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Abstract: Central to developing effective control measures for the COVID-19 pandemic is under-

standing the epidemiology of transmission in the community. Geospatial analysis of neighborhood-

level data could provide insight into drivers of infection. In the current analysis of Harris County, 

Texas, we used custom interpolation tools in GIS to disaggregate COVID-19 incidence estimates 

from the zip code to census tract estimates—a better representation of neighborhood-level esti-

mates. We assessed the associations between 29 neighborhood-level characteristics and COVID-19 

incidence using a series of aspatial and spatial models. The variables that maintained significant 

and positive associations with COVID-19 incidence in our final aspatial model and later represented 

in a geographically weighted regression model were the percentage of the Black/African American 

population, percentage of the foreign-born population, area derivation index (ADI), percentage of 

households with no vehicle, and percentage of people over 65 years old inside each census tract. 

Conversely, we observed negative and significant association with the percentage employed in ed-

ucation. Notably, the spatial models indicated that the impact of ADI was homogeneous across the 

study area, but other risk factors varied by neighborhood. The current findings could enhance de-

cision making by local public health officials in responding to the COVID-19 pandemic. By under-

standing factors that drive community transmission, we can better target disease control measures. 

Keywords: COVID-19; neighborhood inequity; geographic information system; social determinants 

of health; spatial epidemiology; geographically weighted regression 

 

1. Introduction 

The novel coronavirus disease (COVID-19; caused by SARS-CoV-2) was declared a 

global health emergency by the World Health Organization on 30 January 2020 [1]. By 

mid-November 2020, there were more than 60 million cases worldwide, with over 13 mil-

lion cases occurring in the United States (US) alone, according to the Johns Hopkins Uni-

versity COVID-19 dashboard [2,3]. The current outbreak of COVID-19 has led to an un-

precedented impact on daily life and exposed critical weaknesses in the public health in-
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frastructure in the US. Controlling COVID-19 requires swift identification and contain-

ment of cases and contacts to prevent further community transmission [4]. Understanding 

the transmission dynamics within community settings and determining which groups are 

at the highest risk of infection is the cornerstone of public health interventions for reduc-

ing COVID-19 morbidity and mortality. Geospatial analytics could represent an im-

portant tool for determining community level risk factors, including social determinants 

of health (SDOH). 

Examining neighborhood-level stressors and assets provides an important frame-

work for understanding the SDOH [5]. Simultaneously, at least in the US, renewed atten-

tion is directed toward the significance of the SDOH in contemporary health care dis-

course [6–8]. Important aspects of the SDOH include poverty, low educational attainment, 

rapid urbanization and substandard housing, and lack of employment opportunities 

[9,10]. Additional SDOH relevant to COVID-19 include occupational risks from essential 

work, multigenerational households, homelessness, and food insecurity [11]. Given the 

fact that neighborhood-level social, economic, and environmental factors have both direct 

and indirect effects on health [12–14], understanding how they affect the community 

spread of COVID-19 is invaluable. In essence, knowledge gained about the spatial struc-

tures of any relationship between SDOH and COVID-19 may be used to plan and target 

intervention programming differently across a given study area [15,16]. 

Across the US, researchers have identified spatiotemporal trends in COVID-19 inci-

dence, determined case-fatality rates [17,18], and compared the spatial patterns of socio-

economic variables to identify the factors that correlate with mortality in urban and rural 

settings [19]. Studies have reported that significant neighborhood-level inequities under-

lie the variance in COVID-19 community incidence and mortality rates in the USA [20–

22]. To date, studies that have conducted geospatial analysis of COVID-19 within com-

munities have predominantly used county [17,19,23–28] or zip code [29] as their primary 

unit of analysis. Meanwhile, the geographic unit used in any area-based analysis is fun-

damentally important for how precise estimates of reality are, while also enhancing the 

generalizability of findings and reducing bias. Quantifying the associations between 

COVID-19 and relevant outcomes aggregated to the county and zip code levels may ob-

scure the heterogeneity of both the dependent and independent outcomes of interest [29]. 

In general, smaller geographic units provide more accurate estimates of neighborhood-

level characteristics, the only exception being situations where the number of records 

available at the smaller geography is too small to represent stable estimates of the outcome 

of interest [30,31]. Therefore, census tract may represent an ideal unit of analysis for neigh-

borhood-level characteristics. Additionally, several socioeconomic and demographic data 

are available at the census tract level. Providing COVID-19 surveillance data at census 

tract levels may facilitate spatial analysis of related phenomena and potentially benefit 

public health response efforts. We believe our current analysis using census-tract level 

data overcomes the limitations faced by other analysis using larger units of measure. We 

are unaware of any current reporting or surveillance systems in the USA that provide 

COVID-19 data below the zip code level while integrating SDOH. 

