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Abstract: Predicting and interpreting the spatial location and causes of traffic accidents is one of the 

current hot topics in traffic safety. This research purposed a multi-dimensional long-short term 

memory neural network model (MDLSTM) to fit the non-linear relationships between traffic acci-

dent characteristics and land use properties, which are further interpreted to form local and general 

rules. More variables are taken into account as the input land use properties and the output traffic 

accident characteristics. Five types of traffic accident characteristics are simultaneously predicted 

with higher accuracy, and three levels of interpretation, including the hidden factor-traffic potential, 

the potential-determine factors, which varies between grid cells, and the general rules across the 

whole study area are analyzed. Based on the model, some interesting insights were revealed includ-

ing the division line in the potential traffic accidents in Shenyang (China). It is also purposed that 

the relationship between land use and accidents differ from previous researches in the neighboring 

and regional aspects. Neighboring grids have strong spatial connections so that the relationship of 

accidents in a continuous area is relatively similar. In a larger region, the spatial location is found to 

have a great influence on the traffic accident and has a strong directionality. 
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1. Introduction 

According to the report published by the World Health Organization (WHO), road 

traffic crashes result in the deaths of approximately 1.35 million people around the world 

each year and leave between 20 and 50 million people with non-fatal injuries [1]. Factors 

affecting traffic accidents can be divided into subjective and objective aspects at the mac-

roscopic level. The objective aspects mainly include regional characteristics, road network 

characteristics, climate characteristics and so on. The subjective aspects mainly include 

human operation errors, violations of regulations, negligence, vehicle technical reasons 

and so on. The involvement of multiple influencing factors complicates the prediction and 

analysis of traffic accidents, and makes it difficult to strip out the influence of any one of 

these factors. Although current research is centred on quantitatively analyzing the condi-

tions of different influencing factors and elucidating the most influential factors [2], gaps 

in this area of knowledge remain.  

The revelation of significant spatial auto-correction in traffic accidents from spatial 

analysis brought an inspiration: since the multiple causes of traffic accidents are also spa-

tial aggregates, the spatial influence on such traffic accidents must contain many valuable 

factors that are not directly observed, hence, local land use characteristics and spatial cor-

relation are analyzed concurrently in this paper, using the multi-dimensional long-short 

term memory neural network model (MDLSTM). The method greatly improves the accu-

racy of traffic accident prediction by responding to multi-variate inputs with non-linear 

relationship. More indicators that make comparisons existing research in the model input 

and output are taken into account, which is also the advantage of the MDLSTM model. In 
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addition, this method can capture the relationship between some variables that traditional 

models consider to be unrelated. 

In comparison with the spatial regression models, this study also considers potential 

accidents which traffic accidents are based on. The potential accidents not only show the 

occurrence or numbers of traffic accidents, but also indicate the date, time, isolation form 

and the cross-sectional location of traffic accidents. Due to the lack of explicit prior infor-

mation, this complex regulation is modelled using the neural network model. 

2. Literature Review 

Researchers in the field of traffic safety have been found to trace the source of traffic 

demand to excavating the causes of traffic accidents. Decades ago, among objective fac-

tors, researchers also focused on the impact of road network layout, road and traffic de-

sign, traffic control, active risk management and environmental conditions on traffic 

safety, and the problem of traffic accidents caused by land use. There were few studies on 

the issue of traffic accidents related to land use, and the topic is becoming more and more 

critical currently. 

To analyze the impact of objective factors on the location of traffic accidents, it must 

been found that the spatial characteristics and differences of traffic accidents. For cities, 

the fundamental spatial differences include three parts: First are the land use characteris-

tics. Land use characteristics lead to the differences in traffic demand and form the spatial 

distribution of Origin-Destination (OD) pairs. For example, tidal traffic conditions are 

more likely to be occurred around educational and office plots since the demand is con-

centrated in the morning and evening peaks. However, the traffic conditions around med-

ical plots are more likely to be affected by emergencies. Second is the location feature. For 

a general single-center city, the traffic demand in the central area is often greater than that 

in the suburban areas, which is determined by the spatial agglomeration of the choosing 

behavior of individuals. Third is the transportation supply represented by road facilities. 

The quality of road facilities, road network density, design and construction level, etc. are 

often indirectly related to spatial location, but they have the characteristics of continuous 

stability. As traffic demand continues to increase, traffic accidents are also gradually in-

creasing. In some special region, traffic accidents are observed to have strong spatial au-

tocorrelation, which may lead to an inspiration that there are some gathered characteris-

tics influencing the accident in the similar way as the statement above. 

2.1. Spatial Analysis of Traffic Accidents 

Spatial analysis of traffic accidents have been used in designing road safety measures 

for decades, in order to determine how crashes are affected by the neighboring locations, 

how the influence of parameters varies spatially, and which locations require more urgent 

interventions.[2] Previous researches have focused on the use of different spatial unit [3], 

different modelling approaches [4–6], and the corresponding study design characteristics, 

including traffic, road environment and area parameters and spatial aggregation ap-

proaches, where geographically weight regression [7,8], Bayesian models [9] and machine 

learning methods [10,11] were applied. 

