBP at the same initial concentration was reached with DBD
combined with Fe2+ catalyst. The liquid chromatography-mass spectrometry time of flight
(LC-MS TOF) analysis of the treated water showed that nine degradation intermediate by-
products were obtained with DBD alone and four with DBD/Fe2+. The toxicity effect of the
treated effluent determined with two bioassays: Vibrio fishery and Artemia salina showed
that the resultant by-products were amenable. A comparable study was conducted by
Tang et al. [150] on the degradation of oxytetracycline (OTC) antibiotics using a gas phase
dielectric barrier discharge (GPDBD) plasma reactor at the following conditions: applied
voltage 7.5 kV, airflow rate 1.0 L/min, initial OTC concentration 100 mg/L, and initial
pH 5.0. The outcome showed that after 20 min of plasma discharge experiment, 93.4% of
OTC degradation was achieved at the applied conditions. The decomposition of OTC in the
DBD system with time was followed by UV-vis and HPLC-MS. The TOC and COD removal
efficiencies 43.0% and 73.7%, respectively demonstrated that the resultant degradation
metabolites of OTC were less harmful, and the proposed elimination mechanism pathways
demonstrated that OTC was degraded to H2O, CO2, and simpler entities. Complementary
investigations on the removal of pharmaceutical residues in water by DBD technologies
have been reported [134,151,152].

The application of non-thermal plasma for water and wastewater remediation showed
that most studies reviewed above were conducted at atmospheric pressure and room
temperature with less power consumption and hence reduced energy demand. This is
manageable as compared to thermal plasma whose operational atmospheric conditions
often involve high-temperature fluctuation between 300 and 50,000 K that might be energy
demanding and challenging to handle at small scale water and wastewater treatment
laboratories. In comparison, it could be inferred that TP is efficient in recycling solid
and liquid wastes and vital for research and development focusing on understanding its
properties and limitations. In contrast, for immediate urgencies in water and wastewater
treatment facilities, NTP technologies requiring less energy and operating at normal condi-
tions of temperature and pressure could be suitable alternatives for water and wastewater
purification.

Still, NTP induced by various electrical discharges encounters some limitations. For
example, although the corona discharge electrode arrangement has been shown effective for
the remediation of contaminated water, direct exposure of the high voltage (HV) electrode
to the solution being treated often results in its corrosion and hence the discontinuation of
the treatment process and extended contamination of the treated effluent. Conversely, glow
discharge and plasma jet have demonstrated excellent capacity for surface cleansing, water,
and wastewater purification to some extent. However, the scalability of these electrode
geometries to large treatment units (semi or industrial levels) for the treatment of thousands
of litres of polluted water could be costly and problematic.

Alternatively, in DBD technologies the HV electrode is protected by one or more
dielectric barriers that ensure long-term production and circulation of highly energized
electrons whose contact with feed gas generates diverse reactive species that effectively
combat and convert the targeted pollutants directly into H2O, CO2, and related harmless
by-products. Extended prominence of DBDs over other configurations relies mostly on
the abundance of highly energized electrons freely circulating the dielectric barrier tube at
minimal energy of 1 eV. Its feasibility at room temperature, scalability, and flexibility renders
DBD one of the most potentially applicable treatment techniques for water and wastewater
purification. These advantages of DBDs have therefore attracted worldwide attention for
their use in water and wastewater treatment. Since the accumulation of pharmaceutical
residues in polluted water has continuously increased in the past decades as a result of
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excessive consumption of medications coupled with the up-surging world population,
the removal of pharmaceutical toxins in polluted water is of urgent interest. Therefore,
the application of DBDs for complete decomposition of pharmaceutical contaminants in
water effluents has gained global attention. Hence this review discusses various studies
dedicated to the removal of pharmaceuticals by DBD technologies.

3.2.1. Dielectric Barrier Discharge: General Description

Non-thermal plasma based on DBDs usually referred to as silent discharges have
emerged as novel remediation technologies and have been employed for various ap-
plications including ozone generation, control of gaseous toxins, and the demolition of
carcinogenic compounds [153,154]. DBD configurations aim at the generation of various
molecular and radical species such as O3, H2O2, O., O2

.−, OH, electrons and UV photons
that directly or indirectly decompose hazardous compounds. The priority of DBDs is the
production of non-selective hydroxyl radicals that is an exceptionally effective oxidant,
with an oxidizing potential of 2.8 V higher than that of ozone 2.07 V [153]. The OH radical is
the most dominant oxidative species that non-selectively attacks recalcitrant contaminants
and converts them into dissolved CO2, H2O, and other harmless substances.

The most common DBD electrode configurations involve either single or double planar
and cylindrical dielectric-barrier discharges [153,154]. These configurations consist of one
or more insulating layers often referred to as a dielectric barrier between metal electrodes
and discharge gap(s). The presence of more dielectric boundaries in DBD configurations
not only minimizes the risk of electrode corrosion but intensifies the existence of electric
and magnetic fields to ensure the even distribution of highly energized electrons around
the dielectric materials even though the upscaling of these configurations has always been
challenging.

3.2.2. Summary of the Dielectric Barrier Discharge Operational Scheme

DBD involving the generation of non-selective hydroxyl radicals is a promising tool
for effective degradation and mineralization of target pollutants in water and wastewa-
ter [20,43]. Apart from the production of OH radicals, the DBD system also generates UV
light, O3 and H2O2 and their combination in aqueous media allow water and wastewater
treatment without the addition of chemicals. Even though various DBD configurations
have been employed in the decomposition of pharmaceuticals in aquatic media [155–160],
their efficiency may depend on their electrodes geometries. A typical DBD reactor de-
scribed by Mouele et al. [54] consists of the inner and outer quartz dielectric barriers/tubes
and the region between the two tubes is often referred to as the air gap or discharge zone.
The two tubes are sealed at the top of the outer part of the reactor. At the bottom, the second
barrier is sealed to a porous sparging outlet. The inner tube diameter is often around 1 mm
and that of the outer tube is about 7 mm. The DBD reactor (e.g., 23–25 cm) long with an
inlet and outlet for air circulation and an air gap of about 2 mm. The simulated wastewater
placed in the reactor is considered as the ground electrode and earthed to complete the
circuit. The air compressor with a controllable flow rate (using an airflow meter) is con-
nected to the gas inlet. The feed gas fed from the inlet freely circulates through the plasma
zone and is uniformly spread as bubbles into the simulated wastewater via the porous
sparging material to achieve maximum oxidation of the pollutant. The set voltage, airflow,
pollutant volume, and other parameters are either varied or kept constant for optimisation
purposes. A power supply set at a voltage delivering a certain amount of current is directly
connected to a high voltage electrode that is immersed in an electrolyte solution placed
in the inner tube of the reactor. The interaction between the highly energised electrons
around the inner tube and air gas (N2 and O2) or pure oxygen (O2) induced the formation
of UV light and various exciting unstable species such as N*, O., O3, etc. in the plasma
zone. The generated species in the air gap follow an avalanche of chemical reactions and
are directly circulated into the polluted water, where secondary species such as H2O2 and
OH. are subsequently produced.
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3.2.3. Degradation of Pharmaceuticals by DBD Configurations

