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Abstract: Social distancing policies have been regarded as effective in containing the rapid spread
of COVID-19. However, there is a limited understanding of policy effectiveness from a spatiotem-
poral perspective. This study integrates geographical, demographical, and other key factors into a
regression-based event study framework, to assess the effectiveness of seven major policies on human
mobility and COVID-19 case growth rates, with a spatiotemporal emphasis. Our results demonstrate
that stay-at-home orders, workplace closures, and public information campaigns were effective
in decreasing the confirmed case growth rate. For stay-at-home orders and workplace closures,
these changes were associated with significant decreases (p < 0.05) in mobility. Public information
campaigns did not see these same mobility trends, but the growth rate still decreased significantly
in all analysis periods (p < 0.01). Stay-at-home orders and international /national travel controls
had limited mitigation effects on the death case growth rate (p < 0.1). The relationships between
policies, mobility, and epidemiological metrics allowed us to evaluate the effectiveness of each policy
and gave us insight into the spatiotemporal patterns and mechanisms by which these measures
work. Our analysis will provide policymakers with better knowledge regarding the effectiveness of
measures in space-time disaggregation.

Keywords: social distancing measures; COVID-19; event study; panel data; policy analysis; mobility;
mortality; spatiotemporal; heterogeneity

1. Introduction

COVID-19 (SARS-CoV-2), also known as the novel coronavirus, is known to cause
severe respiratory damage and other possibly fatal symptoms. COVID-19 is more fatal
than the flu but has a death rate lower than other notable epidemics such as Ebola [1].
However, because coronavirus is highly contagious, it kills more people than these deadlier
diseases [2]. The fact that COVID-19 is highly contagious, paired with extensive human
mobility, both nationally and internationally, means that this virus has a high rate of
transmission. Therefore, social distancing measures are important to implement in public
areas. As the emergence and spread of this respiratory disease is aided by social contact
and takes on different manifestations by region, it is important to analyze COVID-19 from
a spatiotemporal perspective [3].

Social distancing relies on the basic idea that infected particles in the air are less
likely to be transmitted with an increased distance between people [4]. Maintaining
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social distancing is important because these guidelines apply to the general population,
including asymptomatic individuals who may be infectious. Unfortunately, voluntary
social distancing guidelines are not sufficient to stop COVID-19 transmission. Therefore,
it is imperative that governments take more concrete actions such as through mandates
and closures.

To accompany social distancing recommendations, governments across the globe have
enacted a series of policies including travel bans, stay-at-home orders, and quarantine
periods. Many countries, for example, have issued travel bans or travel restrictions to
reduce the international spread of the virus by limiting the movement of people. To prevent
the spread of COVID-19 in the US, various policies have been enacted in many states,
e.g., with the rapid overflow of hospital equipment and soaring number of cases, states
have begun enacting “stay-at-home orders”, which, except for essential tasks or businesses,
restrict the movement of residents outside of their households. These policies were likewise
implemented to lower the growth rate of cases through limiting human mobility; however,
they have also had unintended economic consequences. For example, almost one in four
small businesses were shut down amidst the pandemic [5]. Additionally, the lockdown
orders sent unemployment rates soaring to 13% by May; the highest unemployment rates
since the great recession coincided with the implementation of stay-at-home orders [6].

As these policies have widely disrupted daily life, there has been much discussion
surrounding the best course of action to take to combat the virus. The effectiveness of
the implemented policies should be explored to examine whether they are successful
in reducing the virus growth rate, and therefore whether they should remain in place
for citizens to abide by, even if routine life is disrupted. Government intervention and
regulation is quintessential in inhibiting the spread of COVID-19, however, many regions
and urban areas in the US have implemented different policies to combat the virus, with
either delayed responses or less stringent measures. This paper will examine the effects
that policy implementation has on community human mobility and the growth rates of
COVID-19 infection and mortality in the US.

2. Related Work

Many nations took different approaches to control COVID-19 as the pandemic pro-
gressed. To track variation in how quickly it took governments to react accordingly, the
Oxford COVID-19 Government Response Tracker project [7] collected daily global gov-
ernment policies and implemented measures using a schema covering social distancing,
economic, and health system policies. They also created an index to measure the stringency
of social distancing measures. This policy schema became a critical guideline for many lat-
ter works. Many researchers have collected policies at fine administrative levels in various
countries in accordance with this scheme, and have shared the data with the public, e.g.,
environmental, socioeconomic, and viral case data [8], as well as health systems, economic
responses, and containment/closure data [9]. These data are valuable resources for global
and regional analyses.

In addition to data collection, a series of studies have been conducted to estimate
the impacts of policies on controlling the pandemic which include changes to human
mobility, general characteristics of the pandemic, the mortality of the virus, and others.
In the beginning of the pandemic, Wuhan was in lockdown and travel bans were quickly
announced between China and other countries in an attempt to impede the nationwide
and global spread of the virus. Most previous studies focused on the initial stages of the
pandemic and estimated the effectiveness of policies by comparing the real virus case data
after the implementation of these measures with estimated virus case data provided by
simulations—such as by using a SEIR (Susceptible-Exposed-Infectious-Removed) model
and its variants. Tian et al. [10] evaluated travel restrictions implemented in Wuhan City
and found that travel bans were effective in slowing the spread of COVID-19 to other cities
in China by 2.91 days (95% CI: 2.54-3.29). A similar study by Chinazzi et al. [11] used the
global epidemic and mobility model (GLEAM) to analyze the Wuhan travel quarantine
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and found that this measure delayed COVID-19 progression by 3 to 5 days and contributed
to a 77% decrease in cases exported from mainland China. A study by Wells et al. [12]
considered travel restrictions and border control measures and estimated their impacts
using a two-layer contact dispersion model. They found that in the early stages of the
pandemic, international travel and border control measures were cost-effective. Similar to
the previous studies, they noted that travel restriction scenarios led to an 81.3% reduction
in exported COVID-19 cases over a 24-day period.

As many other countries started to experience outbreaks, stay-at-home orders were
widely adopted. These policies typically requested that citizens shelter in place for a certain
amount of time, with the exception of essential errands [13]. As these orders significantly
disrupted normal life, many analyses worked to estimate their effectiveness to evaluate
whether their consequences were worthwhile. Using a STEx-SEIR model, researchers found
that countries implementing stay-at-home orders had 30.2% less new cases after one week
and a whopping 48.6% decrease after three weeks, compared to countries that did not enact
these measures. These orders also contributed to a 59.8% decrease in new fatalities after a
period of 3 weeks [14].