In the current analysis, we used extended spatial analytic procedures to disaggregate 

COVID-19 community incidence estimates provided at the zip-code geographic unit into 

census tract estimates. Subsequently, we assessed the associations between census tract 

measures of SDOH and the community incidence of COVID-19 using a series of aspatial 

and spatially weighted regression models to determine neighborhood drivers of disease 

transmission in Harris County, Texas, the most diverse county in the USA and the third 

most populous with 4.7 million people [32]. 
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2. Materials and Methods 

2.1. Study Setting 

Harris County, which includes the City of Houston, is home to a racially and ethni-

cally diverse population, having more than double the USA proportion of foreign-born 

residents. Houston’s population can be characterized as 44.8% Hispanic, 24.6% non-His-

panic white, 22.5% non-Hispanic African American, and 6.9% Asian [33]. Houston also 

has a large underserved population with one of the highest uninsured rates in the nation 

at more than double the national average (25.4% versus 10%) and a high poverty level 

(20.6% for Houston vs. 11.8% nationally) [33]. Finally, residents in Harris County have the 

highest diversity in life expectancy of any US county, ranging from over 85 years of age 

to 65 years of age in regions that are less than 5 miles apart [34]. 

For this study, we used the USA Census Bureau’s census tract geography (i.e., neigh-

borhoods) as the unit of analysis for the current study. All the census tracts in Harris 

County (N = 786) were considered for inclusion in our analysis. The census tract is a small 

and relatively permanent statistical subdivision of a county that is designed to be homo-

geneous in terms of population characteristics, economic status, and living conditions. 

Nationally, census tracts typically have between 1000 and 8000 inhabitants and vary in 

land size, with an optimum population of 4000 residents or 1600 housing units [35]. 

2.2. Dependent Variable 

COVID-19 Neighborhood-Level Community Incidence 

Around the third week in April 2020, the City of Houston and Harris County jointly 

created an online dashboard that reports the total number of COVID-19 cases diagnosed 

among Harris County residents. Cases were aggregated to the zip code level and dis-

played on a web map [36]. For this analysis, we included only incident cases reported 

between 23 June 2020 and 3 August 2020. Our study period focuses on a spike in COVID-

19 incidence and mortality across Texas following the start of Phase III opening of busi-

nesses across the state, which started in early June 2020. Previously, on 30 March 2020, all 

non-essential businesses were required to close due to the pandemic and had gone 

through a staged reopening (phase I on May 1 and phase II on May 18). Phase III allowed 

all businesses to operate at up to 50% capacity. Additionally, some businesses were able 

to operate at 100% capacity, and there were no capacity limits placed on most outdoor 

areas. To reiterate, we chose this period in order to understand potential relationships 

right at this crucial phase of the very first sign of drastic increases in cases in Harris County 

and across Texas. 

Our dependent variable was derived from COVID-19 cases reported for each zip 

code inside Harris County during our study period. To assemble the variable at the census 

tract level, we used the areal interpolation toolset in ArcGIS Pro 2.6 (Esri, Redlands, CA, 

USA) to disaggregate the provided zip-code level estimates down to census tracts units. 

The areal interpolation exercise involves a two-step process where, first, a prediction sur-

face is created from the source geographic unit (here, the zip code), and second, the pre-

diction surface is averaged within the target geographic unit (here, the census tract) [37]. 

See Figure 1. 
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Figure 1. Predicting COVID-19 incidence at the census tract level. Steps involved in the disaggre-

gation of zip-level COVID-19 community incidence data (observed data) to census tract estimates 

(predicted data) using the areal interpolation toolset in Esri’s ArcGIS Pro. (A) Observed data pro-

vided by the county: cases per 10,000 population at the zip code level. (B) Transform zip code level 

data to a prediction surface by using areal interpolation techniques. (C) Use the newly created 

prediction surface to estimate prevalence at the census tract level. 

We used the Geostatistical Wizard in ArcGIS Pro 2.6 (ESRI, Redlands, CA, USA) to 

implement the areal interpolation tool. We set the wizard to use the “event” input source 

data type, same data type recommended for overdispersed Poisson counts. The visual 

variography tools available in the Geostatistical Wizard are used to build a valid model 

in order to fit the data well and obtain accurate predictions. For our study, we used a K-

Bessel model type and adjusted several variography parameters, including lattice spacing 

(x = 1500), lag size (x = 1800), and number of lags (x = 15). The cross-validation statistics 

are typically used to determine how well the interpolation models fit a dataset with an 

A

B

C
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ideal standardized root mean square of 1.0. With our adjustments, the standardized root 

mean square for our interpolation model reached 0.944. Comprehensive discussions on 

areal interpolation, similar to our approach, have been previously presented [38–40]. 