Dielectric barrier discharge (DBD) technologies have been extensively used for the
decontamination of pharmaceutical contaminants from water and wastewater. For in-
stance, Kim et al. utilised DBD to decompose veterinary antibiotics such as lincomycin,
ciprofloxacin, enrofloxacin, chlortetracycline, oxytetracycline, sulfathiazole, sulfamethox-
azole, sulfamethazine, and trimethoprim in aqueous solutions. The influence of various
parameters such as the type of gas used (air, O2) and gas flow rates, initial concentration of
contaminants and the discharge power on the decomposition of the targeted antibiotics
was assessed. The results showed that antibiotics decomposed differently, and their degrad-
ability depended on the amount of energy provided and hence followed an exponential
decay for the energy delivered in the DBD system. The effect of the evaluation of the pa-
rameters showed that at an optimum concentration of 5 mg/L, the energy required ranged
is between 0.26 and 1.49 kJ/mg that corresponded to 60% of degradation. Likewise, about
0.39 to 2.06 kJ of energy was required to achieve 90% degradation at the same concentration.
Table 3 presents a summary of the degradation of pharmaceuticals by DBD systems. It is
worth noting that the diagnostic of configurations used to achieve significant removal
percentages was not clarified [113].

Subsequent research investigation by Magureanu et al. [113] on the degradation of
pharmaceutical compound pentoxifylline in water using a continuous semi-batch single
dielectric barrier discharge reactor (Figure 2) at normal conditions of temperature and
pressure revealed that after 60 min, about 92.5% of pentoxifylline removal was achievable.
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A similar DBD configuration was employed for the oxidation of three β-lactam an-
tibiotics (amoxicillin, oxacillin, and ampicillin) in water. The outcome showed that after
30 min, about 90% of amoxicillin and oxacillin were oxidised and after 120 min more than
90% of ampicillin degradation was reached.

Some pharmaceuticals have been proved non-degradable by AOPs as well as in
conventional treatment methods. A typical example focuses on both ionic and nonionic
ICM-iopromide claimed to be recalcitrant to ozone and traditional wastewater treatment
plants [156]. Liu et al. [156] investigated the removal of a unique kind of ICM-iopromide
(IOPr) using a dielectric barrier discharge (DBD) reactor (Figure 3), no decrease in total
organic carbon (TOC) was observed. Likewise, using FT-IR spectra proved that the degra-
dation of the IOPr molecule was mainly induced by hydroxylation, carbonylation, and
deiodination processes. The increase in the BOD5/COD ratio indicated that the IOPr
compound is biodegradable and its biodegradability follows first-order kinetics while the
resulting by-products of IOPr after DBD treatment were easily absorbed and biodegraded
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by activated sludge. DBD was thus proven to increase the biodegradability of recalcitrant
pollutants.
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1. High voltage (HV) generator, 2. Oscilloscope, 3. Quartz reactor [156].

It is however crucial to clarify the difference between the terms degradation and
mineralization. During the degradation process, the targeted contaminant is subjected
to selective oxidative species such as ozone, or to a non-selective radical like OH. which
may undergo reaction mechanisms such as ring-opening. This in turn might lead to
the formation of either bigger molecules than the parent compound or smaller entities.
The small by-products produced in the DBD system can then be further oxidised to dissolve
CO2, water, and simpler salts, often indicated by a decrease in TOC content, and such
process is often referred to as mineralisation which is the principal goal of most advanced
oxidation processes.

Alternatively, the bigger or smaller by-products can react to yield new substrates with
even higher molecular mass and often referred to as oligomerisation. In other words, in
the DBD configuration used by Liu et al. [156], IOPr was degradable as shown by the
98.8% decomposition percentage obtained and biodegradable as indicated by the increase
of BOD5/COD ratio. Likewise, the recalcitrant change in TOC content demonstrated that
IOPr was not mineralised. Therefore, an improvement of the DBD system employed in
their investigation might be necessary to yield more OH., that represents the driving force
of the mineralisation process. This confirms once again that an efficient DBD configuration
should be capable of producing a huge amount of OH. in such a way that even if the
targeted compound is selective towards certain oxidants, in the end, its mineralisation
should occur [157–159].

Krause al. [160] studied the degradation of persistent pharmaceuticals in aqueous
solutions by a positive dielectric barrier discharge treatment exhibited in Figure 4. Results
showed that the model pollutants carbamazepine, clofibric acid, and iopromide could be
decomposed as a single solution mixed with ultra-pure water. Clofibric acid and iopro-
mide were decomposed after 30 min, while 98% and 99% removal of carbamazepine and
iopromide were attained, respectively. DBD configurations (Figure 5), modified by Krause
et al. [161] was redesigned for the removal of pharmaceuticals from water and wastewater
and to examine the degradation of endocrine-disrupting chemicals (EDCs) carbamazepine,
clofibric acid, and iopromide by DBD-corona rotating drum discharge reactor over water.
Previously, the three pharmaceuticals were selected at the same concentration 0.1 mM with
different powers values ranging from 250, 500 to 750 W. In the first set of experiments, the
three compounds were degraded individually. Results showed that after 30 min of the
experiment, the degradation efficiency of carbamazepine and iopromide reached 94% and
98%, respectively at 500 W, while clofibric acid showed the highest removal.
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Figure 4. Diagram of the flow-through reactor. 1—barrier electrodes; 2—catalytic counter-electrodes;
3—corona discharge; 4—stainless steel plane; 5—PTFE isolator; 6—thin water film; 7—airproof case;
8—ceramic isolator; 9—gas inlet and the two injection points; 10—exhaust; 11—frequency generator;
12—high voltage transformer; 13—sample reservoir; 14—external gear pump; 15—flow control;
16—Teflon tube [161].
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In contrast, exposure to the mixture of the three compounds showed that the oxidative
degradation of carbamazepine and clofibric acid reached 99% at 500 W after 90 min of
treatment. Likewise, 67–75% of iopromide removal was achieved at the same conditions.
These results obtained confirm the effectiveness of DBD configurations during the water
treatment process. The difference in degradation percentages recorded when the three
pollutants were degraded individually or in the mixture demonstrates that even though
these compounds belong to the same class (pharmaceuticals), they have different physical
and chemical properties. That is, some may be highly reactive with certain oxidants
produced in the DBD system while others might resist the effect of oxidizing species and
hence exhibit lower degradability. Therefore, to overcome this limitation, a performant
DBD configuration could be designed. This in return may facilitate the generation of a
significant amount of non-selective OH radicals that may directly convert contaminants
into CO2, water, and inorganic salts.

