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Abstract: (1) Background: Cardiac amyloidosis or “stiff heart syndrome” is a rare condition that
occurs when amyloid deposits occupy the heart muscle. Many patients suffer from it and fail to
receive a timely diagnosis mainly because the disease is a rare form of restrictive cardiomyopathy
that is difficult to diagnose, often associated with a poor prognosis. This research analyses the
characteristics of this pathology and proposes a statistical learning algorithm that helps to detect the
disease. (2) Methods: The hospitalization clinical (medical and nursing ones) records used for this
study are the basis of the learning and training techniques of the algorithm. The approach consisted of
using the information generated by the patients in each admission and discharge episode and treating
it as data vectors to facilitate their aggregation. The large volume of clinical histories implied a high
dimensionality of the data, and the lack of diagnosis led to a severe class imbalance caused by the low
prevalence of the disease. (3) Results: Although there are few patients with amyloidosis in this study,
the proposed approach demonstrates that it is possible to learn from clinical records despite the lack
of data. In the validation phase, the algorithm first acted on data from the general study population.
It then was applied to a sample of patients diagnosed with heart failure. The results revealed that
the algorithm detects disease when data vectors profile each disease episode. (4) Conclusions: The
prediction levels showed that this technique could be useful in screening processes on a specific
population to detect the disease.

Keywords: artificial intelligence; real-world data (RWD); cardiac amyloidosis; heart failure; machine
learning; predictive models

1. Introduction

Amyloidosis is a group of diseases characterized by the uncontrolled deposition of
amyloid protein affecting multiple organs. This disease, in 50–65% of cases, attacks the
heart causing an eventual increase in morbidity and mortality of patients. Among the
more than 30 proteins that can make up amyloidosis, light chain monoclonal (AL) and
transthyretin (ATTR) are the most common [1–6].

ATTR is produced mainly by the liver and functions as a transporter of thyroxine and
retinol. Additional production of these compounds takes place within the choroid plexus
of the brain and the pigment epithelium of the retina. The heart and the peripheral nervous
system are the main places where the deposits accumulate, as well as the skin.

The accumulation is the cause of ATTR and organic dysfunction [2]. Autopsies have
shown that 25% of people over the age of 80 have their myocardium infiltrated by amyloid
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TTR deposits. ATTR leads to cardiac amyloid deposition in patients after the sixth decade
of life.

Cardiac amyloidosis (CA) is a rare form of restrictive cardiomyopathy that is difficult
to diagnose [4]. Annually in the US, there is a prevalence of 5 to 13 cases per million
population [7]. However, the actual prevalence of CA is not entirely clear because the
disease is poorly understood, and its initial symptoms are nonspecific [7,8].

The difficulty of diagnosis leads to the use of clinical suspicion [8], causing many
patients to die without adequate treatment or even a diagnosis. Detecting the probability
that patients may suffer from amyloidosis is crucial when applying for therapeutic advances
and improving the prognosis [9].

Clinical results depend on the extent of tissue affected and the type of amyloid
fiber deposited. The suspicion of CA should relapse in patients presenting heart failure
with preserved ejection fraction, unjustified left ventricular hypertrophy and multiorgan
involvement, being this the most common cause of restrictive cardiomyopathy. In 20%
of the cases, there are predominant cardiac symptoms, and in 5% of them, only isolated
cardiac involvement occurs. In these cases, it is common that in the vast majority of patients,
the involvement occurs in more than one organ [1,2,5,10].

In the elderly population, heart failure (HF) is a common condition. For both doctors
and healthcare providers, the diagnosis is simple when it comes to common types of HF.
The less common types are those that delay diagnosis or even fail to be identified and are
associated with rare diseases such as CA [6].