2.3. Independent Variables 

We assembled a total of 29 neighborhood-level characteristics under seven domains, 

including race/ethnicity and nativity (six variables), socioeconomic disadvantage (one 

variable), disaster vulnerabilities (four variables), over 65 years old (four variables), occu-

pation (seven variables), access to technology (three variables), and senior care facilities 

(four variables). The specific measures that we examined under each domain, many being 

SDOH, are potentially relevant to our understanding of how neighborhood-level charac-

teristics are associated with the community spread of COVID-19. These measures, shown 

in Table 1, were retrieved from the USA Census Bureau’s 2014–2018 American Commu-

nity Survey (ACS) 5-year estimates dataset. The ACS is a nationwide survey that collects 

and produces information on social, economic, housing, and demographic characteristics 

about USA population every year. Over 3.5 million households across the USA participate 

in the ACS annually [41]. The ACS estimates are summarized to specific geographic levels, 

including the census tract. 

Table 1. List of Independent Variables. 

Race/Ethnicity and Nativity 

% Non-Hispanic white pop. 

% Black or African American pop. 

% Asian pop. 

% Other race + two or more races pop. 

% Hispanic or Latino pop. 

% Foreign-born pop. who is not a United States citizen 

Socioeconomic Disadvantage 

Area Deprivation Index (ADI) * 

Disaster Vulnerabilities 

% of households with no vehicle available 

% of adults 18 y and over who have limited English ability 

% of pop. with a disability 

% of pop. with no health insurance coverage 

Over 65 Years Old 

% of pop. that is 65 y and over 

% of pop. 65 y and over who live alone 

% of pop. 65 y and over with a disability 

% of pop. 65 y and over living in quarters 

Occupation 

% Health and healthcare support 

% Human Services 

% Management, science, technology 

% Mobile workers, construction, maintenance 

% Food preparation 

% Personal care 

% Education/Training/Library 

Senior Care Facilities 

No. of assisted living inside census tract 

Capacity of assisted living inside census tract 

No. of nursing homes inside census tract 

Capacity of nursing homes inside census tract 

Access to Technology 

% of Households that have no computer, smartphone, or tablet 

% Households with cellular data plan with no other type of internet subscription 

% of Households with no internet access 

* ADI is a composite indicator of socioeconomic disadvantage that is based on 17 census indicators 

from four major categories: poverty, housing, employment, and education. See Supplementary 

File 1 for more details. 
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All the neighborhood-level measures, except the area deprivation index (ADI), were 

used as retrieved from the ACS. The ADI is a composite measure of neighborhood socio-

economic disadvantage that relies on 17 Census measures (Supplementary File 1) from 

four major categories: poverty, housing, employment, and education [42,43]. We com-

puted ADI for our analysis using the protocol developed and validated by Singh [43]. 

Specifically, our variable was calculated using 2014–2018 ACS dataset considering only 

census tracts within our study area (Harris County). We then grouped the outcome of the 

variable into deciles for ease of analysis. 

2.4. Data Analysis 

We relied on Poisson-based modeling protocols for all analysis steps given that our 

dependent variable is count-based data containing only non-negative integer values. Fur-

thermore, to address the evidence of overdispersion observed in our dataset—the vari-

ance of the dependent variable is greater than the mean—we used the negative binomial 

regression (NBR) technique to analyze the variations in COVID-19 community incidence 

across Harris County census tracts, given specific independent explanatory neighbor-

hood-level characteristics. The NBR is a regression modeling technique based on the Pois-

son-gamma mixture distribution, allowing the variance to have a much wider scope than 

is allowed by the Poisson distribution [44,45]. Technically, in the basic Poisson distribu-

tion, it is assumed that each count occurs over a small interval of time, area, or volume 

(TAV)—so small that the interval = 1. However, where unequal periods of TAV exist, an 

offset must be given in the model. Given unequal census tract populations in Harris 

County, the NBR model was applied to the count of COVID-19 cases in each census tract 

while population was used as an offset term (also called the “exposure variable”) [44]. 

To arrive at the final model, we followed a two-step approach. First, we assembled 

the variables under their respective domains and entered them into a multivariable model 

phase (domain-specific). We used the backward elimination process for domain-level var-

iable selection. With backward elimination, variables were removed sequentially, starting 

with the highest p-value and continuing until only the statistically significant SDOH 

measures remained (passing p-value less than 0.05). After determining the model based 

on our selection, we inspected the results for multicollinearity. We removed any variable 

with a VIF ≥ 5.0 and re-ran the model. Second, the variables that passed the domain-specific 

multivariable selection phase were all entered into a single (domain-agnostic) multivariable 

regression phase— using backwards stepwise selection with the passing p-value < 0.05 and 

unacceptable VIF ≥ 5.0 here, too. All analyses were completed using Stata 16.0 (Stata Corp, 

College Station, TX, USA). We did not employ any technique for multiple comparisons 

because statistical tests were run within each domain separately, reducing our number of 

comparisons. Additionally, the two-step approach we used allowed us to select variables 

that were included in the final model, as opposed to just listing a bunch of variables. 