Rong et al. [157] studied the degradation of sulfadiazine (SDZ) antibiotics by water
falling film dielectric barrier discharge shown in Figure 6. During their experiments, the
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authors noted that the degradation of SDZ depended on output power intensity. Conse-
quently, the decomposition of SDZ was evaluated at three different output intensities 100 W,
150 W and 120 W. Results showed that the highest degradation of SDZ was 96% achieved at
150 after 15 min of the experiment. Likewise, 87% and 94% of ZDS removal were achieved
at 100 W and 120 W, respectively. Investigative studies of the impact of some parameters
(initial concentration, gas type (air, O2) and gas flow rate) on the degradation of synthetic
antibiotics mainly lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline, oxytetracy-
cline, sulfathiazole, sulfamethoxazole, sulfamethazine, and trimethoprim using dielectric
barrier discharge (DBD) plasma system (Figure 7) showed that antibiotics were efficiently
degraded and their removal was energy-dependent [160]. These results proved that the
DBD configuration had potential as an efficient technique for water decontamination [162].
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To recall, the occurrence of drugs in water sources can result in more toxic by-products
that require urgent dismissal. This entails that the chemicals in pharmaceuticals and
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personal care products speedily transform into different complexes when they enter the
environment and their toxic effects are moderately known. Extended studies have been
devoted in the past half-decade for complete decomposition/oxidation of pharmaceutical
toxins and metabolites.

For instance, Xina et al. [163] assessed the degradation of triclosan (TCS) by a single
planar dielectric barrier discharge (DBD) plasma reactor presented in Figure 8. During their
investigation, the effect of input power varied from 60, 80 to 100 W, TCS initial concentration
changed from 5, 8 to 10 mg/L and airflow rate altered from 30, 45 to 60 mL/min upon the
removal efficiency of TCS was examined.
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The results of their research indicated that at the following fixed conditions: TCS
with an initial concentration of 10 mg/L, airflow rate 45 mL/min and discharge time of
18 min, the degradation efficiency of TCS increased with the increase of input power and
the highest of TCS removal 86% was achieved with 100 W at the applied conditions. On the
other hand, at initial TCS concentration of 10 mg/L and input power of 80 W and discharge
time of 18 min, the removal percentage of TCS rose with the increase of airflow rate,
nevertheless the greatest TCS removal efficiency of 85% was attained with the airflow rate
of 45 mL/min at indicated conditions. Moreover, at the input power of 80 W and an airflow
rate of 45 mL/min and discharge time of 18 min, the impact of TCS initial concentration
did not define any continuous trend, likewise, the highest TCS degradation efficiency of
about 85% was reached with 8 mg/L TCS initial concentration at the applied conditions.
Besides, Xina et al. [163] successfully proved that at the following optimum conditions,
10 mg/L TCS initial concentration, the input power of 80 W, airflow rate of 45 mL/min,
and discharge time of 18 min, 85% of TCS removal was achieved with DBD alone. The total
organic carbon (TOC) removal rate reached 12% at pH 6.26 indicating that the various TCS
degradation intermediate by-products of TCS were thoroughly mineralised to dissolve
CO2, H2O, and aqueous innocuous entities. Their outcomes clearly show that the DBD
system alone is effective for the decontamination of pharmaceutical residues in water and
wastewater.

A parallel study focusing on the decomposition of aqueous triclocarban (TCC) by di-
electric barrier discharge (DBD) as disclosed in Figure 9 was conducted by Wang et al. [164].
During their investigation, the effect of initial concentration and output power upon the
degradation of TCC was investigated. The outcomes of their study showed that at 10 mg/L
TCC and discharge power of 38 W under air plasma exposure, the degradation rate of TCC
reached 0.20 mg/L min−1 after 30 min with DBD alone. The authors further showed that
at the experimental conditions, the mineralization efficacy of TCC reached 12% with the
DBD system alone. Consequently, 64% of TCC toxicity removal was achieved with DBD
alone after 30 min of plasma treatment. The GC-MS results showed that the refractory
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fragmentation by-products of TCC were converted to dissolved CO2, H2O, and simpler end
products. Therefore, the study by Wang et al. [164] demonstrated that the DBD protocol
is an excellent treatment technology even though the addition of catalyst at optimised
conditions could improve the mineralisation of the targeted pharmaceutical pollutant.
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Aziz et al. [165] used a planar falling film DBD reactor disclosed in Figure 10 for the
degradation of the non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac (DCF) and
ibuprofen (IBP) in aqueous solution in comparison with other advanced oxidation processes
including photocatalytic ozonation and photocatalytic oxidation. The results showed that
at the following conditions: DCF and IBP initial concentration 50 mg/L each, discharge
power 200 W under Ar gas atmosphere, complete degradation of DCF with DBD alone was
reached after 20 min while that of IBP was achieved after 15 min of exposure to plasmas.
The authors further showed that the combination of the DBD system with Fenton reagent in
a gas mixture Ar/O2 enhanced the removal of the two drugs with total DCF decomposition
attained after 10 min and that of IBP after 20 min of plasma treatment. These outcomes
showed that both pollutants were differently decomposed under both DBD alone and
DBD combined with photocatalyst systems. This could be attributed to the recalcitrance
properties of DCF and IBP degradation intermediate by-products that certainly retarded
their total mineralisation. The comparison of the DBD system with other AOPs showed that
the abatement of DCF and IBP pharmaceuticals was adequate with photocatalytic oxidation
and operative with direct ozonation in darkness. Moreover, the combination of ozonation
and photocatalysis resulted in synergetic improved degradation and mineralization of both
pharmaceuticals. Likewise, Aziz et al. [165] highlighted that the efficiency of their DBD
system could be as effective as the AOPs but may largely depend on the feed gas used in
the discharge process.

Zhang et al. [166] tested the efficiency of a single axial dielectric barrier discharge
system shown in Figure 11 upon the putrefaction of simulated acetaminophen (APAP)
model water pollutants. During their investigation, the effect of the following parameters
applied voltage varied from 18, 20, and 22 to 24 kV and solution pH changed from 4, 6.5,
7.5, 9 to 11.1 upon the removal of APAP was surveyed, distinctively. The outcomes of their
study showed that at the applied voltage of 18 kV, 92% of 20 mg/L APAP degradation
at pH 7.5 was achieved after 18 min of plasma exposure with DBD alone. The abetment
of APAP resulted in three greener alcoholic and carboxylic acids by-products as revealed
by UV–vis spectrometry and HPLC/MS analysis. These excellent results demonstrate
the effectiveness of DBD technology in the remediation of pharmaceutical polluted water.
However, authors should ensure that the anode electrode in the reactor geometry should
be well protected and not corrode quickly to ensure the long-running capability of the
plasma reactor.
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An accolade study on the degradation of norfloxacin (NOR) pharmaceutical was
conducted by Xu et al. [167] using an air gas single planar DBD reactor disclosed in
Figure 12. In their investigation, the authors focused on the determination of the aqueous
concentration of major long-lived reactive oxygen species (ROS) including O3, H2O2,
and NO3