Early diagnosis and characterization of CA are necessary for many patients, but
the above factors only contribute to the delay of such diagnosis. TTR amyloidosis has a
low diagnostic rate, and the symptoms the patient displays are a treatable cause of heart
failure [1]. Only 13% of ATTR cases are detected in heart failure patients with preserved
ejection fraction. Myocardial involvement is the most important driver of the prognosis of
systemic amyloidosis. Stratification of patients, in turn, is essential for accurate medical or
surgical prognosis and treatment [10].

Medical diagnoses are generally based on patterns learned during clinical practice,
based on individual experience about patients, losing the advantage that technology offers
by analyzing data according to latent knowledge and patterns present in the data recorded
in electronic medical records [11].

The starting point of personalized medicine must be an accurate diagnosis, which
requires analysis beyond the data coded in the systems used in clinical practice [12–16]. The
introduction of electronic health records (EHRs) has sparked widespread interest among
clinical researchers in this field, as the complete and extensive use of clinical datasets offers
great potential for transforming the healthcare system [11].

Nursing records, for example, provide information about patient conditions, with the
data often reflecting nurses’ cumulative experiences in recognizing patient deterioration
through the interpretation of physiological and psychological signs. Previous studies used
the frequency of free-text comments as an indicator of nursing concern about the patient,
and the frequency of comments was generally associated with increases in cardiac arrest
and mortality [8].

In the development of diagnostic algorithms based on machine learning, common data
extraction strategies identify terms that are manually preselected by physicians, sometimes
supplemented with additional related vocabulary [17–20]. However, another way to obtain
information from the written text is by processing natural language through subject models.
This strategy is based on the identification of concurrent words with the aim of determining
the latent semantics of the topics within the text. It has been demonstrated that in this
way, significant notions can be obtained from a group of notes in the medical records
of an intensive care unit, which were used to classify patients at risk of mortality with
high precision [21].

Thus, artificial intelligence processing tools can close the gap between the large amount
of data generated and the limited cognitive capacity of the human mind [22,23].
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The aim of this study was, on one hand, to process data from electronic clinical records
in order to characterize the patient’s health status by means of a numerical vector, which
will secondly allow training an automatic learning algorithm that facilitates the early
identification of CA patients.

2. Materials and Methods
2.1. Design

Retrospective Transversal Descriptive Observational Study.

2.2. Participants

We analyzed and processed ten years of anonymized electronic clinical records (both
medical and nursing) (2009–2019), which belong to 11,586 patients over 65 years of age, with
an average age of 87 ± 17 and a roughly balanced sex distribution of 58% women and 42%
men. The total results in 16,620 episodes of medical consultations. The data analyzed include
structured and unstructured information. One characteristic of unstructured data is that they
collect free-text notes that doctors and nurses have left about the patient’s process.

Patient inclusion criteria: we selected subjects older than 65 years as TTR amyloidosis
symptoms appear after the age of 65. To analyze all patients who may be admitted for
another pathology, and not only in the cardiology and internal medicine services, we
considered including the total number of patients admitted to the hospital during the last
five years. In this way, possible undiagnosed cases would be susceptible to detection. By
including all the records, both structured and unstructured, it was possible to analyze the
primary diagnoses and comorbidities, detecting the weight that these could have had on
identifying the patient with real CA.

Patient exclusion criteria: oncological patients with active treatment.

2.3. Features Extraction

In selecting characteristics, sociodemographic variables, clinical evolution variables,
and other variables collected in the electronic clinical record in a structured way by doctors
and nursing personnel were included, such as clinical variables derived from the evaluation,
complementary tests, diagnosis, and prescribed treatment.

Medical diagnoses were collected through the International Classification of Diseases
(ICD-9 and ICD-10), and the variables corresponding to the nursing care process through
the NANDA (North American Nursing Diagnosis Association) NIC (Nursing Interventions
Classification)-NOC (Nursing Outcomes Classification) taxonomy. Variables extracted
from the relevant clinical studies in the field of cardiac amyloidosis were added.