In addition to the aspatial global Poisson regression analyses described above, we 

used the geographically weighted Poisson regression (GWPR) to identify spatial depend-

encies in the relationship between the neighborhood-level SDOH characteristics and 

COVID-19 community incidence. The GWPR technique extends the conventional regres-

sion framework by allowing local variations in rates of change among areas so that the 

coefficients in the model are specific to a location (i.e., local coefficients) rather than being 

global estimates [46,47]. These local beta (β) coefficients identify neighborhoods where the 

exposure–outcome relationships are strongest or weakest, or neighborhoods where rela-

tionships diverge from what was observed in global models. In essence, GWPR exposes 

spatial variations in the exposure–outcome relationship that global modeling techniques 

overlook [46,47]. Parameters of regression models for each regression point are estimated 

based on nearby observations, whereby data on closer census tracts have greater effect on 

estimates for any given tract than data for farther census tracts. Geographic weights are 

identified from a kernel function. The bi-square kernel uses an explicit threshold, assign-
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ing a weight of zero to any data observed outside of the bandwidth, and an adaptive ker-

nel is appropriate when the regression points are irregularly positioned [18], as is the case 

in our study area. We used an adaptive bi-square kernel and the “golden section search” 

function in GWR4 in order to select an optimal number of k neighbors to be included in 

the local model fitting. The bandwidth selection protocol we used produced an optimal 

bandwidth of 54. In the case of the current analysis, only the variables that remained sig-

nificant and non-collinear in the final stage of the aspatial global regression were allowed 

into the GWPR. Notably, although the variable “capacity of assisted living inside census 

tract” stayed significant in the final global regression model, it exhibited strong collinear-

ity during the local GWPR regression run and was therefore excluded from the analysis. 

We ran the GWPR with the GWR4 software (Arizona State University, Phoenix, AR, USA) 

(http://geodacenter.asu.edu/gwr). Details about the GWR4 software settings have been 

previously described [48]. The local coefficients that resulted from the GWPR model using 

the GWR4 software were mapped in ArcGIS Pro (Esri, Redlands, CA, USA). 

For all the Poisson regression analyses described above, effect estimates were ex-

pressed in terms of relative risk (incidence rate ratios = IRR) by exponentiating the Poisson 

regression coefficient. This was interpreted as an increase or a decrease in the risk of 

COVID-19 incidence associated with a 10-unit change in the independent variable. 

3. Results 

We observed a non-random pattern of incidence rate of COVID-19 at the census tract 

level in Harris County, Texas. Analysis of the incidence rate map suggest that higher rates 

of disease are more common in specific and highly focal areas located in the eastern–cen-

tral portion of the county, as well as areas to the north and south (Figure 2). 

 

Figure 2. Maps of Texas showing Harris County and a zoomed-in version of the county. Choro-

pleth map depicts the incidence of COVID-19 (cases per 10,000 population) between 23 June 2020 

and 3 August 2020 at the census tract level (N = 786). 

3.1. Exploring Relationships between COVID-19 Incidence and Individual Neighborhood Factors 

Between 23 June 2020 and 3 August 2020, 70,396 incident cases of COVID-19 were 

reported in Harris County. We conducted an initial univariate analysis to identify the 

neighborhood variables that were associated with COVID-19 incidence at the census tract 



Int. J. Environ. Res. Public Health 2021, 18, 1495 8 of 16 
 

 

level. Out of the 29 variables examined, only 3 were not associated with the outcome, in-

cluding: the percentage in health care occupation, number of nursing homes, and capacity 

of nursing homes inside the census tract. The remaining 26 variables had a mixture of 

positive and negative relationships with COVID-19 community incidence (Table 2).  

Table 2. Univariate model of neighborhood factors and the community incidence of COVID-19 in Harris County, Texas, 

between 23 June 2020 and 3 August 2020. Harris County census tracts (N = 786). 

Independent Variables Coeff. Coeff. 95% CI IRR IRR 95% CI p-Value 

Race, ethnicity, nativity        

% Non-Hispanic White pop −0.099 −0.108 −0.091 0.906 0.989 0.991 <0.001 

% Black or African American pop 0.043 0.029 0.056 1.044 1.003 1.006 <0.001 

% Asian pop. −0.105 −0.139 −0.071 0.900 0.986 0.993 <0.001 

% Other race + two or more races pop −0.755 −0.906 −0.605 0.470 0.913 0.941 <0.001 

% Hispanic or Latino pop 0.074 0.064 0.083 1.077 1.006 1.008 <0.001 

% Foreign-born pop. who is not a United States citizen 0.109 0.090 0.128 1.115 1.009 1.013 <0.001 