In 1995, Levine et al. [12] studied the distribution of traffic accidents on the main road 

network in Honolulu, Hawaii, and found that traffic accidents are spatial correlated. Lev-

ine et al. [13] used a modified multiple linear regression method to establish the statistical 

relationship between the total number of traffic accidents in the block (Census-Block-

Group) and the corresponding population, employment, and road traffic flow. Spatial sta-

tistical methods have been applied more frequently in macro safety analysis. Erdogan [4] 

used the Kernel Density Estimation (KDE) method to calculate the density of hotspots 

along the Kaduna-Abuja route. The results determined 222 accidents on the road between 

2010 and 2014 and 8 different hotspots along the way, including Gonin Gora, Toll stations, 

Sabon Gaya, etc. Quddus [14] analyzed the traffic accidents at the Ward-level using the 
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Bayesian spatial statistical model built for London. Lord et al. [15] proposed the applica-

tion of negative binomial regression to establish a traffic safety model with characteristics 

of the planned road network, which was used to analyze the safety of planning schemes 

in traffic planning. Lovegrove et al. [16] analyzed the feasibility of applying the macro-

safety model to evaluate traffic improvement schemes in the traffic analysis zone (Traffic-

Analysis-Zone, TAZ) in a case study. 

2.2. Influencing Factors of Traffic Accidents 

Different factors have different effects on traffic accidents. Previous studies on influ-

encing factors of traffic accidents mainly focused on the attributes of personnel [17], vehi-

cles [18], roads [19] and environment [20]. For example, Liu and Fan took traffic accidents 

from 2005 to 2013 in North Carolina as a sample and found drunk driving behaviors had 

huge impact on traffic accidents [21]. Kelley et al. studied the crash data in CIREN data-

base from 1998 to 2012 and found side impact could be an important influencing factor on 

traffic accidents [22]. Cheng et al. researched on traffic accident data from San Francisco 

from 2008 to 2013 and found severe weather could be related to serious traffic accidents 

[23]. None of the existing studies looked at the causes of traffic accidents from the aspects 

of urban zoning differences [24], road network topology [25], etc. In our study, factors, 

such as plot ratio, point of interest and congestion ration representing urban zoning dif-

ferences and road network topology are used to find more specific causes of traffic acci-

dents. 

Researchers in the field of traffic safety have been found to use spatial distribution as 

clues to track the causes of traffic accidents and focused on environmental factors. Dec-

ades ago, among objective factors, researchers also focused on the impact of road network 

layout, road and traffic design, traffic control, active risk management and environmental 

conditions on traffic safety, and the problem of traffic accidents caused by land use. There 

are little studies on the issue of traffic accidents related to land use, and this topic is be-

coming increasingly important. 

3. Materials and Methods  

3.1. Data 

3.1.1. Data Sources 

The land use properties and traffic accident data both come from the City of Shen-

yang in China, which is also the area of study in this paper. The land use dataset is com-

piled from the point of interest (POI) data, the evening peak traffic flow data and road 

maps, which are collected from Open Street Map (OSM). Since POI data focus more on 

commercial service facilities, such as catering and entertainment, the residential data of 

POI are verified with the residential area information on the Anjuke platform. Fourteen 

basic types of POI are: Catering, Hotel, Shopping, Life Services, Tourism, Leisure and En-

tertainment, Sports and Fitness, Education, Medical, Transportation Facilities, Finance, 

Residential, Companies, and Government Organizations. The POI and evening peak traf-

fic flow data are gathered from the Baidu Map API (Baidu, Beijing, China), and it is the 

average of the traffic state data of the evening rush hours from 14 June 2019 to 21 June 

2019. Table 1 provides an overview of the land use dataset. 

Table 1. The overview of the land use properties data. 

Land Use Properties Unit 
Data Range 

Minimum (Min) Maximum (Max) Mean Standard Error (Std) 

Plot ratio - 0 6.62 0.341 0.777 

Number of types of POIs * - 2.00 13.0 4.39 1.92 

Centrality m (meter) 4.49 × 103 3.37 × 104 1.31 × 104 5.60 × 103 

Distance to CBD * m 643 3.21 × 104 1.00 × 103 5.53 × 103 

Number of surrounding road sec-

tions 
- 0 221 34.1 34.1 

Congestion ratio % 0 0.486 0.00245 0.0227 

* POI means “point of interest” and CBD means “central business district”. 
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The accident dataset is based on the statistics of traffic accidents in Shenyang from 

Jan 2015 to Dec 2017, an overview is provided in Table 2. The following fields are included: 

text description of the accident location, date and time, isolation of the road and cross-

sectional location in the road. These indicators are all turned to a digital form to accurately 

model the occurrence or characteristics of traffic accidents. 

Table 2. The overview of the accident characteristics. 