Unstructured data were collected from the clinical reports, extracting from the free
text fields of the electronic clinical records the text written by the doctors and nurses in the
clinical evolutions during the entire hospitalization process. As these are free text fields,
it can be problematic when analyzing the health care records due to the lack of structure.
However, we believe that this analysis may be the key to identify red flags to detect
possible undiagnosed CA cases. In order to identify the most commonly written terms in
the evolutionary ones that could behave as red flags, two expert sessions were held in which
a total of 8 geriatricians, internists, cardiologists, pharmacists and nurses participated.

2.3.1. Data Processing

Data analysis was initiated by searching for diagnosed cases of CA in extracted
medical records. Twenty-six patients with amyloidosis were detected according to ICD
9 and ICD 10 coding (depending on the system used in the temporary sections by the
hospital). From these profiles, the construction of the specific characteristics vector began.
Figure 1 shows the most frequent diagnoses of the group of patients with CA.
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Figure 1. Frequent diagnoses of the group of patients with cardiac amyloidosis (CA).

To construct the vector of characteristics of the patient with amyloidosis, the process
described in Figure 2 was carried out. The figure shows a summary of the entire con-
struction process of the training data set. As shown in the upper left corner of Figure 2
(step 1), we loaded the clinical records into a data dictionary with quick access to memory
for manipulation.

Figure 2. Stages of clinical data processing.

The data went through a preliminary preprocessing stage (step 2) before new fields
were generated, and the transformation pipelines were executed. The cleaning process
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removed white spaces, special characters, null values and columns or rows with constant
values. In addition, in order to join the data tables coming from different sources, a new
episode primary key field was created. Once the information was consolidated, new
fields were added (step 3). These fields were calculated following specific characteris-
tics of the CA [24,25] that, according to the experts, may detect the disease [26–28]. In
step 4, we discarded many fields with low-quality data, reducing memory and unneces-
sary operations. As shown in Figure 2 (step 5), the processing of each type of variable
(text/categorical/numeric) was carried out separately to be treated in a particular way
according to their nature.

The pipelines are programming artifacts that define a process that can be reproduced
with new data and can even be parallelized for faster execution. When pipelines end their
execution, the training variables are obtained. Finally, we joined tables by episode key in a
trainable matrix/table (step 6).

2.3.2. Categorical Data, Generation of New Characteristics and Categorical Pipeline

We review categorical data processing that we can examine in two parts: the cate-
gorical variables generated in the feature engineering and the variables generated in the
categorical pipeline.

In (step 3), new variables were created manually following the clues provided by
clinical practice. In this stage of characteristics engineering, the medical diagnosis codes
were used, specifically the ICD-9 and ICD-10 codes. In this same line, a selection of crucial
diagnoses was made, and the equivalence between both versions was mapped. Table 1
shows a summary of the information that was included in the study. The medical and
nursing diagnoses included in the study were extracted from two working sessions with
experts in which signs and symptoms frequently detected in clinical practice and which
could be masking a diagnosis of cardiac amyloidosis in a patient admitted to the hospital
were discussed.

Table 1. Indicator diagnoses of cardiac amyloidosis obtained from ICD * coding.

Primary Diagnose

Cardiovascular manifestation
Atrial fibrillation, arrhythmia, extrasystole, pacemaker, hypertension, heart

failure, restrictive cardiomyopathy, acute pulmonary edema, pericardial
effusion, cardiac tamponade.

Extracardiac manifestations Multiple myeloma, monoclonal gammopathy, ventricular hypertrophy.

Central nervous system Progressive dementia, headache, ataxia, seizures, spastic paresis, stroke.

Ocular manifestation Intravitreal deposits, vitreous opacity, periorbital purpura, glaucoma.

Nephropathy Proteinuria, kidney failure, chronic kidney disease.

Gastrointestinal manifestations Weight loss

Peripheral neuropathy (sensory or motor) Carpal tunnel syndrome, spinal canal stenosis.