Although social distancing is the principle guideline for reducing the transmission
speed of COVID-19, governments have issued different variations of social distancing
measures depending on the COVID-19 situation and culture, when nationwide quarantine
policies are not possible. To help decision makers evaluate the impact of polices in a certain
area, some research has focused on specific geographic and political jurisdictions. For
example, Gupta et al. [15] focused on the policies created in state and local areas in the US
while using cellular data to track human movement and found that all regions showed
a large reduction in mobility. Furthermore, they noted that policies implemented earlier
resulted in the greatest mobility reductions. Overall, they concluded that the decrease in
mobility was a result of both governmental interventions and individual motivations to
remain distant. Badr et al. [16] used mobility data to generate a social distancing metric.
Specifically, they analyzed how changes in mobility affected the virus’ growth rate in
25 US counties. Their study found a strong correlation between social distancing and
decreases in the growth rate of the virus and therefore concluded that social distancing
was an effective measure.

In contrast to the previously mentioned research, which focused on analyzing the
impacts of specific measures, Courtemanche et al. [17] focused on determining which
social distancing policies were the most effective in reducing the spread of the virus among
four governmental interventions including shelter-in-place orders, public school closures,
bans on large social gatherings, and closures of entertainment-related businesses. They
discovered that shelter-in-place orders and the closure of public places slowed COVID-19
spread the most. Interestingly, this research found that school closures and bans on large
gatherings did not show a significant effect. This study did not include other potentially
important policies such as workplace closures and public information campaigns and only
used short-term data from March to April. Additionally, this study only focused on the
impact of policies in regard to confirmed cases, which might be underestimated due to the
lack of diagnostic capacity in March and April. Our study will include a wider analysis
period and will also investigate mortality as it is another insightful epidemiological metric.
Since actual confirmed and death cases are higher than reported values [18], studying
different policies is insightful as their effects may help control both the reported and
undetermined actual values.

In our study, three conceptual mobility subgroups, potentially representing different
levels of policy effects, are defined and incorporated. Furthermore, we expand upon previ-
ous studies by introducing additional policies used in the US according to the schema de-
fined by the Oxford COVID-19 Government Response Tracker project [7]. These measures—
school closures, workplace closures, public event cancellations, public information cam-
paigns, public transport closures, stay-at-home orders, and international /national travel
controls—represent more concrete and enforceable types of social distancing measures.
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Using this set of policies will help us achieve the objective of our study—characterizing
a more holistic picture of the effectiveness of different types of policies in reducing human
mobility and the COVID-19 confirmed and death case growth rates. Previous studies
proposed intriguing relationships between COVID-19, policy, and mobility. Some analyzed
policies in respect to transmission metrics while others looked at how policies affected
mobility. However, previous studies did not comprehensively explore all of these concepts.
This analysis will help us understand the current spatiotemporal connections between
policies, mobility, and COVID-19 trends in the US. Specifically, state-level data are used
since most counties follow policies implemented by the state government. This research
aims to provide a thorough, spatiotemporal, and quantitative understanding of social
distancing policies and their impacts, which can support policy making regarding COVID-
19 and other infectious diseases in the future.

3. Data
3.1. State-Level Policy Data

Our analysis utilized state-level policies to examine the effectiveness of measures used
to combat COVID-19 in the US. The policy data were shared by the NSF spatiotemporal
center [8], which adopted the schema defined by the Oxford COVID-19 Government
Response Tracker project [7], containing seven designated categories, as seen in Table 1. If
a specific policy issued by a governmental agency did not fall into one of these categories,
it was not accounted for in this study. The whole dataset, which was obtained from
Github (https:/ /github.com/stccenter /COVID-19-Data/tree /master/Policy /US_Policy),
indicates the extent of the US government’s responsiveness to the outbreak of COVID-19
and the status of policies in specific areas throughout the lockdown. Our study used
policies from March 1 to July 13.

Table 1. State-level policy data in the US.

Policy

Description Stringency

School closure

0—no measurement
1—recommended
2—required

A report of the closing of schools and universities beginning in
Ohio on 12 March 2020 [19]

Workplace closure

0—no measurement
1—recommended
2—required

A report of the closing of places of work. 19 March 2020 was the
beginning of workplace closures in the US [7]

Public event cancellation

0—no measurement
1—recommended
2—required

A report of the cancellation of public events in a state. By 6
March 2020 some music festivals had been canceled [19]

Public transport closure

0—no measurement
1—recommended
2—required

A report of the closing of public transportation. Transport
closures were recommended by 17 March 2020 [7]

Public information campaign

Implementations of state-level public information campaigns
regarding COVID-19. Public information campaigns started to
be put in place by 16 March 2020 [7]

0—no campaign
1—campaign held

Stay-at-home order

Stay-at-home orders were collected for the category of internal
movement restrictions. The 15 March 2020 marked the
beginning of stay-at-home orders for non-essential workers in
the US [7]

0—no measurement
1—recommended
2—required

International /national travel control

A record of international /national travel controls. On 30
January 2020 the US started implementing COVID-19 related
travel advisories [19]

0—no measure
1—screening

2—quarantine on high

risk regions
3—ban on high risk
regions
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3.2. Mobility Data

Google state-level community mobility reports were utilized in this study to analyze
policy impacts. Mobility data were chosen as they represented behavioral changes that were
not associated with pharmaceutical interventions, but merely policy implementation [20].
The mobility reports included dynamic changes in visits to different areas. To compute the
change in mobility, daily movements during the pandemicof COVID-19 were compared to
human’s normal movements in a baseline period—between 3 January and 6 February 2020.
The percentage difference of movement between the date of interest and the baseline was
calculated from Google map usage data.

For each state, Google community mobility data (https:/ /www.google.com/covidl
9/mobility) contained changes in six mobility categories: grocery and pharmacy, parks,
transit stations, retail and recreation, residential, and workplaces. These groups allowed re-
searchers to understand changes in mobility resulting from different policies. For example,
grocery and pharmacy were combined as both were deemed essential outings. Trends in
each category for a specific location and time were reported. Most mobility data referred to
the number of visits to each location. However, residential data included a comparison of
the length of stay at various places.

3.3. State-Level Confirmed Case and Death Data

State-level COVID-19 confirmed and death case data were also obtained from the
National Science Foundation (NSF) Spatiotemporal center Github repository [21] (https://
github.com/stccenter/COVID-19-Data/tree/master/US). Both the cumulative confirmed
and death cases were listed daily. Because our study aims to estimate the impact of policies,
growth rates for both confirmed and death cases were derived from the original dataset
and used in the subsequent analysis.