Traffic Accident 

Characteristics 
Unit 

Data Range 

Min Max Mean Std 

Accident count - 0 45 11.4 9.39 

Accident date d (day) 0 183 117 52.2 

Accident time s (second) 300 8.62 × 104 4.54 × 104 2.33 

Accident isolation - 0 3 0.490 0.893 

Accident cross-sec-

tional location 
- 0 5 4.60 0.957 

3.1.2. Distribution of Accidents Characteristics 

The text description of accident location is matched to their latitudinal and longitu-

dinal positions through the Baidu Map API, so that all accidents can be traced. In order to 

describe the traffic accidents from a macroscopic perspective, traffic accidents within 3000 

m of each grid cell will be recorded as “traffic accident counts” indicator of the grid cell. 

The height values in the right-hand side diagram of Figure 1a represents the location of 

the accident. The values show the number of traffic accidents that took place within a 

radius of 3000 m from the center of the grid cell, as shown in Figure 1b. 

 
(a) 

 
(b) 

Figure 1. (a) The spatial distribution of the “traffic accident counts” indicator; (b) The spatial distribution of real traffic 

accidents. 

The accident date and accident time are processed to linearize the relationship with 

the accident frequency. The date of the traffic accident is converted to the number of days 

till winter (represented by the winter solstice on 22nd December). Since Shenyang has 

more road icing in winter, winter is the season where most traffic accidents occur, as 

shown by Figure 2a, where the three peaks in the data distribution of traffic accident data 

corresponds to the three winters in 2015, 2016 and 2017. 

In Figure 2b, the accident time data is illustrated in a similar fashion as the accident 

date data. 13:00–17:00 is the time period when traffic accidents occur frequently, so the 

time distance to 15:00 is taken as the value of the indicator. 
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(a) 

 
(b) 

Figure 2. (a) The distribution of accident date. (b) The distribution of accident time. AM and PM in the Figure 2 (b) are 

“ante meridiem” and “post meridiem” which means time period before noon (0:00-12:00) and after noon (12:00-24:00). 

As shown in Figure 3a, the isolation of the road is one of the effective factors influ-

encing traffic accidents. There are 4 levels of isolation of the road: the “Center isolation 

and motor vehicle-non-motor vehicle isolation”, “Center isolation”, “Motor vehicle and 

non-motor vehicle isolation” and “None”, each denoted 4, 3, 2 and 1, respectively. Figure 

3b shows the cross-sectional location is another key feature in traffic accidents. There are 

5 levels of cross-sectional location: “Motor vehicle lane”, “Motor vehicle and non-motor 

vehicle mixed lane”, “Non-motor vehicle lane”, “sidewalk” and “cross walk”, corre-

sponding to 5, 4, 3, 2, and 1, respectively. The spatial distributions of these two indicators 

are as follows. 

 
(a) 

 
(b) 

Figure 3. (a) The spatial distribution of the isolation form. (b) The spatial distribution of the cross-sectional location. 

3.1.3. Rasterization 

The data processing in this study is trying to connect the traffic accident data with 

the land use properties. The spatial auto-correlation is included to model the unobvious 

effect. To achieve this, rasterization is used to break up the land use data into raster 

shapes. The traffic accident data and raster data are then matched spatially, so that the 

MDLSTM model can capture the spatial relation between accident and land use. 

The location of study of this paper is the urban area in the City of Shenyang, as shown 

in Figure 4a. Similar to Liu [26] and Yue [27], the rectangular region are rasterized to grid 

cells at the scale of around 400 m × 444 m, with the usual method [28,29] as shown in 

Figure 4b. In total, 12110 grid cells (about 96 rows and 125 columns) were collected in the 

Shenyang urban area. To speed up learning and convergence when training the model, 

layer normalization was performed to scale the data into the range [0, 1] as studied by Ba 

J L [30]. 
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(a) 

 

(b) 

Figure 4. (a) Schematic of the urban area in the City of Shenyang with roads. (b) The plot ratio data after rasterization. 

Data processing has many steps, including map acquisition, data matching, grid 

transformation, window sampling and batch splitting. After batch splitting, a sliding win-

dow (9 × 9 grids) was used to sample the data and reshape them into bi-dimensional ten-

sors, resulting in 10092 windows in the study area. As shown in Figure 5, the windows 

were selected by a zero rate index, which means a window is marked as unusable when 

80% of the data in the window is missing for lack of information. Among them, 100 ran-

domly selected windows are used as the test dataset, and the remaining 9992 windows 

are used as the training dataset. 

 

Figure 5. The window sampling and batch splitting. 

3.2. Validation of the Spatial Autocorrelation 

The premise of this study is that traffic accidents have significant spatial auto-corre-

lation, which give rise to the assumption that the multiple causes of traffic accidents are 

also spatial aggregates, and the spatial influence of such traffic accidents contains many 

valuable factors that are not directly observed. In this section, the spatial auto-correlation 

is first validated to show that these indicators do have spatial correlation. 

The spatial dependency was tested using Global Moran’s I and Global Geary’s C sta-

tistics. The results are shown in Table 3. A statistically significant spatial cluster was 

found, and both results are significant at p < 0.001 significance level. 



Int. J. Environ. Res. Public Health 2021, 18, 1430 7 of 19 
 

 

Table 3. Global Moran’s I and Global Geary’s C spatial dependency test. 