− when altering the discharge time varied from 0.5, 1, 2 to 4 min and initial
solution pH changed from 3, 5, 7 to 9 in the DBD system. The results of their work revealed
that at 10 mg/L NOR and 60 W discharge power, the molality (mg/L) of oxidants O3, H2O2
and NO3

− progressively increased with the increase of plasma discharge time. However,
the variation of solution pH did not show a significant influence on the production of
ROS. Relatively, the authors showed that a higher removal rate percentage of NOR above
98% was achieved after 4 min of plasma exposure. The carcinogenic behaviour of NOR
degradation intermediate by-products defined by TOC analysis was reduced at prolonged
treatment time until their complete transformation to water, dissolved CO2 and harmless
inorganics were achieved. These applausive results show the superiority of the DBD
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system in the battement of pharmaceutical toxins in water sources and should highly be
considered as promising advanced technology in water and wastewater remediation.
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Figure 13. Spray dielectric barrier discharge (DBD) reactor set up used for the degradation of
paracetamol [50].

At the following experimental conditions: discharge power 500 W, airflow rate
50 mL/min, paracetamol concentration varied from 10 mg/L to 100 mg/L, the authors
noticed that the removal percentage of paracetamol decreased with the increase of initial
concentration. That is, 99.99% removal of 10 mg/L paracetamol was achieved after 30 min
compared to 53.3% removal reached with 100 mg/L at the same conditions. Besides,
Pan and Qiao [50] observed that the degradation of paracetamol in their DBD system was
quicker than that of its by-products that were slower due to their recalcitrant behaviour
as dictated by TOC analysis. Fortunately, due to the robust capability of DBD to generate
diverse oxidants, refractory degradation intermediates of paracetamol were oxidised to
CO2, H2O, and simpler inorganics after prolonged treatment time, though their oxidation
mechanisms were not elucidated. Several studies focusing on the use of DBD systems
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in the decomposition of pharmaceutical-based organic compounds and examination of
discharge parameters have been established [168–174].

Most of these successful studies on the use of DBD technologies for the removal of
pharmaceuticals show that DBD systems are robust and promising treatment techniques
for the complete removal of pharmaceutical toxins from water sources. Though using
different configurations, the authors of these studies have achieved excellent oxidation
percentages above 80% of pharmaceutical decomposition by DBD alone. In some studies,
the DBD configurations resulted in the total mineralisation of model pharmaceuticals,
and their recalcitrant degradation intermediates by-products while others still require full
revision of their electrode geometries. During these studies, this review points out that
optimisation of various parameters including discharge power, solution pH, pollutant
initial concentration, gas flow rate, plasma treatment time, is a crucial step in achieving
high removal efficiencies of pharmaceutical toxins. Some of the authors in the studies
reviewed above have successfully engaged in the determination of toxicity behaviour of the
selected pollutants and their metabolites mostly followed by TOC analysis. While others
still need to provide lots of effort to achieve these steps. On top of TOC analysis, this review
suggests that environmental Researchers should conduct succinct toxicity tests before and
after the plasma treatment of pharmaceutical contaminated water. This could also be an
excellent indicator of the efficiency of plasma technologies used in the detoxification of
pharmaceuticals from water and wastewater streams.

Degradation studies of pharmaceuticals using single dielectric barrier discharge
(DBDs) systems are summarised in Table 3 and their extended efficiencies in Table 4.
From the research investigations reviewed above, it could be observed that different degra-
dation and mineralisation efficiencies of pharmaceutical compounds were achieved in these
studies due to various oxidative species produced in the corresponding configurations.
Thus, during the treatment of pharmaceuticals from water effluents, it is necessary to opti-
mise parameters to achieve maximum desired removals. The highest removal efficiencies
of most pharmaceuticals surpassed 90% as shown in Table 3 demonstrates that non-thermal
plasma technologies mainly DBD configurations can still be considered as promising pow-
erful methods for water and wastewater treatment. Likewise, the energy yields for the
remediation of pharmaceuticals in polluted water is another effective factor that can be
calculated to extensively assess the performance of DBD configurations summarised in
Table 4.
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Table 3. Degradation of pharmaceutical compounds by various dielectric barrier discharge configurations.

Pharmaceutical Compounds Wastewater
Source

Initial Concentration
(mg/L) pH

DBD Reactor
Configuration and Process

Design
Treatment Scale Treatment Time

(min)
Degradation

% Energy (mol/J) Intermediates References

sulfadiazine antibiotics Synthetic
wastewater 10 9 Water falling film DBD Laboratory

scale 30 87 38.6 × 10−12 Yes [157]

Veterinary antibiotics Synthetic
wastewater 5 NA Single cylindrical DBD

plasma reactor
Laboratory

scale 30 60–90 NA Yes [159]

carbamazepine Synthetic
wastewater 20 NA Ex situ DBD system Laboratory

scale 60 81–90 NA Yes [156]

atrazine Synthetic
wastewater 0.03 5.06 Atmospheric pulsed DBD Laboratory

scale 45 61 NA Yes [175]

17b-estradiol Synthetic
wastewater 0.4 5.6 non-thermal plasma (DBD) Laboratory

scale 30 72.0 NA Yes [176]

pentoxifylline Synthetic
wastewater 100 7 DBD coaxial reactor

configuration
Laboratory

scale 60 92.5 NA Yes [155]

Three b-lactam antibiotics Synthetic
wastewater 100 NA DBD coaxial reactor

configuration
Laboratory

scale 10–30 25–30% of TC NA Yes [158]

(Atrazine, chlorfenvinfos,
2,4-dibromophenol,

and lindane)

Synthetic
wastewater 1–5 NA Batch reactor (R1) and

Coaxial reactor (R2)
Laboratory

scale 15 86.6–98.0 (R1) and
40.3–93.6 (R2) NA Yes [177]

iopromide Synthetic
wastewater 17 NA DBD Laboratory

scale 10 99 0.14 × 10−9 NA [178]

enalapril Synthetic
wastewater 50 NA DBD with falling liquid film Laboratory

scale 120 99.4 2 × 10−9 Yes [179]

carbamazepine Synthetic
wastewater 20 NA DBD with falling liquid film Laboratory

scale 60 90.7 0.18 × 10−9 Yes [156]

carbamazepi Synthetic
wastewater 23.6 NA DBD rotating drum reactor Laboratory

scale 60 94 52.2 × 10-12 NA [162]

iopromide Synthetic
wastewater 79.1 NA DBD rotating drum reactor Laboratory

scale 60 98 54.4 × 10−12 [162]

clofibric acid Synthetic
wastewater 21.5 NA DBD rotating drum reactor Laboratory

scale 30 100 0.11 × 10−9 [162]

amoxicillin Synthetic
wastewater 100 NA DBD with falling liquid film Laboratory

scale 10 100 79.8 × 10−9 Yes [158]

ampicillin Synthetic
wastewater 100 NA DBD with falling liquid film Laboratory

scale 30 100 23.1 × 10−9 Yes [158]

oxacillin Synthetic
wastewater 100 NA DBD with falling liquid film Laboratory

scale 30 100 18.7 × 10−9 Yes [158]

pentoxifylline Synthetic
wastewater 100 NA DBD with falling liquid film Laboratory

scale 60 92 16 × 10−9 yes [155]

carbamazepine Synthetic
wastewater 23.6 NA DBD Laboratory

scale 30 98 21.7 × 10−12 [161]

clofibric acid Synthetic
wastewater 21.5 NA DBD Laboratory

scale 30 100 22.3 × 10−12 NA [161]

iopromide Synthetic
wastewater 79.1 NA DBD Laboratory

scale 30 99 22 × 10−12 NA [161]
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Table 4. Energy yield calculated at 50% degradation of pharmaceutical compounds by various dielectric barrier discharge configurations shown in Table 3.