3.4. Control Variables

Additional control variables related to COVID-19 were added in this study, including
daily counts of positive and negative tests in each state, which were added together to
represent the total number of people tested for COVID-19 every day. This parameter was
taken into consideration because the number of confirmed cases is restricted by the testing
capability of each state. Daily pending data were not included in this study. Time-invariant
factors, such as the population density, number of ICU beds, size of medical staff, etc., were
not directly included in our model (detailed in the statistical analysis subsection). State-
level population totals, however, were integrated into our analysis (through regressions) to
weight the observations to reflect the individual demographic differences of each state.

4. Methods

There are two main features of the collected data. First, data were collected for different
states over time, resulting in a panel data structure [22,23]. Secondly, several policies were
initiated at different dates and had different durations. More importantly, policies have
delayed/duration effects in the confirmed/death case growth rates. To properly model
and examine the policy effects, we utilized the regression-based event study technique [24].
Event studies have been widely applied in economics, finance, and other social science
disciplines [17,25-28], and have demonstrated to be a powerful tool for policy analysis.
In this analysis, we apply the event study method to estimate what the normal mobility
and mortality should be at the day of the events as well as several days prior and after the
events (i.e., during the event window). Thereafter, this method deducts this “normal” from
the “actual” to receive the “disrupted mobility /mortality” attributed to the event.

While presenting the regression specification in the statistical analysis subsection,
we outline the general framework of our quantitative analysis here. Figure 1 shows the
workflow consisting of four main steps:

e  collecting policy, mobility, and case data, and conducting respective transformations
(data processing subsection);


https://www.google.com/covid19/mobility
https://www.google.com/covid19/mobility
https://github.com/stccenter/COVID-19-Data/tree/master/US
https://github.com/stccenter/COVID-19-Data/tree/master/US

Int. J. Environ. Res. Public Health 2021, 18, 996 6 of 23

School closure

Workplace closure
Cancellation of public event
Public information campaigns
Cancel public transport
Internal movement restriction
Travel control

e conducting regression analysis on mobility changes, confirmed case growth rates, and
death case growth rates (statistical analysis subsection);
analyzing spatiotemporal trajectories across the US (Appendix A);
estimating the impact of policy measures and interpreting the results. In addition,
state-specific time trends are analyzed.

Policy data
Dependent variables Routiisactiviiiss
Transit
" [ ——
Implementation ~ ependent veriables Residential
periods :
Section data processing (1) Panel Regr €ssion
Section statistical analysis
& Interpretation
Section result
Test growth rate
Section data processing (3) Control variables

Figure 1. The workflow of the policy analysis.

4.1. Data Processing
4.1.1. Policy

A state-level policy stringency index that measures the responsiveness of each region’s
governmental COVID-19 response was computed based on collected policy data according
to the definition in the Government Response Tracker project [7]. To simplify the model,
policy was encoded as a 0-1 variable, indicating whether the policy was active or not on
day d. For the encoded 0-1 policy variables, a duration indicator i, ranging from -1 to
6 (normalized to 0, the reference level), was generated to indicate the time range of the
policy as shown below (1), where t counted the cumulative days prior to day d since the
policy’s initiation.

—1,ift< -8

,ift>—7andt < —1

yift> landt < 7

,ift>8andt <14 )
,ift>15andt <21

ift>22andt <28

, if t >29andt <59

, if t > 60

~

DOk WD~ O

4.1.2. Mobility Report

Google’s COVID-19 Community Mobility data were divided into three subgroups,
motivated by previous studies [20,29] and their underlying assumptions (https://mrc-ide.
github.io/covid19usa). Subgroup 1, named routine activities, is an average of retail and
recreation, grocery and pharmacy, and workplace categories, and reflects their effects on
mobility at both countrywide and region-specific levels. Subgroup 2, consisting of transit
reports, determines both countrywide and state-specific effects of mobility restrictions.
Whereas subgroup 3, residential reports, represents a nationwide effect of policy on mobility.
These studies relied on the basis that these three subgroups played critical roles at different
spatial levels when used to model COVID-19 confirmed cases and death cases. Our analysis,
on the other hand, demonstrates that these subgroups may provide us with insight into
the specific spatial level of policy effects pertaining to the mobility-influenced COVID-19
confirmed and death case growth rates.
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4.1.3. Confirmed/Death Case Report

To measure the impacts of state-level policies, confirmed and death case growth rates
were calculated using the cumulative confirmed and death cases, respectively. First, daily
cumulative case counts that were below a threshold (100 in this study) were discarded
for each state. These initial counts represented the so-called spark risk, which is the
risk associated with the emergence of a pandemic; our analysis was instead concerned
with the spread risk—the likelihood of a pandemic to diffuse [30]. Spark risk typically
provokes governments to adopt medical and policy interventions. On the other hand,
the effectiveness of these policies is exhibited during the spread risk stage. To obtain the
growth rate on a specific day, the difference between the logarithms of the cumulative
counts for this day and the prior day was calculated, as this is a widely used approximation
for the growth rate. The growth rate was then multiplied by 100, enabling the estimated
regression coefficients for the policy duration indicators to be interpretated as percentage
point changes. The definition of the death case growth rate is similar to that for the
confirmed cases (2).

ConfirmedGRgsy = In(confirmgy) — In(confirmgy_q) ()

4.2. Statistical Analysis

In the current study, we focus on the fixed effects panel regression model, which is
advantageous in that unobserved heterogeneity can be modeled through state-specific
fixed effects. As shown in Figure 2, certain factors are heterogeneous among states, such as
the old-age population distribution and medical capacity. Variation and association can
be seen when these factors are related to the confirmed and death case growth rates, e.g.,
states with less of their population over 65 and states with more ICU beds per 10,000 people
generally have smaller death case growth rates.

Population density by US state in 2010 Percentage of people over 65 by US state in 2019

Percentage of people without insurance by US state in 2019 Number of ICU beds per 10,000 persons by US state in 2019

o

Confirmed case growth rate by US state on April 1, 2020 Death case growth rate by US state on April 1, 2020
0.

3
"] o

-_— :
* 0.1
. ™ 0

Figure 2. Some representative factors related to the severity of COVID-19 and their heterogeneous paths.