Global Moran’s I 0.128 

I 
p-value 1.76 × 10 − 10 

z-score 6.38 

Global Geary’s C 0.868 

C 
p-value 0.000171 

z-score −3.58 

3.3. MDLSTM Model 

The basic model of MDLSTM is the recurrent neural network (RNN) model devel-

oped to simulate the regulation of sequence data. RNN can be widely applied in natural 

language processing (NLP), since it has the strength of fitting the non-linear relationship 

between words’ occurrence in a specific location and other words in the context. The ad-

vantage of this model is that it can retain the information transferred between distanced 

words. Take Figure 6 as an example. 

t-2 t-1 t t+1 t+2

She Found The Dentist ？

LiedThe Dentist

LiedThe Dentist

Predicted words

Input words

Training label

RNN 
cells

h(t) h(t+1) h(t+2)

x(t) x(t+1) x(t+2)x(t-2) x(t-1)

 

Figure 6. Application of recurrent neural network in natural language processing . “t” means the 

word step while “t-1” means the previous step of “t”. The “h(t)” means the output of step “t” and 

the “x(t)” means the input of step “t”. The “?” means the word that needs to be predicted corre-

sponding to the predicting result word “Lied”. 

The word “Dentist” is the input of the second step (t − 1) of the model, and the next 

word “Lied” is the expected output. In this process, the occurrence of “Lied” is affected 

by not only the word “Dentist”, but also the previous inputs, such as “The”. MDLSTM is 

the bi-dimensional version of the developed form of RNN, which has the structure below: 

As shown in Figure 7 (Left), the improvements made on the model to a basic RNN 

are in two aspects. The first is the increases of the long-distance impact through the widely 

known “Gate” structure, which gave rise to the development of the Long-Short Term 

Memory neural network model in 1997 [30]. The second is the expansion of the dimension 

of LSTM in 2007 [31], which made the model more suitable for spatial analysis. In the 

traffic accident context, every cell in the bi-dimensional network represents a grid cell in 

the urban area, as shown in the of Figure 7a. 
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(a) 

 

(b) 

Figure 7. (a) The model structure of MDLSTM. (b) The application in the accident analysis. ”t” and “s” shows the coordi-

nate location of the grid cell. For example, the (t-1, s) is the left grid cell of (t,s). ”A” in this figure shows the MDLSTM cell 

in a special location, for example the “A” in the tth column and sth row corresponding to the MDLSTM cell in the same 

location. The blue arrow means the information transfers from the neighboring grid cell. 

Influences among the grids cells are further expanded, as shown in the following 

figures. Figure 8 represents the cell (t, s) in the MDLSTM model shown in Figure 7a, with 

the input ��,� and the output ℎ�,�. It also represents the grid cell located at (t, s) in the 

urban area shown in Figure 7b; since all grid cells have the same trained parameters, the 

A used are duplicated in every cell. The structure consists of input, output and transfer. 

 

Figure 8. The structure of MDLSTM cell. Arrows in the figure shows the linear transformation 

from the variable behind the arrow to the variable in front of the arrow. 

In the urban safety context, the input ��,� is the land use properties, including the 

plot ratio, number of types of POIs, centrality, distance to the CBD, number of surround-

ing road sections and the congestion ratio of grid cell located at (t, s). The output ℎ�,� is 

the accident characteristics, including the accident counts, date, time, isolation, cross-sec-

tional location of the grid cell (t, s). Others are intermediate variables, including ��,�, ��,�, 

��,�,�, and ��,�, which vary between grid cells. Weights and bias, including ��, ��, ��,�, 

��, �� , ��, ��,�, and �� are the same for every cell in the entire network. 
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Based on the three steps, which outlines the basic flow of the model, the relationship 

among the land use properties of every grid cell, the accident characteristics of the sur-

rounding cells, and the accident characteristics of the current cell (t, s) are as follows: 

Input: St,s = tanh(WC·It,s + bC) (1) 

Transfer: Ct,s = it,s·St,s + ft,s,1·Ct-1,s + ft,s,2·Ct,s-1 (2) 

Output: ht,s = ot,s·tanh(Ct,s) (3) 

It,s = (xt,s, ht-1,s, ht,s-1) (4) 

where St,s is the state from the local land use. Ct,s is the total state. tanh is a commonly used 

“hyperbolic tangent function” function in the machine learning method. WC and bC are the 

weight matrix and bias matrix of the state St,s. xt,s is the input of the grid cell (t,s), ht-1,s and 

ht,s-1 are the output of grid cells (t−1,s) and (t,s−1). It,s is the integrated matrix including the 

input of grid cell (t,s) xt,s and the output h of grid cell (t−1,s) and (t,s−1). it,s, ft,s,1, ft,s,2 and ot,s 

are the intermediate variables of grid cell (t,s). 

��,� can be transformed to the output ℎ�,� that represents the traffic accident charac-

teristics through an output rate ��,�. ��,� can be interpreted as the traffic accidents poten-

tial. Within ��,�, the elements corresponding to the accident counts, date, time, isolation 

and cross-sectional location can be viewed as the most dangerous location, date, time, 

isolation and cross-sectional location. If the second element in ��,� grows larger, the po-

tential of the current grid cell will move to a date closer to winter, meaning the traffic 

accident will be more likely to happen in the winter. 