Pharmaceutical
Compounds

Initial Concentration
(mg/L) Treatment Time (min) DBD Reactor Configuration and

Process Design Power (w) Rate Constant
kr (min−1)

Half-Life Time t1/2
(min)

Energy Yield (G50)
(g/KWh) References

Sulfadiazine antibiotics 10 30 Water falling film DBD 150 6.8 × 10−2 10.19 19.60 [157]

Veterinary antibiotics 5 30 Single cylindrical DBD plasma
reactor 8.9 3.05 ×10−2 22.72 12.16–12.14 [159]

Carbamazepine 20 60 Ex situ DBD system 0.7–12 2.76 × 10−2–3.8 × 10−2 25.10–18.23 308.70–18.01 [156]
Atrazine 0.03 45 Atmospheric pulsed DBD 1.7 2.09 × 10−1 3.31 0.17 [175]

17b-estradiol 0.4 30 Non-thermal plasma (DBD) NA 4.24 × 10−2 16.34 NA [176]

Pentoxifylline 100 60 DBD coaxial reactor
configuration 1 4.32 × 10−2 16.04 2220.29 [155]

Three b-lactam antibiotics 100 10–30 DBD coaxial reactor
configuration 2 9.7 × 10−3 71.44 1820.88–2206.49 [158]

(Atrazine, Chlorfenvinfos,
2,4-dibromophenol,

and lindane)
1–5 15 Batch reactor (R1) and Coaxial

reactor (R2) 30 1.34 × 10−1–2.6 ×10−1 5.17–2.66 2.741–12.95 [177]

Iopromide 17 10 DBD NA 4.6 ×10−1 1.50 NA [178]
Enalapril 50 120 DBD with falling liquid film NA 4.26 × 10−2 16.26 34.6 [179]

Carbamazepine 20 60 DBD with falling liquid film 0.7–12 3.95 × 10−2 17.54 310.40–18.10 [156]
Carbamazepine 23.6 60 DBD rotating drum reactor 250–750 4.68 × 10−2 14.81 10.65–3.55 [162]

Iopromide 79.1 60 DBD rotating drum reactor 250–750 6.5 × 10−2 10.66 37.22–12.41 [162]
Clofibric acid 21.5 30 DBD rotating drum reactor 250–750 3.32 × 10−1 2.08 20.44–6.81 [162]
Amoxicillin 100 10 DBD with falling liquid film 2 0.115 × 101 0.60 7213.23 [158]
Ampicillin 100 30 DBD with falling liquid film 2 3.83 × 10−1 1.80 2379.30 [158]
Oxacillin 100 30 DBD with falling liquid film 2 3.83 × 10−1 1.80 2381.12 [158]

Pentoxifylline 100 60 DBD with falling liquid film 1 4.2 × 10−2 16.5 2208.03 [155]
Carbamazepine 23.6 30 DBD 250–500 1.3 × 10−1 5.33 4.44–2.22 [161]

Clofibric acid 21.5 30 DBD 250–500 3.32 × 10−1 2.08 4.10–2.05 [161]
Iopromide 79.1 30 DBD 250–500 1.53 × 10−1 4.52 15.04–7.52 [161]



Int. J. Environ. Res. Public Health 2021, 18, 1683 27 of 42

A comprehensive comparison of non-thermal plasma reactors (corona discharges) in
terms of energy yield was carried out by Malik [180] who showed that the energy yield
required to decompose half concentration of the pollutant (G50) is an excellent factor to
evaluate the performance of a typical plasma reactor. The energy efficiency (yield) of
plasma configurations depends on various factors including the recalcitrance behaviour
of intermediate by-products because of their competitive reactions occurring between
themselves or with their parent compounds. Extended parameters such as type of plasma
reactor, chemical structure, and concentration of pollutants, pH and additives, to men-
tion only a few, may also impact the energy yields of plasma configurations [180]. Yet,
Mok et al. [181] reported that the efficiency of AC powered dielectric barrier discharges
generating UV, O3, and co-species for the treatment of polluted water is 20 times higher
than that of the reference actuator. In case air is used as the feed gas, Grabowski et al. [182]
sustained that this might increase up to 400 times higher than the reference reactor when
low concentrated solutions are remediated. Likewise, Nakagawa et al. [183] endorsed that
the energy yield could further increase to 2000 times higher than the reference configuration
when contaminated water is sprayed into pulsed-DBD in an oxygen-filled wire-to-cylinder
electrode gap. So, in this review, the performance of various DBD configurations upon
the degradation of pharmaceutical residues summarised in Table 4 was also evaluated
by comparing their energy yield (G50) as suggested by Malik [180]. The data in Table 4
showed that the energy yield required for the degradation of pharmaceutical pollutants
by DBD reactors varied from 0.17 to 7213.23 g/kWh. In this regard, 30 µg/L atrazine
treated in an atmospheric pulsed DBD reactor at an input power of 1.7 W, only took
3.31 min to reach half of its concentration with an energy yield of 0.17 g/kWh, however,
its total degradation required 45 min. On the other hand, 100 mg/L amoxicillin treated
in DBD with falling liquid film reactor took less than a minute to reach half of its initial
concertation at an energy yield of 7213.23 g/kWh while its complete decomposition was
achieved within 10 min. These signify that the nature of the pollutant, the resistance of the
degradation intermediate by-products as well as reactor electrode geometry impact upon
the energy yield of DBD systems. Extensive scenarios could also be depicted in Table 4.
For instance, in Table 4, the following pharmaceuticals, sulfadiazine antibiotics, enalapril,
carbamazepine, and ampicillin treated in the same DBD with falling liquid film reactor
at different concentrations and input powers resulted in different energy yields in the
order of 19.60, 34.6, 310.40 and 2379.30, respectively. This shows that the type of pollutant,
concentration, and power applied for their decomposition affect their energy yields as
well [180]. Next, ampicillin, oxacillin, and pentoxifylline treated with the same liquid
film falling DBD reactor at the same concentration (100 mg/L) but different input powers
resulted in different energy yields (2379.30, 2381.12 and 2208.03, correspondingly) and
half-life times (1.80, 1.80 and 16.5 min, respectively). This confirms that even when selected
at the same amount, the nature of the pollutants plays a crucial role in the determination
of energy yield and hence the reactor efficacy. Their difference in half-life times indicates
that pentoxifylline was the most recalcitrant and required 60 min for full degradation as
compared to ampicillin and oxacillin that were removed after 30 min of plasma discharge
experiment (Table 4). All these scenarios show that DBD technologies are effective methods
for water and wastewater remediation. However, the choice of a DBD configuration may
depend not only on degradation efficiencies, half-life time but also on their energy yield
that is required to reach half of their initial concentrations.