The response variables in this analysis were human mobility and confirmed and death
case growth rates. From exploratory analysis, we saw a certain declining pattern in the
growth rates and an increasing pattern in mobility over time—although the actual patterns
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ConfirmedGRgy

DeathGRg;

Mobility’;d

may vary across states. In addition to the state fixed effects, this motivated us to control
for the possible effects of time in the panel regression model. Therefore, we incorporated
state-specific trends, which captured individual states’ tendencies over time. Exploratory
analysis showed that mobility changes over time roughly followed a linear pattern, while
the confirmed and death case growth rates had non-linear features. A particular non-linear
trend was chosen (3,4) over other functional forms, as it produced better fits to the data
and provided more interpretable results. A further discussion of the state-specific time
trends is presented in the results section.

The seven policies in the main study of interest were denoted by school, work, event,
transport, campaign, home, and travel. We first assumed the model for the confirmed case
growth rate is as follows (3).

=« + states

+ (Z Biischoolsg; + Y Bojworkgs; + Y. Bajeventsy; + Y. Paitransportsy;
i#0 i#£0 i#0 i£0
3)
+ ) Bsicampaigngg + Y. Beihomesg + Y. Britravelsy; | +yTestGRgy + Jsme™™
i£0 i£0 i£0

€sd

In the above equation, state; denotes the unobserved fixed effect for state s, schoolsy;
is the indicator variable for the policy school belonging to the period i for state s and day d
(the remaining 6 policies are defined similarly), TestGRy; = In(testyy) — In(tests 41 ) is the
test growth rate for state s and day d, {sme™" denotes the state-specific monthly non-linear
time trends (state s and month m), and e, is the additive error for this linear regression
model. To account for a possible clustering effect, where data were collected repeatedly
over time on a state-level basis, we adjusted the observations with the state population
and robust standard errors clustered by states were estimated. The models for the death
case growth rate and mobility change are presented below (4) and (5), respectively, where k
indexes the three mobility subgroups. In addition to the test growth rate, we included the
confirmed case growth rate as a control variable for the death case growth rate response
variable (4).
= «+ states

+ (Z Biischoolgy; + Y Bojworksy; + Y. Bajeventyy; + Y. Bajtransportgy;
i#0 i#0 i#0 i#0

4)
+ ¥ Bsicampaigngg; + Y. Beihomesg; + Y Britravelyy; | + yTestGRyy
i#£0 i#£0 i#0
+ yConfirmedGRyy + {sme™™ + €54
= « + states
+ | ¥ Biischoolsy; + Y. Boiworkgy + Y Bajeventyy; + Y. Baitransportgy;
i#0 i#0 i#0 i#0 5)

+ Y. Bsicampaigngg; + Y. Beihomegzi + Y ﬁ7itravelsdi> +lm + €y
i£0 i£0 i£0

5. Results
5.1. Impacts of Policies on Mobility, COVID-19 Cases, and Mortality

Stay-at-home orders were associated with significant decreases in mobility in the first
three weeks. For example, after the implementation of stay-at-home orders, the amount
of time people stayed in residential areas increased by 1.088 percentage points in the first
week, 1.255 in the second week, and 1.697 in the third week. The impacts of this policy
on mobility were insignificant by the fourth week, however, the impacts of stay-at-home
orders on the confirmed case growth rate were significant over four months. Specifically,
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these impacts showed a percentage point reduction of 4.787 by the fourth week. Impacts
on the death case growth rate were not significant in the first four weeks but became
significant afterwards, with a reduction of 5.065 percentage points in the second month
and a reduction of 6.533 percentage points after two months.

Significant decreases (p < 0.05) in mobility were also observed with workplace closures
within the first month (Table 2). Similar to the stay-at-home orders, workplace closures
also resulted in significant decreases (p < 0.05) in the confirmed case growth rate, however,
these results represented a longer horizon (e.g., a reduction of 6.324 percentage points in
the third week and a reduction of 7.350 percentage points over two months). The death
case growth rate for workplace closures was not significant in any analysis interval. Again,
changes in mobility were not persistent, however, these short-term impacts may limit the
ability of these types of policies to create dramatic, long-lasting, mobility-induced impacts
regarding the case growth rates.

Public event cancellations also saw significant (p < 0.05) changes in mobility in all
subgroups for the first few weeks (e.g., reductions of 5.602, 6.489, and 6.674 percentage
points in transit group in weeks one, two, and three, respectively). This policy saw
significant results in the confirmed case growth rate after one month—there was a decrease
of 6.681 percentage points between one and two months (p < 0.1) and a decrease of
7.281 percentage points over two months (p < 0.05). Our analysis could not find evidence
that public event cancellations had significant impacts on the death case growth rate.

Similar mobility patterns were observed for policies regarding public transport clo-
sures. In fact, among all polices considered, public transport closures resulted in the largest
percentage changes in all mobility subgroups (p < 0.01). As their impacts on mobility
changes were especially significant, public transport policies could effectively and rapidly
reduce human mobility at state, regional, and national levels. However, no significant
impacts were observed for this policy in regard to either case growth rate which suggests
that mobility may not always directly affect COVID-19 trends.

On the other hand, the impacts of school closures and international /national travel
controls on mobility were not significant. Likewise, they had only limited impacts on each
case growth rate. Overall, most policies showed a decrease in the death case growth rate,
except for school closures, but their coefficient estimates were not statistically significant.
Although a clear majority of these policies were effective in controlling the confirmed case
growth rate, they were less promising in reducing the death case growth rate. Indeed,
death cases are affected by many other non-policy factors, such as medical resources, the
distribution of age/race groups, etc.

Our analysis showed that public information campaigns generally had little to no
effect on the mobility subgroups; however, these measures can effectively reduce the
COVID-19 confirmed case growth rate (e.g., 10.331 percentage points in one week, 18.792 in
two weeks, 19.538 in three weeks, 18.569 in four weeks, 19.917 in one to two months,
and 22.534 in more than two months). Not only were these changes the most significant
(p < 0.01) out of any policy category, but they were also the largest. This shows that policy
can significantly impact COVID-19 trends through channels other than changes in mobility.
Similar mechanisms may play a role in stay-at-home orders as both of these policy types
can be considered health system policies. Contrary to medical system policies, health
system policies primarily affect people’s behavior and limit their mobility by increasing
their awareness and changing their perceptions of the pandemic. For example, people will
be more likely to wash their hands and wear a mask if health system policies promote
protective strategies individuals can take—ultimately reducing COVID-19 transmission.