The intermediate variables can be interpreted as follows. The ��,� shows the propor-

tion of potential traffic accidents manifested as real traffic accidents. The ��,� shows the 

proportion of land use properties that affects the traffic accident characteristics, and the 

��,�,� shows the proportion of surrounding traffic accident characteristics that generates 

an impact to the traffic accident characteristics of the current cell. In the training process 

of the model, although the intermediate variables are not directly determined, the basic 

parameters are weights and bias. Through these parameters, every grid cell resolves its 

own value of the intermediate variables ��,�, ��,�, ��,�,�, and ��,�: 

it,s = σ(WiIt,s + bi) (5)

ft,s,j = σ(Wf,jIt,s + bf,j) (6)

ot,s = σ(WoIt,s + bo) (7)

where Wi and bi, Wf,j and bf,j, Wo and bo are the weight matrix and bias matrix of the inter-

mediated variables. 

4. Discussion 

The discussion section is organized as follow: Section 4.1 first presents the validation 

of the model comparing to the LSTM, RNN, and BPNN. This proves the effectiveness of 

the model and show its advantages over other neural network structures. Section 4.2 in-

terprets the state ��,� of each grid cell to show the characteristics of traffic accident poten-

tial. The spatial aggregation of the traffic accident count, date, time, isolation and cross-

sectional location are explained to discuss the accident potential. Section 4.3 detailed ex-

plains the intermediate variables in the urban safety context to reveal the influencing fac-

tors on these characteristics of traffic accident potential. The example conclusion can be 

drawn, as grid cells with higher ��,� are more likely for potential traffic accidents to occur. 

Section 4.4 summarizes the position of all grid cells, and some general rules are proposed 

based on weights and bias interpretations. The potential of accident date is found to be 
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largely influenced by the local indicators; the potential of cross-sectional location is found 

to be less influenced by the local land use properties.  

Corresponding to the three levels, Section 4.2 focuses on the spatial distribution of 

the potential by explaining the accident potential. Section 4.3 focuses on an example grid 

cell by discussing the intermediate variables that influence the potential. Section 4.4 fo-

cuses on a general rule for the entire urban area through interpreting the weight matrix. 

4.1. Validation of the MDLSTM Model 

Before explaining the mechanism of the model, its accuracy and reliability are first 

tested in comparison with the other neural network models. In this section, backpropaga-

tion neural network (BPNN), recurrent neural network (RNN), long-short term memory 

neural network (LSTM), and the multi-dimensional long-short term memory neural net-

work (MDLSTM) are used to show the differences in modeling the land use properties 

and accident characteristics. The results are as follows. 

Figure 9 shows the mean square error (MSE) of the MDLSTM, LSTM, RNN and 

BPNN models trained based on the training dataset. In the MDLSTM model, a 3 × 3 win-

dow, at the center of the 9 × 9 windows introduced in Section 3.1, is selected as the object 

for calculating MSE. This greatly reduces the impact of window sampling on the accuracy 

of the model. The windows are also applied in LSTM, RNN and BPNN models, so that 

the accuracy can be compared fairly. It shows that MDLSTM not only converges faster 

than the other three models on the training dataset, but also has a higher accuracy. In 

order to demonstrate whether the model is overfit, the performance of MDLSTM and 

LSTM, RNN, BPNN on the testing dataset are also compared. MDLSTM is proved to per-

form better, as shown in Table 4. 

 

Figure 9. Performance of MDLSTM, LSTM, RNN and BPNN on the training dataset. MDLSTM means the “multi-dimen-

sional long-short term memory neural network”. LSTM means the “long-short term memory neural network”. RNN 

means the “recurrent neural network”. BPNN means the “back-propagate neural network”. 

Table 4. Performance of MDLSTM, LSTM, RNN and BPNN on the testing dataset. 

Testing Indicator MDLSTM LSTM RNN BPNN 

Mean squared error of the 

whole test dataset 
0.16 0.27 0.30 0.34 

4.2. Characteristics of Traffic Accident Potential 

It is known that the characteristics of traffic accident potential has a spatial distribu-

tion that disclose some significant, essential information about where or which kind of 

accidents could take place.  

According to the model structure, the potential ��,� of a grid cell is based on the in-

put land use properties ��,�, surrounding accident characteristics ℎ���,� and ℎ�,��� and 
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the intermediate variables ��,�, ��,�, ��,�,�, and ��,�. The accident characteristics ℎ�,� can be 

determined by the potential ��,� and the intermediate variable ��,�.  

In Figure 10, the two axes (length and width) indicates the spatial location of the grid 

cell, and the ordinate shows the size of the hidden danger of each traffic accident charac-

teristics. For example, the higher black points are grid cells with high quality isolation, 

such as center isolation. 

 

Figure 10. The spatial distribution of state value ��,�. 