Extensive reconfigurations of DBD reactors and their subsequent optimisation could
be convenient suggestions to overcome most of the limitations previously highlighted
and hence cognitive means for total oxidation of recalcitrant pharmaceutical compounds.
From the DBD configurations employed in the degradation of pharmaceuticals as reviewed
in this text, there is little information on the use of double cylindrical dielectric barrier
discharge (DCDBD) configuration (Figure 14) for the removal of pharmaceuticals.
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Figure 14. Different reaction zones encountered in the dielectric barrier discharge (DBD) system [120].

The DBD has proven to be a potent configuration for the decomposition of organic
compounds in aqueous media, hence this particular configuration could be applied for
the effective degradation of pharmaceutical pollutants [20,120]. Therefore, this review
advocates the use of DCDBD as a more powerful AOP as compared to previous AOP
techniques. DCDBD delivers enormous benefits such as great reactor stability and efficiency,
uniformity of the UV-vis, energy saving, rapid processing, use of no chemicals as well as the
non-destructive impact on the ecosystem. This system is also capable of generating ozone,
hydrogen peroxide, singlet oxygen, superoxide radicals, hydroxyl radicals, and other active
species. The combination of these reactive species has been reported to degrade biological
and chemical pollutants rapidly and efficiently. The DCDBD also affords great degradation
efficiencies of targeted pollutants [43,157,184].

Double Cylindrical Dielectric Barrier Discharge System—Formation of the Free Active
Species in Different Regions

A choice of a double cylindrical DBD plasma reactor (schematically shown in Figure 14)
as a significant AOPs is based on its ability to decompose persistent organics and eliminate
microbes. The system is also capable of generating ozone, hydrogen peroxide, singlet
oxygen, superoxide radicals, hydroxyl radicals, and other active species. The combination
of these reactive species has been reported to degrade biological and chemical pollutants
rapidly and efficiently. To understand the prominence of DBD systems and where the UV
light and some of the highlighted species are formed, the different reaction zones have
subsequently been discussed.

Region (a)

In this region, electric discharge is a source of highly energized particles (electrons)
whose motion gives rise to electric and magnetic fields. The electric field accelerates the
particles while the magnetic field facilitates their deviation along the anode electrode and
its curvature. Kogelschatz [153,154] reported the continuous flow of current increases
electron density and their motion around the anode rod sometimes leads to their collision,
often referred to as electron avalanche. This magnifies the intensity of the electric and
magnetic fields around the high voltage anode electrode. Locke and Shih [185] supported
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that the use of the dielectric material (inner quartz dielectric tube) as an insulator of
the anode does not only minimize the number of charges transported by a single micro
discharge (microplasma) but also permits the even distribution of the micro discharges
around the anode surface area. So, the anode rod and the inner dielectric quartz tube
together constitute one single power electrode that becomes a permanent source of high
energy electrons.

Region (b)

Zone (b) also called discharge/air gap, is the space between the two dielectrics (inner
and outer quartz dielectrics tubes). In this region, the feeding gas (dry air from an air
pump) is passed through and interacts with the highly powered anode electrode. Since
air mostly consists of oxygen (O2) and nitrogen (N2), these molecules readily react with
high energy electrons, generating not only UV light but also leading to the production of
various types of oxygen and nitrogen-based species atomic oxygen, ozone, peroxide ions
formed via dissociation, ionization, recombination and associative chemical reactions [85].

Region (c) and (d)

Region C is also part of the discharge zone. This is the zone where oxygen, nitrogen,
and the resulting species produced in the plasma region are circulated through region C
until they reach the outlet (zone D) of the double cylindrical DBD plasma reactor. At zone
C, molecular and ionic species such as O3, O2, O2

−, N2 and N2O generated in regions B
and C are bubbled into the bulk solution to induce oxidation of the target pollutant [185].
In the DBD electrode configurations, zone C might sometimes represent the sealing area
of the inner tube. This is usually used to protect the bottom of the inner tube against the
pressure resulting from high voltage discharges. Nevertheless, where there was no sealing
in the DBD plasma reactor, a reasonable voltage could be applied for DBD experiments.

Region (h)

In this region of the bulk solution, a magnetic stirring bar with stirring speed in the
range 50–60 rpm could be used to evenly disperse the reactive and active species from zone
D into the contaminated solution.

Region (e)

Zone (E) represents the region next to the outer tube (second dielectric quartz tube).
In this area of the DBD system, the UV radiations diffusing in the bulk solution dissociate
water molecules into OH radicals. Therefore, the decomposition of H2O molecules by UV
light is suggested by [28].

In addition to this, the dissolved O3 mostly in region E can also be irradiated by the
UV light [186] and consequently decomposed into H2O2. Furthermore, the shining UV
also illuminates H2O2 and dissociates it into OH radicals which non-selectively attack and
mineralise the target contaminant into the water and dissolved CO2 [187].

Regions (f) and (g)

In these regions, the active species such as ozone and OH radicals, diffuse in the bulk
solution and destroy the pollutant. Moreover, in regions F and G, the free reactive species
such as hydroxyl radicals resulting from various dissociation processes by UV light might
recombine to form hydrogen peroxide [186].

Additionally, various other species such as reactive nitrogen-based species (RNS)
including NOx, formed via several chemical reaction chains are also found in these DBD
zones. The mechanism of formation of NOx species in the DBD plasma system had earlier
been proposed and when the plasma fluid generated in zone B is transferred to the bulk
solution, the NO2 coexisting with ozone is probably dissolved to form nitric acid and
nitrous acid [187].