Socioeconomic disadvantage        

Area Deprivation Index (ADI) 0.710 0.627 0.792 2.034 1.873 2.208 <0.001 

Disaster vulnerabilities        

% of households with no vehicle available 0.266 0.225 0.307 1.305 1.023 1.031 <0.001 

% of adults 18 y and over who have limited English ability 0.104 0.090 0.118 1.109 1.009 1.012 <0.001 

% of pop. with a disability 0.153 0.091 0.215 1.166 1.009 1.022 <0.001 

% of pop. with no health insurance coverage 0.186 0.166 0.206 1.204 1.017 1.021 <0.001 

Over 65 years old        

% of pop. that is 65 y and over −0.097 −0.150 −0.043 0.908 0.985 0.996 <0.001 

% of pop. 65 y and over who lives alone 0.033 0.013 0.052 1.033 1.001 1.005 0.001 

% of pop. 65 y and over with a disability 0.063 0.044 0.083 1.065 1.004 1.008 <0.001 

% of pop. 65 y and over living in quarters 0.035 −0.005 0.075 1.035 0.999 1.007 0.090 

Occupation        

% Health and healthcare support −0.025 −0.148 0.098 0.976 0.985 1.010 0.693 

% Human services −0.109 −0.173 −0.045 0.897 0.983 0.996 0.001 

% Management, science, technology −0.075 −0.084 −0.066 0.928 0.992 0.993 <0.001 

% Mobile workers, construction, maintenance 0.034 0.016 0.052 1.034 1.002 1.005 <0.001 

% Food preparation 0.260 0.194 0.326 1.296 1.020 1.033 <0.001 

% Personal care 0.215 0.107 0.323 1.240 1.011 1.033 <0.001 

% Education/Training/Library −0.427 −0.477 −0.377 0.652 0.953 0.963 <0.001 

Access to technology        

% of households that have no computer, smartphone, or tablet 0.196 0.172 0.220 1.217 1.017 1.022 <0.001 

% Households with cellular data plan; no other type of internet 0.182 0.159 0.205 1.200 1.016 1.021 <0.001 

% of households with no internet access 0.161 0.144 0.179 1.175 1.014 1.018 <0.001 

Senior care facilities        

No. of assisted living inside census tract −0.314 −0.619 −0.009 0.731 0.940 0.999 0.044 

Capacity of assisted living inside census tract −0.016 −0.023 −0.010 0.984 0.998 0.999 <0.001 

No. of nursing homes inside census tract −0.402 −1.084 0.280 0.669 0.897 1.028 0.248 

Capacity of nursing homes inside census tract −0.002 −0.007 0.004 0.998 0.999 1.000 0.575 

Note: The relative risk for COVID-19 is reported per 10-unit increase in the magnitude of each neighborhood-level explan-

atory variable. CI, Confidence Interval; IRR, Incidence Rate Ratios. 

3.2. Domain-Specific Relationships between Neighborhood Factors and COVID-19 

We then conducted backwards stepwise negative binomial regression analysis with 

only the variables in their respective domains. These subsequent models resulted in the 

removal of an additional 11 variables. Of the removed variables, 10 were excluded based 

on p-value criteria and one was excluded due to collinearity. In the race/ethnicity and na-

tivity domain, the percentage of the Asian population, percentage of the non-Hispanic 

white population, and percentage of other race (or two or more races) population were 

removed from the analysis. From the occupation domain, the percentage in healthcare, 

human services, and food preparation were removed from the analysis. In the access to 

technology domain, the percentage of households that have no computer, smartphone, or 

tablet was removed from the analysis. In the over 65 years old domain, percent of the 

population over 65 living in quarters was removed. In the senior care facilities domain, 
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the number of assisted living facilities, number of nursing homes, and capacity of nursing 

homes in a census tract was removed. All variables in the disaster vulnerabilities and so-

cioeconomic disadvantage remained in the analysis (Table 3).  

Table 3. Domain-specific multivariable relationships between neighborhood factors and the community incidence of 

COVID-19 in Harris County, Texas, between 23 June 2020 and 3 August 2020. Harris County census tracts (N = 786). 

Independent Variable Coeff. Coeff. 95% CI IRR IRR 95% CI p-Value 

Race, ethnicity, nativity        

% Non-Hispanic white pop. n.s.       

% Black or African American pop. 0.0831 0.072 0.094 1.087 1.075 1.098 <0.001 

% Other race + two or more races pop. n.s.       