As for the accident count, the gathering area of traffic accident can be restricted to a 

certain area because of the training input and output data. However, comparing to the 

distribution of the accident, this area is much larger (see Figure 3). Considering the value 

of the accident count potential shown in Figure 11a, the accident count potential is gath-

ered at several locations within the whole traffic accident potential area. Except for the 

scattered points, the horizontal line, which represents the 64th row, corresponds to the 

“Hunnan middle road”, where hidden dangers in traffic accident concentrate. 
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(a) 

 

(b) 

Figure 11. (a) The spatial distribution of potential of accident count. (b) The spatial distribution of date away from winter. 

As for the accident date shown in Figure 11b, the dividing line of values lower than 

10 and higher than 10 is at a similar position as the 64th row, which means that accidents 

are more likely to take place closer to winter on the north side of the line, and less likely 

on the south side of the line. In addition, the trend shows traffic accidents in the south-

east of the urban center are more likely to occur in winter, and specific measures should 

be taken. 

As for the accident happening time, shown in Figure 12a, 15:00 is found to be the 

period of high traffic accidents (see Section 3.1.2), except in regions close to the dividing 

line. This indicates comparatively more accidents in the daytime. The north and west part 

of the urban area are also more dangerous at times. Since the isolation is decided by the 

presenting facilities, the results in Figure 12b only shows the distribution of the facilities, 

such as the isolation form of each road. 

 

(a) 

 

(b) 

Figure 12. (a) The spatial distribution of the potential of accident time. (b) The spatial distribution of the isolation form. 

4.3. The Impact of Land Use Properties and Spatial Effect on the Traffic Accident 

Summarizing the intermediate variables in the training dataset, the impact of the 

land use properties and the spatial effect on traffic accidents are analyzed. In this section, 

the values of intermediate variables of the grid cell (50, 40) are used as an example to show 
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some local rules about the relationship between the land use properties and traffic acci-

dent characteristics. Then a surrounding region of the grid cell (50, 40) is discussed to 

show the regional similarities. This process and method could be promoted as a general 

method for urban safety and traffic accident investigation. 

The value of intermediate variables of the grid cell (50, 40) (t = 3, s = 316) shown in 

the Table 5 brings several interesting insights. The element in the table shows the value of 

the intermediate variable corresponding to the accident characteristics. 

Table 5. The value of intermediate variables of the grid cell (50, 40). 

Intermediate 

Variable 
Accident Count Accident Date Accident Time Accident Isolation 

Accident  

Cross-Section  

Location 

��,� 0.30 0.77 0.41 0.29 0.23 

��,� 0.12 −0.27 0.97 0.61 0.70 

��,�,� 0.74 0.65 0.26 0.59 0.66 

��,�,� 0.05 0.05 0.07 0.08 0.06 

��,� 0.60 0.56 0.62 0.45 0.47 

For example, the first cell in this table, 0.3, means that 30% of the accident potential 

caused by the land use properties can join the potential calculation and be transferred to 

the final number of accidents. 0.12 in the first column and the second row shows every 1 

unit change in land use properties will cause a 0.12 units change in land use potential, 

regardless of the ��,�. The third and fourth value in the first column, 0.74 and 0.05, shows 

that 74% and 5% of the accident potential can be transferred from the north and west 

neighboring grid cells. 0.6 in the first column and the last row shows at least 60% of the 

potential of accident count will take place in reality. Since these variables are from either 

� (1st, 3th, 4th and 5th row) function or ���ℎ (2nd row) function, the 2nd row has both 

negative and positive values.  

For the grid cell (50, 40), among all accident characteristics, the accident date (0.77) 

has the highest proportion of accident potential depending on the land use properties. In 

contrast, the accident date is negatively affected by the land use properties (−0.27). The 

one with the highest conversion rate (0.97) are from land use properties to the potential of 

accident time. From the direction point of view, it is clear that the ��,�,� in the first dimen-

sion is much larger than in the second dimension. That may reflect the road form, since 

this point is near a high level vertical road. In addition, the ��,� shows that about 60% of 

the traffic accidents potential on the plot will cause accidents. The date and time of the 

accident are relatively closer (0.56 and 0.62, while 0 is the closest and 1 is the farthest) to 

winter and night. 

The regional regulation is based on the 30 usable windows behind the grid cell (50, 

40), as shown in Figure 13. It shows the volatility and distribution of the intermediate 

variables in this region. In general, the intermediate variables have little change among 

the grid cells in this area. 
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Figure 13. The values of intermediate variables coming from 30 continuous windows in a batch 

behind the grid cell (50, 40). Each color of the figure shows the corresponding value of the type of 

intermediate variable. For example, the “i−1” variable shows the first element of the it,s. 

4.4. General Rules Based on the Interpretation of the Weight Matrix 

As discussed in Section 3.3, the weight matrix shows the basic rule that traffic acci-

dents obey. By sorting out and summarizing the relationship of each grid cell among the 

land use properties, intermediate variables, traffic accident potential and traffic accident 

characteristics, a general rule can be devised. 