Int. J. Environ. Res. Public Health 2021, 18, 996 10 of 23

Table 2. The impact of policy on human mobility, COVID-19 cases, and mortality of COVID-19.

Confirmed Case Death Case

Routine Activities (5) Transit (5) Residential (5) Growth Rate (3) Growth Rate (4)

Stay-At-Home Order

1 week —2.915 ** —2.801 ** 1.088 ** —5.000 *** 0.714
2 weeks —2.286 —3.737 ** 1.255 ** —5.461 *** —2.495
3 weeks —3.780 ** —4.333 ** 1.697 *** —5.202 ** —3.751
4 weeks —0.957 —1.252 0.866 —4.787 ** —4.396
One to two months 0.538 —0.003 0.423 —3.731*% —5.065 *
More than 2 months 3.436 2.677 —0.555 —3.737 % —6.533 **
Workplace Closure
1 week —4.201 ** —4.565 ** 1.604 ** —1.497 0.928
2 weeks —5.172 ** —5.284 ** 2.157 ** —4.577 % —3.236
3 weeks —5.833 ** —5.882 ** 2.729 ** —6.324 ** —1.941
4 weeks —7.776 *** —6.953 ** 3.473 #** —7.524 #** —2.048
One to two months —6.773 ** —5.718 * 3.542 *** —7.414 ** —1.603
More than 2 months —4.748 —3.934 2.171 —7.350 ** —1.676
School Closure
1 week 1.425 0.397 —0.087 3.711 2.201
2 weeks —0.812 0.018 0.282 3.935 6.005
3 weeks 0.092 —0.094 —-0.277 3.186 6.123
4 weeks 0.250 —0.648 —0.638 2.970 6.680
One to two months 0.951 0.182 —1.239 2.142 6.414
More than 2 months 2.693 2.599 —1.986 2.103 5.981
Public Event Cancellation
1 week —5.602 *** —4.689 ** 2.160 *** 2.999 3.588
2 weeks —6.489 ** —7.076 *** 2.987 *** -0.071 1.646
3 weeks —6.674 ** —8.421 *** 3.138 *** —2.483 —2.034
4 weeks —5.809 —8.303 ** 2.877 ** —4.263 —3.919
One to two months —3.684 —7.021* 2.199 —6.681 * —6.169
More than 2 months —2.831 —4.444 1.719 —7.281 ** —6.24
Public Transport Closure
1 week —10.470 *** —8.884 *** 3.256 *** -2.811 —2.029
2 weeks —12.559 *** —10.242 *** 3.846 *** —1.326 0.129
3 weeks —12.433 *** —10.975 *** 4.690 *** —1.609 —0.585
4 weeks —17.036 *** —14.509 *** 5.555 *** —3.147 —-1.62
One to two months —16.150 *** —14.477 *** 5.315 *** —3.595 —2.284
More than 2 months —17.015 *** —15.207 *** 5.285 *** —3.304 —-1.313
International /National Travel Control
1 week 0.889 0.489 —0.295 —2.834 —7.746 *
2 weeks 0.483 —0.905 —0.188 —4.227 —6.293
3 weeks 0.487 —-1.353 —0.367 —4.375 -7.351
4 weeks 1.439 —0.583 —0.423 —3.784 —-7.107
One to two months 2.905 0.388 —-1.131 —3.795 —8.047
More than 2 months 3.920 2.508 —1.586 —2.927 —8.596
Public Information Campaign
1 week —2.847 —1.379 0.884 —10.331 *** 2.661
2 weeks —6.576 * —4.196 2.109 —18.792 *** 0.572
3 weeks —7.467 * —5.834 2.078 —19.538 *** —0.426
4 weeks —8.410* —6.031 2.248 —18.569 *** 1.112
One to two months —7.375 —5.281 1.791 —19.917 *** —1.653
More than 2 months —6.176 —4.195 1.511 —22.534 *** -2.202
Test growth rate —1.096 3.344
Confirmed growth rate 32422
constant —38.893 *** —60.019 *** 23.337 *** 28.984 *** 12.484
r2 0.781 0.810 0.506 0.792 0.518

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01; State-specific time trends corresponding to this table are shown in Table A1.
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It was also interesting to note that the effectiveness of social distancing policies gener-
ally diminishes overtime. Many of the policy categories saw their most significant mobility
changes within the first few weeks. Compliance with policies may be reduced over time as
people become restless. Indeed, many of the policies that exhibited this trend (e.g., stay-at-
home orders, workplace closures, and public event cancellations) showed decreasing or
limited significance in their case growth rates overtime. This again emphasizes the critical
role that health system measures, such as public information campaigns, play in mitigating
COVID-19 through non-mobility related mechanisms. Furthermore, since the effects of
social distancing measures on mobility diminish overtime and in turn, they have less of
an impact on case growth rates, it is vital to continually enforce many types of mitigation
mechanisms that are not limited to mobility, such as public information campaigns.

5.2. State-Specific Time Trends

Figure 3 shows the counterfactual state-specific time trend in regard to changes in
the three mobility subgroups, as well as the confirmed and death case growth rates, after
controlling for policies and non-policy effects. Specifically, the five columns display the
estimated coefficients (with 95% confidence intervals) for the time trends modeled in
the aforementioned equations. Since the time trend for the confirmed and death case
growth rates is a non-linear decreasing function during the study period (March to July), a
positive estimated coefficient would indicate a decrease in the growth rate, while a negative
estimated coefficient would indicate an increase. On the other hand, since we used a linear
trend for the three mobility subgroups, a positive estimated coefficient would indicate that
the growth rate increases over time. Spatial heterogeneity can easily be seen via diverse
patterns between these state-specific trends. Significant positive trends can be seen for
most states in the routine and transit mobility subgroups. While oppositely, these results
coincided with those for the residential mobility subgroup where most states showed a
significant negative trend.