Based on this descriptive discussion, DBD reactor configurations have shown great
effectiveness in the removal of pharmaceutical contaminants with more than 90% of phar-
maceuticals removal efficiencies recorded. Though various limitations were encountered
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during DBD plasma experiments, these could be alleviated by reconfiguring DBD elec-
trode geometries and their optimization parameters. Among common DBD configurations
summarised by Kogelschatz et al. [154], only a few or no authors have explored double
cylindrical configurations for the decomposition of pharmaceutical compounds from water
and wastewater. For instance, Rong et al. [157] used a double cylindrical DBD configuration
for the decomposition of a nonsteroidal anti-inflammatory drug (NSAID) diclofenac in an
aqueous solution and the results obtained showed an input power of 50 W and pH of 6.1 a
10 mg/L diclofenac was oxidised within 10 min of the DBD experiment. These authors
claimed that the addition of Fe2+ in the liquid phase promoted the oxidation of diclofenac
drug. A similar investigation using double cylindrical DBD was recently conducted by
Tijani et al. [184] for the decomposition of a 2-Nitrophenol water pollutant and absolute
removal efficiency was achieved. Apart from these mentioned studies, the use of dou-
ble DBD reactors for the degradation of pharmaceuticals has scarcely been documented.
Therefore, this review proposes that double cylindrical DBD electrode geometry could
efficiently be employed to decompose pharmaceutical residues from water and wastewater.
Besides double cylindrical DBD configuration, compatible excilamp DBD technologies
have recently been claimed effective for water and wastewater decontamination [188–192].

DBD Driven Excilamps as a Possible Candidate to Decompose
Pharmaceutical Compounds

The dielectric barrier discharge excilamp (DBD excilamp or DBD driven excilamps) is
one more technology for the efficient production of ultraviolet (UV) and vacuum ultraviolet
(VUV) radiation and photochemical water pollutants mineralisation [154,192–194]. In gen-
eral, excilamps are a class of spontaneous radiation sources based on transitions of rare
gas excited dimers R2*, on halogen excited dimers X2*, or on rare-gas halide excited com-
plexes RX* [189,191]. The most attractive for use in practice today are excilamps on Xe2*,
KrCl*, XeCl* and XeBr* molecules, which produces radiation flux in a relatively narrow
spectral region with maximum wavelength at 172, 222, 308 and 282 nm, correspondingly.
This ensures the selectivity of various photochemical reactions. An important feature of
excimer lamps is currently the absence of mercury in the bulb. Instantaneous ignition of
excilamps implies no warm-up time and immediate availability to work. Today is clear
that DBD excilamps are commercially attractive.

DBD excilamps have diversity in the design concept but the most interest in photo-
chemistry applications is so-called coaxial geometry, which is shown in Figure 15. In this
case, DBD excites the operating gas or gas mixture in the spacing between two coaxial
quartz tubes. The external and internal electrodes are connected to a high-frequency volt-
age generator (with voltage amplitudes up to several kV). The pulse generator guarantees
radiation dosage. Discharge ignition leads to the formation of exciplex or excimer radiation.

The internal cavity of the DBD excilamp can be used for pumping aqueous solutions
containing contaminants (as indicated by the arrows in Figure 15). The radiation of exciplex
molecules provides photo mineralisation of dissolved organic matters.

Photomineralisation can be generally expressed as CnHmYz (hv, O2) → nCO2 +
(m–z)/2 H2O + zHY, where Y are heteroatomic organic molecules that are transformed into
the corresponding mineral acid HY (HNO2, H2SO4, HCl, HNO3, etc.). A similar reaction
proceeds during the interaction of an oxidiser and UV radiation with organometallic com-
plexes, with metal ions being additionally released into the solution. Decomposition of
dissolved pollutants such as pharmaceuticals is possible with no special oxidisers (so-called,
reagentless photolysis) or with ecologically clean oxidisers (e.g., hydrogen peroxide).

Although photo mineralisation is realisable in various ways, it involves an efficient
generation of OH., radicals almost without exception. These radicals have a high oxidising
ability and a short lifetime, react with all matters and can be obtained by different methods.
Besides OH. radicals, oxidation can be realised by superoxide anions (OH2

.–) and O3
particles and singlet oxygen (O.). It was conventionally proven that the most valuable
range for direct photolysis of dissolved organic matters is 200–280 nm, because most
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components (dissolved organic and inorganic) contained in water absorb radiation in
this range.
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Figure 15. Coaxial excilamp design (top) and external view during operation (bottom): 1—excilamp
bulb; 2—external perforated electrode; 3—internal perforated electrode; 4—discharge gap; 5—high-
frequency voltage generator.

Direct photolysis causes excitation of singlet states of organic matters with their
subsequent relaxation to triplet states. These excited states can then be exposed to homol-
ysis, heterolysis and photoionisation (Figure 16). For direct photolysis, for example, the
DBD excilamps on molecules KrCl* (222 nm), XeBr* (283 nm) and Cl2* (259 nm) can be
used [195]. Here the coaxial excilamps (Figure 12) with the pumping of solution through
their inner cavity are applied. That is, the lamp itself is a photoreactor (flow-through
photoreactors) [196] and the quality of lamps can be one or more [197].
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A quite interesting wavelength range is 100–200 nm. The concentration of matters
dissolved in water is normally low. Therefore, VUV radiation is absorbed mainly by water
whose concentration is 55.5 M; that is in typical conditions, the amount of water is a million
times larger than that of matter dissolved in it and hence the radiation energy of a VUV
source is expended mainly in water homolysis H2O + hv→ H2O*→ H. + OH. [133,167].
Next, the pollutant/pharmaceutical reacts with formed radicals and is mineralised. This
is the so-called VUV photolysis. The advantages of VUV photolysis are the following:
(1) extremely high concentration of hydroxyl radicals (locally); (2) no need for additional
oxidisers (in situ generation of H2O2 and O3); (3) efficient photo mineralisation of organics
in a solution; (4) reduced effect of bicarbonates and nitrate ions on the photolysis rate.

Numerous examples of dissolved organic matter photolysis are given in [192,198].
Analysis of available data shows that the most efficient excilamp for AOPs is an excilamp
on Xe2* dimers (λ~172 nm). The shortcoming of VUV excilamps is the small depth of VUV
penetration into water. The contradiction here is the following: when exposed to VUV
irradiation, water is bound to be a solvent but its presence in an irradiated solution is
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undesirable because water decreases the effective volume of the process and impedes the
interaction of radiation with dissolved organic matters.

This contradiction can be resolved in several ways. It is possible to use photolysis with
water in a different aggregate state like, in Oppenländer and Fradl, [199] where wastewater
was primarily transformed into vapour and was then irradiated by a Xe2-excilamp. This
greatly enlarged the reaction volume and accelerated the process of phenol photolysis. The
process was termed photoreactive distillation. It is possible to follow a different way, i.e., to
find chemical compositions in which the water content is small, but the effect of this small
amount is quite significant.

Finally, the problem can be solved with the use of hydrodynamics effects, for instance
by applying static mixers or higher flow rates, in other words, by enhancement of mixing of
the solution. The most simple and effective way to increase the UVU photolysis rate is the
injection of O2 (or air) into DBD driven excimer coaxial flow-through photoreactor [200].
This reactor system is presented in Figure 17. It has been shown that the rate of miner-
alisation of several organic substances other than pharmaceuticals (1-heptanol, benzoic
acid and potassium hydrogen phthalate) dissolved in water was enhanced significantly by
oxygen or air injection.
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This was compared to conditions under nitrogen injection or without gassing. The au-
thors concluded that the great potential of this technique is related to the fact that the
geometry of Xe2-excilamps is widely variable. Moreover, small or large DBD driven ex-
cilamp reactors with incorporated tubes and aerators of different sizes and materials are
possible. Also, this technology is comparatively simple.