Autonomic neuropathy Bilateral sensory-motor polyneuropathy, dysautonomia, erectile dysfunction

Others (to characterize the patient)

Common diseases of the elderly Common cold, flu, gastroenteritis, allergy, arthritis, osteoarthritis,
Alzheimer’s, dementia, Parkinson’s, etc.

* ICD: International Classification of Diseases (ICD9-ICD10).

This stage’s results made it possible to describe potential patients with CA, using
indicators that alerted them about the disease. In the same way, it was possible to know
their general health status by analyzing the comorbidity of other common diseases. As
shown in Table 2, the nursing care codes identified in the expert session were used.
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Table 2. Summary of nursing care extracted from the dataset.

Signs Diagnose

Vital signs Blood pressure, heart rate, temperature, oxygen, sugar

Nursing diagnoses Constipation, subjective constipation, diarrhea, fecal incontinence, risk of
constipation, impaired urinary output, urinary retention, nausea, or risk of falls.

Nursing signs

Aversion to eating, elimination of hard, dry and formed stools, minimum
elimination of three stools/day, continuous flow of urine that occurs at

unpredictable intervals, constant dribbling of loose stools, incontinence, report of
intake below the recommended daily amounts, small and frequent urination,

nausea, nausea and vomiting, diarrhea or overflowing of liquid stools.

Respiratory signs Dyspnea, dyspnea on exertion, cough.

Nutritional signs Aversion to eating, report intake lower than recommended daily amounts.

Abdominal signs Abdominal bloating and pain.

Confusional signs of mental state Increasing agitation, agitation, confusion/agitation, disorientation.

Instability Impaired physical mobility, impaired ambulation, risk of falls.

Others Confirmed care, dressings and bandages, manifestations (other
signs/symptoms), assigned typical care plan, causes (coded etiology).

Finally, as mentioned, the other part of categorical data were generated in the pipeline,
resulting in an automatic dummy encoder with a custom categories dictionary. A generic
dictionary was elaborated to facilitate the reproducibility of encoded variables in the
categorical pipeline (step 6), where all possible categories of each field were annotated for
later dummy encoding.

This last step ensures that all participants in the analysis will be aware of any coding
applied to the data and that the same categorical variables will be created from each field
in the encoder.

Categorical data are widely used, and their relevance to analyzing the services provided
to the patient should be highlighted. They have generally been used to represent vital signs,
nursing care, diets, pharmacy, and other medical services (see Table 3, categorical variable).

Table 3. Overview of diagnostics by variable type.

Type Content

Categorical

Diets, feeding routes (types), identification and administrative data (sex, age divided into percentiles, code
of the situation at discharge, code for the reason for discharge), coded medical procedures, patient

consultations (code of inter-consultation requested and carried out), prescription and maintenance of
drugs and serums (code of administered drug), patient benefits.

Textual
Patient consultations (description of the reason for the consultation), patient medical orders (description of

the medical order to the patient and observations), patient benefits (reason or observations), nursing
assessments, medical assessments.

Numeric Alteration of the water and electrolyte balance (number of evacuations) vital signs (minimum tension,
maximum tension, temperature, oxygen saturation level, amount of blood glucose).

2.3.3. Treatment of Numerical Information, Numerical Pipeline

We start explaining the numerical pipeline process as follows: the numerical fields
describing vital constants, glucose levels, and the hydro electrolytic balance were selected.
New statistical variables were calculated using numerical fields to characterize these values’
distribution along with health care. New variables are the total of records, the arithmetic
mean, the variance, the minimum value, the maximum value, and the percentiles 25, 50, and
75%. The meaning of our numerical fields is summarized in Table 3 (numerical variable).
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2.3.4. Treatment of Unstructured Information, Text Pipeline

Unstructured text is doctors’ and nurses’ notes with information describing various
relevant events during hospitalization. Topics treated in our data are summarized in Table 3
(Textual variable). In these free text variables, natural language processing techniques have
been used to standardize the text of the annotations into a series of numerical vectors. This
set of vectors is commonly known as a bag of words. The first step is to generalize the text
by converting all texts to lowercase and then removing stop words. It was necessary to
use a translation of abbreviations with medical dictionaries and a handwritten reference
database of the nursing staff.