4.4.1. Relationship between Land Use Properties ��,� and Accident Potential S�,� 

�� plays an essential role in the model, since it transforms a grid cell’s land use prop-

erties to the accident potential. Meanwhile, �� itself is also generated based on the land 

use properties. In this section, elements in �� are first explored and interpreted to show 

the basic relationship between land use and traffic accident potential. Table 6 shows the 

�� after training. 

Table 6. ��  after training. 

Key Features Accident Count Accident Date Accident Time Accident Isolation 

Accident  

Cross-Section  

Location 

Plot ratio −0.39 0.13 0.09 0.00 −0.49 

Number of types of 

POIs 
−0.12 0.32 0.37 0.25 −0.27 

Centrality −0.12 0.22 0.32 −0.28 0.04 

Distance to CBD 0.41 −0.24 0.30 0.19 0.49 

Number of sur-

rounding road sec-

tions 

−0.49 0.39 0.08 0.04 −0.57 

Congestion ratio 1.02 2.11 −0.73 1.66 0.21 

Sum 0.31 2.93 0.42 1.86 −0.59` 

Negative values in �� suggest land use properties contribute negatively to the traffic 

accident potential. For example, the most negative effect is the impact of umber of sur-

rounding road sections on the accident cross-section location (−0.57), which indicates that 

higher accessibility may lead to a higher possibility for non-motorized lanes traffic acci-

dents than in motorized lanes. 
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Positive values suggest the land use properties have a positive impact to the accident 

characteristics. For example, the most positive effect is congestion ratio on the accident 

date (2.11), which indicates that higher congested areas may lead to accident occurrences 

further away from winter. 

The comparison of numbers in the “Sum” row indicates the relative impact of all the 

chosen land use properties on the accident potential. The accident date is found to be 

largely influenced by the land use properties (2.93), which shows great variations in the 

dates of accidents potential in different regions, and the need for more targeted measures 

in seasonal control. Every type of land use properties has a positive impact on the accident 

date, except for the distance to CBD. However, the accident cross-sectional location is neg-

atively affected by the land use properties (−0.59). 

4.4.2. Accident Potential ��,� Based on the Local One S�,� 

The ��,� shows the proportion of local state ��,� that will influence the accident po-

tential ��,�. This ��,� is further generated based on the input weight ��. Therefore, ele-

ments in �� reflects the impact of land use properties on the proportion of hidden traffic 

accidents caused by local land use properties. Table 7 shows �� after training. 

Table 7. �� after training. 

Key Features Accident Count Accident Date Accident Time Accident Isolation 

Accident  

Cross-Section  

Location 

Plot ratio 0.19 0.09 −0.03 0.31 0.27 

Number of types of 

POIs 
0.00 −0.27 0.01 0.07 −0.99 

Centrality 0.03 0.34 0.16 −0.26 0.64 

Distance to CBD 0.71 −0.85 1.09 −0.50 1.61 

Number of sur-

rounding road sec-

tions 

−0.01 0.13 −0.03 0.13 −0.23 

Congestion ratio −1.34 3.24 0.62 1.15 −2.05 

Sum −0.43 2.69 1.82 0.89 −0.74 

In the �� which differs from ��, negative values suggest the land use properties has 

lower contribution to the traffic accident potential. For example, the most negative effect 

is the impact of congestion ratio on the accident count (−1.34), which indicates the higher 

the level of congestion, the lower the number of accidents affected by local land use prop-

erties. Positive values, such as the congestion ratio on the accident date (3.24), indicates 

that the date of traffic accident occurrences in higher congested area may be further away 

from winter. 

The comparison of numbers in the “Sum” row indicates the relative impact of all the 

chosen land use properties on the accident potential. In accordance to Equation (2), the 

impact of this �� is very similar to the ��, since the accident potential is affected by the 

product of ��,� and ��,�. 

4.4.3. Accident Potential Transfer from the Neighboring Grid Cells ����,� and C�,��� 

As discussed in Section 3.3., ��,� represents the impact of land use properties on the 

transferred accident potential from the neighboring grid cells. This is the main step for 

considering the spatial effects in the model. Since we suppose the unit values of the spatial 

effect in east-west direction and the north-south direction are equivalent, the focus is 

placed on ��,�&�, the sum of ��,� and ��,�. Table 8 shows the first part of the transfer 

weight matrix ��,�&� after training. 
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Table 8. ��,�&� after training. 

Key Features Accident Count Accident Date Accident Time Accident Isolation 

Accident  

Cross-Section  

Location 

Plot ratio −0.43 −0.26 −0.35 0.90 −0.05 

Number of types of 

POIs 
0.04 0.02 0.39 0.99 −0.15 

Centrality −0.87 0.72 −0.18 −1.35 −0.48 

Distance to CBD 0.22 0.13 0.01 −0.95 −0.36 

Number of sur-

rounding road sec-

tions 

0.01 0.60 0.15 −0.71 0.17 

Congestion ratio −1.55 −0.14 −0.86 4.15 −0.10 

Sum −2.58 1.08 −0.84 3.04 −0.97 

In the ��,�&�, negative values suggest the land use properties has lower contribution 

to the transfer ratio of traffic accident potential. For example, the most negative effect is 

the impact of congestion ratio on the accident count (−1.55), which indicates the higher the 

level of congestion, the lower the number of accidents affected by surrounding accident 

potential. Positive values, such as the congestion ratio on the accident isolation (4.15), in-

dicates that the isolation form is affected more by the neighboring grid cells. 