% Hispanic or Latino pop. 0.0739 0.064 0.084 1.077 1.066 1.088 <0.001 

% Foreign-born pop. not a United States citizen 0.0635 0.044 0.083 1.066 1.045 1.087 <0.001 

Socioeconomic disadvantage        

Area Deprivation Index (ADI) 0.7100 0.630 0.790 2.034 1.878 2.203 <0.001 

Disaster vulnerabilities        

% of households with no vehicle available 0.1268 0.086 0.168 1.135 1.090 1.182 <0.001 

% of adults 18 y and over who have limited English ability 0.0324 0.008 0.057 1.033 1.008 1.058 0.009 

% of pop. with a Disability 0.1125 0.054 0.171 1.119 1.056 1.186 <0.001 

% of pop. with No health insurance coverage 0.1166 0.079 0.154 1.124 1.082 1.167 <0.001 

Over 65 years old        

% of pop. that is 65 y and over −0.0949 −0.111 −0.079 0.910 0.895 0.924 <0.001 

% of pop. 65 y and over who lives alone 0.0306 0.025 0.036 1.031 1.026 1.036 0.017 

% of pop. 65 y and over with a disability 0.0585 0.053 0.064 1.060 1.054 1.066 <0.001 

% of pop. 65 y and over living in quarters n.s.       

Occupation        

% Healthcare n.s.       

% Human services n.s.       

% Management, science, technology −0.0442 −0.060 −0.029 0.957 0.942 0.972 <0.001 

% Mobile workers, construction, maintenance 0.0580 0.043 0.073 1.060 1.044 1.075 <0.001 

% Food preparation n.s.       

% Personal care 0.0996 0.008 0.191 1.105 1.008 1.210 <0.001 

% Education/Training/Library −0.2612 −0.345 −0.177 0.770 0.708 0.838 <0.001 

Access to technology        

% of households that have no computer, smartphone, or tablet n.s.       

% Households with cellular data plan; no other type of internet 0.0943 0.068 0.121 1.099 1.070 1.128 <0.001 

% of Households with no internet access 0.1144 0.093 0.136 1.121 1.098 1.145 <0.001 

Senior care facilities        

No. of assisted living inside census tract n.s.       

Capacity of assisted living inside census tract −0.016 −0.023 −0.010 0.984 0.978 0.990 <0.001 

No. of nursing homes inside census tract n.s.       

Capacity of nursing homes inside census tract n.s.       

Note: The relative risk for COVID-19 is reported per 10-unit increase in the magnitude of each neighborhood-level explan-

atory variable, holding all other variables in the model constant. CI, Confidence Interval; IRR, Incidence Rate Ratios; n.s., 

not significant. 

3.3. Across-Domains Relationships between Neighborhood Factor and COVID-19 

Our final model was built considering the 18 remaining variables after univariate and 

domain-specific model selection. Backwards stepwise model selection and assessment for 

multicollinearity removed an additional 10 and one independent variables, respectively. 

Our final model contains the percentage of the Black or African American population, the 

percentage of the foreign-born population, ADI, the percentage of households with no 

vehicle available, the percentage of the population over 65 years old, the percentage of 

education/training/library occupation, and capacity of assisted living inside census tract 

(Table 4). 
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Table 4. Across-domains multivariable relationships between neighborhood characteristics and 

the community incidence of COVID-19 in Harris County, Texas, between 23 June 2020 and 3 Au-

gust 2020. Harris County census tracts (N = 786). 

Independent Variable Coeff. Coeff. 95% CI IRR IRR 95% CI p-Value 

% Black or African American pop. 0.0267 0.0131 0.040 1.027 1.013 1.041 <0.001 

% Foreign-born pop. not a United States citizen 0.1066 0.0806 0.133 1.112 1.084 1.142 <0.001 

Area Deprivation Index (ADI) 0.2709 0.1700 0.372 1.311 1.185 1.450 <0.001 

% of households with no vehicle available 0.0741 0.0327 0.116 1.077 1.033 1.122 <0.001 

% of pop. that is 65 y and over 0.0588 0.0085 0.109 1.061 1.009 1.115 0.022 

% Education/Training/Library occupation −0.1941 −0.2497 −0.139 0.824 0.779 0.871 <0.001 

Capacity of assisted living inside census tract −0.0077 −0.0130 −0.002 0.992 0.987 0.998 0.004 

Note: The relative risk for COVID-19 is reported per 10-unit increase in the magnitude of each 

neighborhood-level explanatory variable, holding all other variables in the model constant. CI, 

Confidence Interval; IRR, Incidence Rate Ratios. 

In the GWPR, we tested for local associations between the variables in our final run 

of the global regression model, except for “capacity of assisted living inside census tract”. 

We observed that the relationship between each variable and COVID-19 incidence was 

spatially dynamic. In all cases, the coefficients varied across Harris County census tracts 

and ranged from decreased risk in some tracts to increased risk in others (Table 5). The 

spatial patterns of the local GWPR regression outcomes were displayed using a choro-

pleth map (Figure 3). The Akaike Information Criterion (AIC) goodness-of-fit and AICc 

indicators were compared between the local and global models, and the GWPR model 

had a significantly smaller AICc and AIC (Table 6). This suggests that the GWPR model 

fit the data better, i.e., had better explanatory power. 