The cleaned-up texts were put into the token and then reduced to their root. Due
to computational capacity limitations, it was necessary to define a maximum number
of vocabulary and establish the documents’ minimum frequency of appearance. This
process allowed the creation of a vector for each document found in the clinical records
and adding all the documents generated by each patient who visited the hospital during
the study period.

In summary, 83 new fields were calculated manually with the help of healthcare
professionals (see Tables 1 and 2). The pipeline results were 49 variables from numeric
fields, 6928 variables from categorical fields and 643 variables from text fields. Table 3
shows other data used to describe the patient’s health and care status worldwide from a
real-world data source.

The final aggregation steps (steps 5 and 6) generated a matrix suitable for machine
learning training. The matrix has 7620 columns or variables and 16,620 rows, as many rows
as the sum of all patient’s stays (episodes). Each row is what we call an episode vector.

We have discussed in detail the proper data preparation suitable for the training phase
of the models. In the following steps, we will examine the training process and describe
the considerations used to design the most generalizable model possible.

2.4. Training and Algorithm Design
2.4.1. Validation Techniques

The cross-validation [29] took into account five stratified folds (k = 5), where each fold
affected the training in 4/5 of the data and the validation in the remaining 1/5. Stratification
ensures that the ratio of 0’s and 1’s is the same in the training and validation sets. The
algorithm learns using all the data and different patients each time. This mechanism is
useful when the objective diagnosis is scarce.

Cross-validation proves useful in working with scarce data. The model selection phase
is verified that other complex models such as a random forest or neural networks show
signs of overfitting. Specifically, with these models, zero (0) true positives are obtained in
several folds of the cross-validation.

For example, a neural network (two hidden layers structure with 100 and 10 neurons,
respectively, having a rule activation function and a cross-entropy loss function, with an
Adam solver) gets only 0.6 ± 0.5 true positives. While in the training set, zero (0) false-
negatives and zero (0) false-positives are obtained. Such behavior indicates memorization
of the training set throughout the five validation folds and discourages the use of complex
models prone to overfitting.

The metrics’ behavior and the cross-validation confounding matrix showed the robust-
ness of the model highlighting, low dispersion of results, and an adequate generalization.
The model that fits best is a logistic regression in which the modeling between predic-
tor variables and the prediction of class 0: not sick, 1: sick is achieved efficiently with a
sigmoid function.

2.4.2. Ending Algorithm

After an iterative process, the operations and transformations of the proposed algo-
rithm steps are defined as follows: (1) Imputation of the missing values with the mean;
(2) selection of variables with a variance greater than zero; (3) normalization of variables
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to [0.1] required to apply principal component analysis (PCA); (4) application of a PCA
covering 99% of the variance (reducing a high number of features successfully); (5) stan-
dardization of variables; (6) apply an undersampling using the centroids of each cluster
(120 zeros [0] about 30 ones [1] per fold); (7) apply a slight oversampling with a synthetic
minority oversampling technique (SMOTE) [29] of 120 zeros [0] and about 60 ones [1].
(8) Finally, the training with the logistic regression.

2.4.3. Metrics for Evaluating Results

Sensitivity, specificity and accuracy are appropriate metrics to characterize the per-
formance of the proposed training tests. To evaluate the model’s learning ability in class
imbalance scenarios [30], the area under the receiver operating characteristic curve (ROC)
was included. Disease prevalence affects sensitivity, specificity and accuracy [31]. The latter
is relevant for less prevalent diseases. F1, on the other hand, besides being very sensitive
to improvement or worsening of results, allows measurement of success in the positive
class and is timely in cases of unbalanced learning.