Careful readers may find that some of the results in Figure 3 are not representative
of reality—some states that have been considered to be performing well in mitigating
COVID-19 may display opposite results in our analysis. For example, Hawaii has one of
the lowest infection rates from COVID-19 and has some of the strictest quarantine rules
out of all states [31]. In contrast, our analysis showed that Hawaii had an increasing
confirmed case growth rate trend. On the other hand, our data analysis indicated that
New Jersey’s confirmed case growth rate decreased the fastest. In reality, New Jersey
has the highest population density with a relatively large number of infections. In some
instances, decreased mobility in the routine and transit subgroups may be associated
with increasing case growth rate trends as well. Figure 3 helps explain these seemingly
contradictory results as it displays the time trends after controlling for policy and other
non-policy effects. In other words, policy effects are held unchanged in this figure. We
further demonstrate this point in Figure 4, which plots the fitted regression curves with
all policies against their observed counterparts. This figure shows that our models are
reasonable and capable of producing satisfactory results. Most states—with the exception
of Arkansas and North Dakota—show good fits between the predicted confirmed case
growth rate that considers all policies and the actual observations. As a byproduct, we can
also investigate the hypothetical situation where there is no policy via the counterfactual
analysis. One apparent feature displayed for most states in Figure 4, is the large gap
between the predicted curves with and without policies. This unequivocally reveals that
social distancing policies have a substantial impact in reducing confirmed case growth rates.
Additionally, there is a wide heterogeneity among these curves which further emphasizes
that it is necessary and reasonable to consider state-specific time trends to model diverse
time effects.
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Figure 3. Counterfactual state-specific time trends in absence of seven social distancing policies.
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Figure 4. Counterfactual analysis: state-specific time trends for the confirmed case growth rate with and without social
distancing measures.
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Death case growth rate

Figure 5 displays the same state-specific time trends but in respect to the death case
growth rates. Like Figure 4, the fits of the predicted curves with the real observations
are satisfactory—even though large fluctuations are seen in the beginning of the analysis
period in some states. However, the gap between the predicted curves with and without
policy is narrower than the gap seen in Figure 4. This supports our findings and assertion
that policies have less of an impact on the death case growth rate than the confirmed case
growth rate.

Figures 4 and 5 are also represented in Appendix C with a 7-day moving average
to smooth the raw observations. Even with smoothing, the results are not substantially
different from what is observed here. Furthermore, discrepancies between observed and
fitted values still remain for the states of Arkansas and North Dakota when using smoothed
data, which suggests that the poor predictions for certain states cannot be completely
attributed to fluctuations in the unsmoothed data. Even though our model is limited in that
a few states are predicted poorly, its performance is satisfactory in most cases. Therefore,
the model we have established could be used for further investigations such as to assess
how the growth rate may change if only certain policies are implemented at a time.
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Figure 5. Counterfactual analysis: state-specific time trends for the death case growth rate with and without social

distancing measures.

6. Discussion

This study estimated the impacts of seven social distancing policies on changes in
human mobility and the growth rates of confirmed and death cases in the US. These results
can help emphasize the parts of policies which are the most fundamental in combatting
COVID-19. Results show that policies which create incentives for less movement and
prohibit large gatherings—such as stay-at-home orders, workplace closures, public event
cancellations, and public transport closures—decrease mobility the most significantly
(p < 0.05 in most duration periods). This reveals that removing factors that drive people
to enter public venues (e.g., public event cancellations) would lead to a great reduction in
mobility. With public transport closed, people may have a harder time moving to places
other than their current residences which inhibits mobility. Likewise, with workplaces
closed, people are likely to work and spend more time in residential areas. Furthermore,
stay-at-home orders discourage people from moving outside their households which may
reinforce the mobility changes seen with other policies, such as by limiting the need for
public transportation. Interestingly, after the implementation of social distancing policies
for several months, the mobility of routine activities and transit increased, while the time
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spent in residential areas decreased, although people still move less than they did before the
pandemic. This result demonstrates that governments should continue to remain stringent
on policies and increase public awareness regarding mobility-induced transmission.

In regard to the COVID-19 confirmed case growth rate, stay-at-home orders and
workplace closures led to significant decreases (p < 0.05) in the first few weeks. This
supports the assertion described in previous studies, that policies which limit mobility
can in turn control disease transmission [16]. Although public information campaigns
did not significantly affect mobility, they did produce significant decreases (p < 0.01) in
the confirmed case growth rate. This emphasizes the importance of implementing health
system policies that may not influence COVID-19 trends directly through mobility. These
types of policies can influence a population’s knowledge and willingness to comply with
health measures that aim to limit COVID-19 transmission. Indeed, many media outlets
have agreed that a coordinated “public information campaign that reinforces key messages
to shape people’s behaviors and prevent the spread of the virus” is needed given the
current progress of the pandemic [32]. Increased knowledge has been seen to have a
positive impact on risk perception [33]; if people are more aware of COVID-19 risk they
may be more likely to follow mitigation measures. Additionally, sources [34] have noted
that social media and news sources are essential in helping spread this information to a
large audience. Indeed, communication between policy makers and the public represents
another class of effective mechanisms that should be utilized in mitigation efforts [35].

Policies regarding school closures and international /national travel controls resulted
in decreases in most of the variables examined. However, most of their impacts were
statistically insignificant. A study on control measures taken during the Beijing SARS
outbreak in 2003 noted that school closures were not very effective in controlling disease
transmission [36]. Two other studies [17,37] could not find significant decreases in the
growth rates resulting from school closures, either. Another study similarly reported that
travel restrictions were effective in the early stages of the pandemic but became ineffective
for most countries/regions as the epidemic progressed [38].

The results of this study also highlight the intrinsic spatiotemporal heterogeneity in
the US. For example, the impacts of stay-at-home orders on mobility diminished over
time while a one-month lag was observed in regard to the death case growth rate impacts.
Indeed, the duration and extent of significance seen in these policy-outcome relations
provides us with insight into the connections between policies and the mechanisms by
which they affect COVID-19 trends.

Noticeably, these results should be deciphered under the assumption that many
infected individuals were not accounted for; testing was not at full capacity and asymp-
tomatic individuals are less likely to get tested. Therefore, the growth rates used may be
larger than estimated. Additionally, our study converted all seven policies to O-1variables
to simplify the modeling and data analysis. Additional stringency levels, which could be
defined by whether a policy is recommended or required, could greatly increase the total
amount of policy variables (e.g., the generated policy duration indicators). This may make
the model structure redundant and its interpretation opaque. It is therefore convenient to
consider combined indices of several policies, where multiple categorical policy variables
are re-weighted to form a continuous index used for further analysis. Similarly, other types
of measures (e.g., mask usage, behavioral measures, mandatory testing, mandatory quar-
antines) could have been included to represent a broader range of COVID-19 mitigation
strategies [39,40]. Furthermore, future research could use alternative data to measure policy
(e.g., Oxford policy data) and mobility (e.g., Descartes, Facebook mobility, SafeGraph) to
validate and expand upon our findings.