So far, the above techniques of using DBD excilamps have not yet found a wide
application in the pharmaceutical pollutant destruction. Although Oppenländer et al. [200]
designed the first flow-through photoreactors precisely for the task of studying the photo-
stability of drugs [196]. We believe that DBD excilamps are undervalued techniques and
have great potential for destroying water pollutants such as pharmaceutical toxicants.

Therefore, unlike other AOPs, this technique allows better control of physical factors
when exposed to water. This means that it is possible to obtain stable results of photolysis,
which is important for the introduction of technology in the water treatment industry.
Moreover, flow reactors can treat relatively large solution volumes, which is also important.
Therefore, we believe that research using DBD excilamps should continue.

3.2.4. Summary of the Degradation of Pharmaceutical Compounds by DBDs

In comparison, the dielectric barrier discharges described in this paper show that
all configurations converge towards the mineralisation of targeted pharmaceutical pollu-
tants. These electrode geometries produce not only UV light, but they are also sources
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of various oxygen-based species that participate directly or indirectly in the generation
of non-selective powerful oxidant hydroxyl radicals (OH.), that oxidise and mineralise
pharmaceutical toxins and certainly other organic micropollutants ideally into dissolving
CO2, H2O, and harmless inorganic by-products.

In these studies, reasonable degradation efficiencies of pharmaceutical compounds
were achieved [155,156,158–161]. Even though pharmaceutical compounds have been
decomposed using various DBDs, some DBD configurations present several limitations.
For example, the pollutant concentration, pH, kinetics, and energy yield efficiency required
in the process are very important parameters that influence contaminant removal; however,
most of these parameters in the decomposition of pharmaceuticals from water and wastew-
ater were not fully examined in most publications reviewed. A complete investigation
of these factors is required to establish the best degradation conditions for the complete
decomposition of these contaminants. Their concentration is a key parameter since the de-
composition of pharmaceuticals decreases with an increase of pollutant concentration [113].
This is probably associated with the chemical stability of their molecular structures de-
signed to resist types of oxidants. Moreover, pharmaceuticals decompose at different pH
values, some have been well removed in acidic, neutral, or basic media [155]. Additionally,
the stability of these compounds may also slow down the rate of their degradation which
usually leads to pseudo-first-order kinetics [201]. Analysis of the studies reviewed in this
paper also shows that the use of UV and ozone generators requires a certain amount of
energy to induce oxidation processes.

However, most papers reviewed in this text did not investigate the energy yield
/energy consumption that dictates the efficiency of the AOPs. With a lower energy con-
sumption of about 1 J/s, double cylindrical DBD and DBD excilamp on Xe2* dimers
(λ~172 nm) could also be used not only as efficient energy-saving methods that produce
UV, O3, H2O2, OH. but also, as promising novel technologies for the oxidation of pharma-
ceutical compounds from water effluents [20,200].

Moreover, the limited use of chemicals in double cylindrical DBD and Xe2-excilamp
configurations is beneficial to avoid more toxicity of the effluent being treated. Various
studies have demonstrated that degradation metabolites are sometimes more toxic than
parent pollutants and the combination of various homogeneous AOPs such as UV/O3,
O3/H2O2, UV/ H2O2 and UV/O3/H2O2 have been proved to largely generate powerful
non-selective hydroxyl radicals through side reactions [28,202]. Though various (planar)
DBDs reactor configurations have been used to decompose organic pharmaceutical pollu-
tants from water and wastewater [48,121], double cylindrical and Xe2-excilamp DBDs have
not been widely used in the decomposition of pharmaceuticals from water effluents. In the
single DBD reactor configuration, the high voltage electrode is protected by one dielectric
barrier and is usually exposed to feeding gas thus the exposure of the high voltage electrode
to a circulating gas could result in its corrosion [20,48,203].

Likewise, in double cylindrical and Xe2-excilamp DBD configurations, the high voltage
electrode is protected by two dielectric barriers and separated from feeding gas which in
turn prevents corrosion and facilitates long-term experimental runs. The region between
the two dielectrics represents the plasma zone in which various oxidative species are
continuously produced and directly circulated into the polluted solution.

This review thus emphasises that though single DBD systems have been used for
water and wastewater treatment, some configurations still show limitations that need
to be overcome by revising and optimising DBD electrode geometries. Hence, double
cylindrical and Xe2-excilamp DBD for instance could be robust technological alternatives
for the degradation of targeted pharmaceuticals.

A variety of degradation/decomposition intermediates and mechanistic pathways
should be detected and quantified to eliminate the challenge of completely removing
pharmaceuticals due to the recurrent phenomenon of most persistent organic pollutants
degradation intermediates often recombining to form large complexes. The successful
prediction of pharmaceuticals degradation mechanistic pathways to promote complete
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removal in final treated effluents using configurations such as double cylindrical and
Xe2-excilamp DBDs are essential to achieve integrated water treatment processes free from
all forms of xenobiotics.

4. Conclusions

Various categories of pharmaceutical toxins are abundantly present in aquatic envi-
ronments across the globe and pharmaceutical industries remain their principal sources.
The predominance of pharmaceutical abundance across the globe is because environmental
pollution and regulation awareness is more advanced in some areas (Asia, North and Cen-
tral America, South America, Europe) as compared to Africa. This review paper presents
studies that prove that single and double dielectric barrier discharges (BDs) successfully
remove pharmaceuticals from water and wastewater. The removal efficiency can be im-
proved by revision of electrode geometries and optimisation of reactor configurations as
desired.

The DBD reactors were proved to have numerous advantages such as the production
of UV light and various oxygen-based species. Based on these benefits, dielectric barrier
discharges (DBDs) are potential energy-saving, cost-effective, and environmentally benign
wastewater treatment technologies. The studies reviewed in this paper showed that
pollutant concentration, pH, kinetics and energy required in the oxidation processes are
essential parameters that determine the decomposition of pharmaceutical compounds from
water effluents.

Proper optimisation of some specific parameters for particular organic pharmaceutical
pollutants removal as well as the degradation intermediates and degradation pathways of
the pollutants were not fully carried out/not provided in most publications reviewed, hence
a complete optimisation study of these parameters during degradation of pharmaceutical
compounds is crucial. The identification and determination of degradation pathways are
of great importance and require further investigation. Finally, toxicity tests of the identified
intermediates and quantification of free active species generated during the oxidation
process also demand adequate research attention.

Furthermore, we also believe that another DBD device—excilamps—should be used
in future studies. DBD review demonstrates that this technique has several advantages
and its potential for the decomposition of pharmaceutical compounds is underutilized.
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