Once the final algorithm was developed, training was done initially with the general
sample and then with a sample of patients diagnosed with heart failure.

3. Results

After reviewing the training approach, the next step was to look for the diagnoses
most relevant to the prediction. On one hand, the model trained on the whole population
or all clinical records. On the other hand, a sample of heart failure patients was used for
training. In this sample, there are 2861 patients with heart failure and 27 with CA.

This sample yielded 3806 episodes, equivalent to an unbalanced ratio of one (1)
positive: 89 negatives. When examining the confounding matrices of the validation sets of
both training pieces (see Tables 4 and 5), the evidence showed that in both test scenarios,
some episodes of successful patients were detected and that the number of false-negatives
was low. A problem with the first approach is the number of false positives.

Table 4. Results of the model trained with the global population.

Confusion Matrix
Prediction

Negative Positive Total Real

Real
Negative 3270.4 ± 18.64 45.0 ± 18.36 3315 ± 1

Positive 7.0 ± 0.63 1.6 ± 1.02 9 ± 1

Table 5. Results of the model trained with heart failure patients.

Confusion Matrix
Prediction

Negative * Positive * Total Real

Real
Negative 726.2 ± 2.79 H 26.4 ± 2.5 N 753 ± 1

Positive 3.8 ± 1.72 H 4.8 ± 1.72 N 9 ± 1
* Increases the value (N) or decreases the value (H) with respect to the previous analysis (see Table 4).

The results of training with the sample of heart failure patients are shown in Table 5. The
number of true positives is higher than false-negatives. The proportion of false-positives,
on the other hand, decreases markedly while the number of detected episodes increases.

Table 6 shows a comparison of sensitivity, specificity, accuracy, area under the ROC
curve and F1. For patients with heart failure, the ROC area 0.88 ± 0.08 shows a good result
for learning the model. As shown in Figures 3 and 4, the improvement in the models’
training when using patients with heart failure is noticeable.
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Table 6. Comparison of the results of the proposed training scenarios.

Population Heart Failure Patients

Sensitivity 0.18 ± 0.11 0.56 ± 0.19
Specificity 0.99 ± 0.01 0.96 ± 0.00
Accuracy 0.04 ± 0.02 0.15 ± 0.06

F1 0.06 ± 0.04 0.24 ± 0.09
ROC AUC 0.70 ± 0.06 0.88 ± 0.08

ROC AUC: Area Under the Receiver Operating Characteristic Curve from prediction scores.

Figure 3. Receiver operating characteristic (ROC) curve of the model trained with the general population.

Figure 4. ROC curve of the model trained with the sample of patients with Cardiac Amyloidosis
(CA) and Heart Failure (HF).

When working with the entire dataset, the sensitivity, accuracy and F1 metrics are low
and could be significantly improved if there were more CA cases. With very low disease
prevalence, sensitivity and accuracy decrease even though specificity remains high. This
result can be justified with a Bayes’ theorem analysis applied to the result.

On the other hand, when working with heart failure patients, an increase in sensitivity
of 0.56 ± 0.19 is obtained while maintaining high specificity. This increase suggests that
the model could be useful in screening tests or health campaigns for CA follow-up.

The benefit is justified in the gain curves in Figures 5 and 6. Figure 5 shows that with
20% screening, the proposed algorithm can potentially locate around 50% of episodes of
patients with CA. This screening would avoid examining 30% of the total population. The
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result is a moderate improvement over a random selection of patients (represented by the
diagonal from the lower left to the upper right corner).

Figure 5. Cumulative gain curve of the trained model with the general population.

Figure 6. Cumulative gain curve of the trained model with the sample sample of patients with
Cardiac Amyloidosis CA and Heart Failure HF.

Figure 6 shows that screening 20% of the population with heart failure could find 80%
of the episodes of patients with CA. This would avoid screening 80% of the episodes of
heart failure patients. The drawback of using this approach is that it limits the possibilities
of early detection as patients have considerable heart involvement.