This study also focused on the short-term impacts of policies. For example, analyzing
COVID-19 confirmed cases in July 2020 raises the possibility that short-horizon, time-
contingent, and state-contingent policies can effectively and temporarily reduce mobility
and mortality. Long-horizon policies warrant future research as they might mute the
mobility and mortality responsiveness due to changes in the perception of COVID-19,
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spillover across states, and other factors. Lastly, it is worth mentioning that several existing
studies, including this current one, could not detect significant policy effects regarding
school closures. This motivates us to consider model-based approaches such as the SEIR
model or other agent-based models to study potential policy effects that have not yet been
discovered. These models may be useful in determining the best ways for schools to reopen
(e.g., some schools in Georgia and North Carolina have attempted to reopen but have been
unsuccessful) and the potential consequences that may result from the easing of policies.
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Appendix A. Descriptive Spatiotemporal Trajectory

The map below displays the stringency index in each US state at different points in
time. This index serves as a valid scope in detailing the response level of state governments
as they worked to mitigate COVID-19. On March 5, Maryland declared a state emergency
(Figure A1(1)) [8], implemented COVID-19 public information campaigns, and closed K-12
schools. As the virus spread across the US, other states took similar actions. By 1 April,
most states had implemented stay-at-home orders, cancelled large public gatherings, and
closed nonessential businesses. These actions aimed to slow the spread of the virus by
keeping physical distances between people (Figure A1(2,3)). Despite increasing cases
throughout the spring, starting in May, several states decreased their policy stringency
due to economic concerns (Figure A1(4-6)). Big spatiotemporal data were essential for our
analysis in order to highlight trends across the US over time [41].
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Figure A1. Policy stringency in the US during the epidemic of COVID-19.

Each of the mobility subgroups had a different net change in their relative movement.
As a result of regulations prohibiting unnecessary public movement, there was a notable
increase in time spent in residential areas. All other mobility categories in most states
saw a significant decrease in their movement, especially in April 2020 (Figure A2). The
largest negative percent changes were for the transit and routine activity groups. Interest-
ingly, there was a slight rise in routine activities and transit mobility after several weeks
corresponding to the easing of restrictions.
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Figure A2. Community mobility changes during the epidemic of COVID-19 across the US.
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The maps in the top row of Figure A3 depict confirmed cases of COVID-19 per 10,000
people in the US on different days, between March 2020 and July 2020. At one point, New
York was deemed an epicenter of COVID-19 spread in the US; its growth rate of confirmed
cases was the largest in March and April and has since been reduced. Similarly, the growth
rate decreased in most states during the analysis timeframe. Due to limited space in this
paper, the death case spreading maps and growth rate maps are not included.

¥ “’“-n*l
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Iz
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Figure A3. Confirmed COVID-19 cases per 10,000 people (top) and growth rate (bottom) across the US.

Appendix B. Regression Estimates for State-Specific Time Trends Based on
Raw Observations

Table A1. State-specific time trends (as part of Table 2 in the main text).

Time Trend Routine Activities (5) Transit (5) Residential (5) gz:gl;;l;itceez(; Gr]()):vattl?RCa atze( mn
Alabama 1.818 ** 6.552 *** —0.742 ** 8.463 130.962 ***
Alaska 5.301 *** 11.434 *** —1.456 *** —37.840 * —21.078
Arizona 1.601 * 1.331 —0.603 * 26.257 40.217
Arkansas 4.28] *** 7.639 *** —1.803 *** 4.677 —0.267
California 1.23 2.052 *** —1.255 *** —9.454 —13.059
Colorado 3.544 *** 5.263 *** —2.170 *** 13.922 56.646 **
Connecticut 3.274 *** 6.491 *** —1.879 *** 77.685 *** 45.363 ***
Delaware 3.484 *** 4,456 *** —0.999 *** 82.913 *** 92.635 ***
Florida —0.901 —0.934 —0.146 22.509 29.847
Georgia —0.274 —0.017 —0.698 ** 27.353 23.036
Hawaii —0.472 —2.238 *** —0.941 **+* —14.283 48.593 ***
Idaho 3.446 *** 9.786 *** —1.432 *** 20.483 —16.298
Illinois 1.804 ** 3.054 *** —1.452 *** 102.767 *** 79.879 **
Indiana 2.993 *** 5.724 *** —1.606 *** 112.698 *** 14.385
Towa 4.663 *** 5.876 *** —1.721 *** 60.819 *** 65.506 ***
Kansas 2.129 *** 6.203 *** —1.524 *** 60.459 *** 25.716
Kentucky 0.801 3.582 *** —0.712 ** 41.105* —40.937
Louisiana —0.045 2.213 *** —0.543 ** 26.778 ** 47.933 ***
Maine 8.739 *** 17.115 *** —3.025 *** —8.546 90.497 **
Maryland 1.886 *** 2.884 *** —1.389 *** 45.462 *** 9.181
Massachusetts 1.435 ** 2.210 *** —1.650 *** 44,170 *** 114.490 ***
Michigan 7.414 *** 9.527 *** —3.397] *** 94.356 *** 171.615 ***
Minnesota 2.953 *** 1.618 ** —1.798 *** —28.276 6.562
Mississippi 2.670 *** 7.453 *** —1.527 *** —11.736 96.962 ***
Missouri 3.593 *** 4,524 *** —1.628 *** 54.355 ** 34.588

Montana 6.234 *** 14.457 *** —1.740 *** —31.103 42.468 *
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Table A1. Cont.

Time Trend Routine Activities (5)  Transit (5) Residential (5) g‘;ggi‘;‘;itcea; Gr‘gﬁﬁ‘éﬁi "
Nebraska 2.717 =+ 5.805 ** 1,627 60.033 ** 10155
Nevada 3.391 **+ 3.7 %+ 1,738 **+ 19.378 96,740 ***
New Hampshire 3.563 *** 6.551 *** 1.549 #* 1634 —45.906
New Jersey 4,421 5.173 *** 2,516 121265 **+ 25.709
New Mexico 0.467 0.928 0474 66.458 ** 92,059 **+
New York 4,704+ 3.971 2,589 #* 20,098 75.154 **
North Carolina 0.833 * 3.730 %+ —0.758 *** 14.168 103.169 **
North Dakota 6.48 %+ 9.627 *** 3,805 *** 102.288 *** 7487
Ohio 3203 #* 5.506 *** —1.917 # 66.207 *** 113377 ***
Oklahoma 1,574 %+ 1,082 *** 1122 24,566 * 44,410+
Oregon 2,313 **+ 2.855 *** —0.800 # 24.030 * 2.971
Pennsylvania 3.460 *** 3.112 *** 1757 # 82,505 *** 37.785
Rhode Island 2,923 *+ 4,760 *** 1,601 *** 88.698 *** 103.377 **+
South Carolina 0.785 6.750 **+* 0322 8.372 2.696
South Dakota 8.096 **+ 18.190 **+ _2.568 33.562 * 3,449
Tennessee 2,179 *+ 4,025 1,446 —7.826 14521
Texas 0.925 2.018 —0.831 15.444 —47.087
Utah 3.788 *+ 4,185 _1.621 115,373 52196
Vermont 4,603 2.946 *** —1.626 *** 4505 72788 **
Virginia 0.661 2,192 **+ 0,503 48172 % 25314
Washington 2.700 *** 3.744 %+ 1461 *+ 1739 27258
West Virginia 3.937 13.001 *** 1173 o 1823 12.985
Wisconsin 3.944 #5 6.343 *+ 1.662 * —28.834 47157
Wyoming 7.378 *+ 14,447 **+ 2,097 *** 19.855 * 119.008 **