Table 5. Geographically weighted Poisson regression (GWPR) modeling summary statistics. 

Local Terms Mean STD Min. 
Lower 

Quartile 
Median 

Upper 

Quartile 
Max. 

Intercept −47.19 8.07 −81.00 −51.51 −45.18 −41.65 −22.34 

% NH Black or African American pop. 0.00 0.06 −0.24 −0.03 −0.01 0.03 0.18 

% Foreign-born pop. not a United States citizen 0.02 0.08 −0.29 −0.02 0.02 0.07 0.29 

Area Deprivation Index (ADI) 0.06 0.07 −0.18 0.02 0.05 0.10 0.34 

% of households with no vehicle available 0.01 0.12 −0.48 −0.05 0.01 0.07 0.38 

% of pop. that is 65 y and over −0.01 0.13 −0.43 −0.09 −0.01 0.07 0.34 

% Education/Training/Library occupation −0.06 0.14 −0.65 −0.12 −0.05 0.02 0.47 

Table 6. Comparison between GWPR and global Poisson regression modeling results. 

Indicators GWPR Global Model 

AIC 1422.19 6242.63 

AICc 1254.09 6242.49 
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Figure 3. Maps of Harris County census tracts that show local associations between the variables in the final aspatial model 

and COVID-19 incidence. The local beta coefficients were exponentiated (RR) to show the sensitivity of COVID-19 inci-

dence to a change of 10-unit difference in each of the neighborhood characteristics shown above, specific to each census 

tract. The middle class (0.99–1.01) crosses 1.0. To simplify interpretation, the same legend was applied to all maps. Values 

less than 0.99 suggest census tracts where increase in the proportion of the independent variable is associated with de-

creased RR for COVID-19, while values above 1.01 suggest increased RR for COVID-19 with increased proportion of the 

independent variable (10-unit increase). 

4. Discussion 

Central to effective control measures for a pandemic is understanding the epidemi-

ology of transmission in the community. Our study joins the list of recent and growing 

research studies examining various aspects of the relationships between socioeco-

nomic/environmental factors and the incidence of COVID-19 [11,49]. We used a series of 
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aspatial and spatially weighted regression models to identify neighborhood-level charac-

teristics that are associated with higher COVID-19 incidence at the census tract level. Our 

study area, Harris County, is a major USA metropolitan county. Across our several anal-

ysis steps, characteristics that represent either minority population or socioeconomic dis-

advantage had positive associations with COVID-19 incidence. Out of 29 variables that 

we considered in the analysis, 7 remained significant correlates of COVID-19 community 

incidence in our final global model: the percentage of the Black or African American pop-

ulation, the percentage of the foreign-born population, ADI, the percentage of households 

with no vehicle available, and the percentage of the population over 65. Two variables 

found to be protective were the percentage in education, training, or library occupation 

and capacity of assisted living. By understanding variables that correlate with community 

transmission, we can better direct resources, expand testing capacity, and focus disease 

control measures. 

Conducting this analysis at the neighborhood level is a critical component of this 

study. Over the last decade, scholars have argued for and validated the importance of 

examining the impact of “place-based” socioenvironmental factors on health outcomes 

[50,51]. In this regard, the places where people live, work, and play are frequently consid-

ered, though the residential neighborhood are appropriately the typical unit of analysis. 

Neighborhoods are not randomly constructed; they are patterned around social status, 

ethnicity, and income [52]. These factors strongly influence an individual’s determinants 

of health and have been shown to correlate with health status and overall mortality rates 

[53]. Understanding how neighborhood factors influencing transmission of this novel dis-

ease will be critical in preventing future outbreaks. 

One variable that was highlighted in our analysis and showed the strongest relation-

ship to increased risk of COVID-19 was the area deprivation index (ADI). This index is a 

validated composite measure of neighborhood socioeconomic inequalities and disad-

vantage [42]. Significant inequalities have been found to influence historic pandemics. 

Sydenstricker, as far back as 1931, demonstrated inequalities in the working-class popu-

lation of the USA during the Spanish influenza pandemic of 1918–1919 [54]. Contempo-

rary evidence has also shown that these inequalities during times of pandemics existed in 

terms of key spatial attributes such as affluence of neighborhoods, socioeconomic strata, 

and the urban–rural gradient [55–58]. The ADI has been used to examine disease risk fac-

tors [59], predict healthcare utilization [60], and understand healthcare disparities [43,61]. 

Recently, Singh and colleagues recognized the ADI for having been a powerful tool for 

documenting and monitoring population health inequalities across time and space in the 

USA [61]. ADI was one of the strongest correlates of high COVID-19 incidence at the com-

munity level in our analysis. Community-level poverty can influence health on many lev-

els. It affects everything from health care utilization, access to healthy foods, recreational 

activities, built environment, and neighborhood safety. This index likely represents a very 

complex relationship between community and health. Our findings are consistent with 

those of several recent studies that have indicated that factors associated with social and 

economic disadvantage have been associated with COVID-19 [19,62]. 