Moreover, the comparison between numbers in the “Sum” row shows a similar con-

clusion that the potential of accident count is less influenced by the neighboring accident 

potential. The 3.04, corresponding to the accident isolation, shows that the isolation form 

of every grid cell is greatly influenced by the spatial effect. 

4.4.4. Proportion of Accident Potential ��,� that Leads to an Accident ℎ�,� 

The ��,� represents the proportion of accident potential, ��,�, that leads to an acci-

dent, ℎ�,�. ��, as the corresponding weight, represents the impact of land use properties 

on ��,�. Higher ��,� suggests a serious proportion of accidents potential resulting in traffic 

accidents, which also reflect factors in the local area for avoiding traffic accidents. Table 9 

shows the first part of the input weight matrix �� after training. 

Table 9. �� after training. 

Key Features Accident Count Accident Date Accident Time Accident Isolation 

Accident  

Cross-Section  

Location 

Plot ratio 0.08 0.23 0.21 −0.05 −0.29 

Number of types of POIs −0.13 −0.01 0.16 −0.15 0.13 

Centrality −0.17 0.01 −0.42 0.44 −0.35 

Distance to CBD 0.20 0.09 −0.70 −1.07 0.64 

Number of surrounding 

road sections 
0.39 0.03 −0.38 0.15 −0.47 

Congestion ratio 0.27 −0.29 −0.42 −0.26 −0.16 

Sum 0.64 0.06 −1.55 −0.94 −0.50 

In ��, negative values also suggest the land use properties has lower contribution to 

the ��,�, which shows the proportion of traffic accident potential that eventually occurred. 

For example, the most negative effect is the impact of distance to CBD on accident isola-

tion (−1.07), which indicates that the farther away from CBD, the less likely for the isola-

tion of hidden traffic accident to result in accidents. Positive values, such as the distance 

to CBD on the accident cross-section location (0.64), indicates that the farther away from 

CBD, the more significant the cross-sectional location becomes as a factor in the potential 

of traffic accident that result in accidents.  
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Moreover, the comparison between numbers in the “Sum” row shows that the acci-

dent time will be far from potential if the land use properties gets higher. The accident 

count will also be more predictable and explainable by the traffic accident potential with 

a higher land use property. 

5. Conclusions 

This study focuses on the interpretation and application of the multi-dimensional 

long-short term memory neural network model (MDLSTM) on modelling the relationship 

between traffic accident and selected land use properties.  

The idea is to divide the influencing factors of traffic accident into two categories: a 

spatial category and a local category. The local category considers land use properties, 

which include the plot ratio, number of types of POIs, centrality, distance to CBD, number 

of surrounding road sections and congestion ratio. Other parameters are considered in the 

spatial category. 

Some interesting insights are found. (1) The spatial distribution of accident potential 

purposed a division line, on both side of which the accident potential shares significant 

differences. (2) Spatial effect differ strongly through directions between north-to-south 

and west-to-east, especially the characteristics about the physical infrastructure, such as 

the isolation form. (3) The potential of accident date is found to be largely influenced by 

the local indicators, and the potential of cross-sectional location is found to be less affected 

by the local land use properties. The potential of isolation form is highly spatial correlated, 

while the accident count shows differences. As for the proportion of potential accident 

that causes real-life traffic accident, the accident count shows better interpretability, while 

the higher land use characteristics leads to lower accuracy in accident time prediction. 

Based on the findings above, several applicable advices can be proposed to the urban 

managers and researchers. It is a practical problem for urban managers to predict the lo-

cation of the traffic accidents, especially for managers in Shenyang. Results show that 

“Hunnan middle road” is an essential accident potential hotspot. It also illustrates the 

potential form which further shows the accidents might be a critical problem in some re-

gions near city center. At the level of the whole urban area, focus need to be put on the 

accident non-motorized lane especially in the suburban area with simple isolation facili-

ties. In addition, the traffic accidents around congested area are also important since it 

positively correlated to the plot ratio. Winter accidents may occur far away from the city 

center. Therefore, target measures are needed in seasonal accident control. 

The innovations of this paper are: 1. Multiple local and surrounding influence factors 

are considered, and appropriate model is used to capture their influence. The model sep-

arates spatial influence factors from local influence factors, which greatly improves the 

interpretability of traffic accident analysis models. 2. Multi-Dimensional Long Short Term 

neural network (MDLSTM) model is used to explore the relationship between input and 

output, with higher accuracy and computational efficiency. 3. Interpretation of the rela-

tionship of land use properties and traffic accidents are proposed, and a three levels of 

explanation method was used. The hidden factor-accident potential is found, containing 

the local and spatial effect. At last, the general rules of land use properties with the traffic 

accident characteristics are interpreted in detail to provide guidance for policy making. 
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