Appendix C. Counterfactual Analysis and Graphical Model Evaluation

The following regression results are based on fitting the models (3,4,5) to smoothed
data (7-day moving average). Table A2 presents the regression estimates and Table A3
displays the estimated state-specific time trends. Fitted curves with and without policy
are plotted in Figures A4 and A5, which shows satisfactory results when compared to the
actual observations. Again, the primary goal for fitting the models built in the main text
to smoothed data was to see if the quality of the predicted curves would be improved
(see the state-specific time trends subsection from the results section in the main text for
more details).

Table A2. The impact of policy on COVID-19 cases, and mortality of COVID-19 (7-day average).

Confirmed Case Growth Rate (3) Death Case Growth Rate (4)

Stay-At-Home Order

1 week —2.473 2.859

2 weeks —4.003 *** —1.161

3 weeks —3.894 ** —4.432 **

4 weeks —4.129 ** —b5.813 ***
One to two months —2.849 —7.251 ***

More than 2 months —2.941 —8.011 ***
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Table A2. Cont.

Confirmed Case Growth Rate (3) Death Case Growth Rate (4)

Workplace Closure
1 week 3.530 * 1.041
2 weeks 0.846 0.302
3 weeks —0.695 0.73
4 weeks —2.014 0.552
One to two months —2.242 0.721
More than 2 months —2.378 0.565
School Closure
1 week 0.504 —1.042
2 weeks 0.287 2.334
3 weeks —0.776 3.949
4 weeks —0.943 4413
One to two months —2.156 4.403
More than 2 months —2.234 3.626
Public Event Cancellation
1 week 1.024 —1.124
2 weeks —0.083 —1.053
3 weeks —2.637 -1.191
4 weeks —4.292 -2.3
One to two months —6.542 % —2.869
More than 2 months —6.856 ** —3.031
Public Transport Closure
1 week —3.472 4.576
2 weeks —2.933 7.351 **
3 weeks —2.481 7.618 **
4 weeks —3.924 7.114 **
One to two months —5.108 6.106
More than 2 months —4.958 6.548

International /National
Travel Control

1 week —1.548 3.16
2 weeks —3.283 ** 4.018
3 weeks —4.360 *** 3.476
4 weeks —3.952 ** 3.097
One to two months —4.369 ** 2.245
More than 2 months —3.702 1.703
Public Information
Campaign
1 week —5.535 *** 0
2 weeks —11.682 *** —2.354 *
3 weeks —14.123 *** —3.836
4 weeks —12.535 *** —4.564 *
One to two months —13.490 *** —5.092
More than 2 months —14.926 *** —5.109 *
Test growth rate 0.844 * 0.888
Confirmed growth rate 57.652 ***
constant 25.284 *** 8.39
2 0.942 0.941

Notes: * p < 0.1, ** p < 0.05, ** p < 0.01. State-specific time trends corresponding to this table are shown in
Table A3.
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Table A3. State-specific time trends (as part of Table A2).

Time Trend Confirmed Case Growth Rate (3) Death Case Growth Rate (4)
Alabama 10.155 59.095 ***
Alaska —32.622 ** —27.394 **
Arizona 13.227 26.447
Arkansas 36.154 ** 35.957 ***
California —10.765 8.219
Colorado 30.863 ** 45.522 ***
Connecticut 87.160 *** 30.606 ***
Delaware 87.250 *** —6.762
Florida 11.232 17.597
Georgia 22.545 23.376
Hawaii —18.469 24.438 ***
Idaho 15.471 11.341
Illinois 89.965 *** 39.134 ***
Indiana 107.613 *** —24.486
Iowa 65.835 *** 47.763 ***
Kansas 70.062 *** —10.026
Kentucky 55.060 *** —28.581
Louisiana 58.652 *** 26.203 **
Maine —5.964 5.219
Maryland 67.261 *** —12.463
Massachusetts 52.906 *** 60.880 ***
Michigan 108.931 *** 86.237 ***
Minnesota —5.812 76.104 ***
Mississippi 7.858 59.597 ***
Missouri 45.380 *** 10.98
Montana —36.921 ** —32.325 ***
Nebraska 75.301 *** —11.472
Nevada 32.68 58.327 ***
New Hampshire 33.303 ** —4.022
New Jersey 126.371 *** 25.26
New Mexico 56.363 *** 39.292 ***
New York 16.115 58.550 ***
North Carolina 36.208 *** 78.614 ***
North Dakota 95.539 *** 9.175
Ohio 59.071 *** 68.370 ***
Oklahoma 21.958 * 51.080 ***
Oregon 25.486 ** 18.069 **
Pennsylvania 93.768 *** 46.247 ***
Rhode Island 115.405 *** 12.364
South Carolina 12.68 —8.28
South Dakota 93.266 *** —23.326 **
Tennessee 0.399 24.711
Texas 6.735 —14.084
Utah —70.030 *** 6.727
Vermont —2.488 —37.549 **
Virginia 44,177 *** 23.941 **
Washington —25.989 —2.938
West Virginia 29.909 *** 81.529 ***
Wisconsin —12.118 —2.851
Wyoming 26.938 ** 148.983 ***
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Figure A4. Counterfactual analysis: state-specific time trends for the confirmed case growth rate with and without social

distancing measures based on smoothed data (7-day moving average).
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Figure A5. Counterfactual analysis: state-specific time trends for the death case growth rate with and without social

distancing measures (7-day moving average).
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