Our analysis also indicated that racial/ethnic composition and nativity of neighbor-

hood populations were significantly correlated with COVID-19 incidence. The underlying 

causes of health disparities among racial minorities in the US are likely complex and can-

not be easily summarized. They derive from relationships among social structure, cultural 

norms, racism, and socioeconomic factors. This is likely why the variable representing the 

percentage of the Black or African American population and the percentage of the foreign-

born population remained significant in our analysis, but many other factors that contrib-

ute to inequality were found to be not significant in the final model. Further research to 

understand these community-level drivers of health inequality is critical to determine 

points of intervention to prevent disease transmission and reduce the disproportionate 

morbidity and mortality that these communities have experienced as a result of COVID-

19. 
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These findings have potential relevance to the release of COVID-19 vaccines as part 

of Operation Warp Speed. Given the potential COVID-19 risks to African American and 

foreign-born populations, prioritizing vaccine access in Houston and Harris County to 

such vulnerable groups presents special urgencies. Of particular concern are recent re-

ports of COVID-19 vaccine hesitancy in African American populations [63]. Still another 

issue are the high rates of COVID-19 deaths among both African American and Hispanic 

groups at younger ages (<65 years old) compared to the non-Hispanic Whites, such that 

relying on 65-year age cut-offs for vaccinations might miss highly vulnerable subpopula-

tions [36]. 

Our geographically weighted Poisson regression analysis produced local beta coeffi-

cients for each of the census tracts in our study area. This tool allows for visualization of 

the impact of each independent variable in individual neighborhoods. Interestingly, the 

impact of ADI appears to be homogeneous across our study area, indicating that variation 

in ADI affects neighborhoods equally regardless of other factors. It appears that an in-

creased percentage of African American or foreign-born population within the commu-

nity has a greater impact in the less densely populated periphery of the county. Con-

versely, neighborhoods with larger populations of residents over 65 years old had a 

greater impact in parts of the county that are more densely populated. Conducting this 

local analysis by census tract provides a visual output of each variable’s impact that is 

easily interpreted for directing public health interventions. 

Our study has some noteworthy limitations. Our dependent variable, COVID-19 in-

cidence, was derived from publicly available data provided by public health authorities 

in Harris County and the City of Houston. While this is currently the only source of 

COVID-19 incidence data, we cannot ensure that it is always timely and accurate. Inade-

quate access to testing, delayed testing results, and backlogged data could affect our data 

quality. The independent variables considered in this analysis may not represent a com-

prehensive list of all factors influencing COVID-19 transmission in this community. While 

we believe that we accurately represented likely risk factors, we cannot rule out other 

influences. As with any epidemiologic analysis using non-individual level estimates, our 

analysis is susceptible to ecologic fallacy. Additionally, this is a correlational study, and 

therefore, causal inference cannot be made; as such, coefficients should be cautiously in-

terpreted. We believe that novel analytic workflow and the importance of the findings of 

this analysis for local public health officials outweighs these limitations. While these lim-

itations are important to consider, we also recognize that the large sample size of cases 

strengthens the power of our study. 

The assessment of disparities in health outcomes requires the ability to understand 

spatial and spatially driven structures that influence the exposure–disease relationships. 

Understanding health disparities through spatial processes is perhaps especially useful in 

societies where heterogeneous neighborhoods composed of diverse groups are seldom 

the norm. Of course, the utility of geospatial analytics and processes in this regard should 

not just be for the sake of itself. Findings from this type of geographically weighted anal-

yses should provide insight into neighborhood-level drivers of infection that would have 

otherwise been missed by public health officials. This powerful analytic process can pro-

vide information to effectuate holistic policy prescriptions that are often operationalized 

in geographical space [64]. The utility of spatial analyses for understanding and managing 

the COVID-19 pandemic may create levels of structural resources that, when adequately 

leveraged, could facilitate effective intervention strategies, allocation of resources, and de-

livery of care to all, and especially those disproportionately burdened by the pandemic. 

5. Conclusions 

In conclusion, we believe that our study provides evidence that geospatial analysis 

can be a powerful tool for determining neighborhood-level correlates of COVID-19. Dur-

ing a global pandemic of a novel virus, both resources and knowledge about viral trans-

mission dynamics are limited. This type of analysis could provide real-time information 
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to allow for data-driven decision making by local public health officials. We believe this 

analysis provides critical information for controlling the current pandemic and serves as 

a proof of concept for use in future disaster response scenarios. 

Supplementary Materials: The following are available online at www.mdpi.com/1660-

4601/18/4/1495/s1, Table S1: Variables used for the ADI. A total of 17 census variables drawn from 4 

major categories, including poverty, housing, employment, and education. 
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