4. Discussion

In the context of chronicity and aging, efficiently managing health expenditures is a
necessity. The structured data registered in the clinical records do not explain the processes
by themselves; however, the unstructured information, written by doctors and nurses,
may be the key to knowing about the progress of the diseases. Therefore, this project
will analyze clinical records’ open text as an essential part of obtaining variables to be
introduced in the final algorithm modeling. The application of machine learning in the
interpretation of doctor’s and nurse’s language and the coding and the correlation of
variables to each other by proximity is a challenge with a potentially significant impact on
clinical decision-making [14].
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There is currently a problem of underdiagnoses of Cardiac amyloidosis, which in-
volves the participation of other organs, loss of quality of life, and the possibility of
benefiting from adequate treatment [2–4,8]. Valuing a predictive model that facilitates a
differential diagnosis, quickly and practically, of patients with cardiac amyloidosis will
allow therapeutic objectives to be adequately addressed [6,12].

Patients with heart failure associated with CA show indistinguishable symptoms
from those reported by patients with other phenotypes of heart failure. Moreover, the
classic diagnostic tools commonly used to diagnose heart failure (cardiac biomarkers,
electrocardiographic markers, imaging techniques) require advanced expertise to perform
the differential diagnosis between amyloid and non-associated heart failure. The inclusion
in this stage of predictive algorithms based on advanced artificial intelligence techniques
can be useful in clinical diagnosis [6].

Predictive algorithms can be used as a population screening system for a specific
disease, in this case, CA, with the aim of diagnosing patients who suffer from the disease
but do not have a correct diagnosis. In this way, clinical management could be optimized,
improving the clinical, economic and social impact on the patient. On the other hand,
the identification of red flags and keywords identified in the algorithm can be used in
intelligent support systems in the electronic medical record, so that when the doctor or
nurse write in the clinical evolutions, recommendations are made based on the appearance
of any of those keywords in the text. These systems would support decision-making with a
direct impact on clinical care. Algorithms cannot establish a cause–effect relationship and,
therefore, cannot replace the physician in clinical practice; however, machine learning can
recognize numerical patterns that emerge from large volumes of health data and are not
easily recognizable by humans.

Artificial intelligence (AI) has made significant contributions to the healthcare industry;
however, its effect on medical diagnosis has not been well explored and validated in clinical
practice [32]. Harada et al. [33] published an essay comparing the thought process between
a computer and a diagnostician. The essay concluded that machine input information,
applying AI, could not be weighted in order of diagnostic significance. The comorbidities,
patient context, and disease temporality were difficult to detect and analyze. In our
study, these difficulties were contemplated, planning to minimize them by having clinical
experts and data scientists meet periodically during the analysis process. Knowledge of the
disease, interpretation of the results, and guidelines for AI are fundamental in achieving
AI implementation as a support for clinical decision-making. Conducting studies like this
one, in which it is possible to work with real data, is a necessary step and a good starting
point to reach these solutions.

Another relevant point of this type of work is to handle with prudence the inter-
pretability of the models. In this project, it is necessary to go deeper into the meaning and
importance of the variables obtained after reducing dimensions. Health experts should
take the time to analyze the list of variables that emerged from the exploration of related
diagnoses and nursing care and patient services. Analysis of these variables may even
yield new disease indicators or eliminate those that may be causing the noise. Clinical
experts in the diagnostic process, helping the data scientists in the decision-making during
the applied analysis, should validate the applied AI tools’ findings.

It should also be noted that the most common types of amyloidosis are immunoglobu-
lin light chain (AL) and amyloid transthyretin (ATTR) amyloidosis. In AL, the treatment is
based on chemotherapy and/or stem cells. In this study, it was not possible to distinguish
both types of amyloidosis in the patients identified with CA, so it was decided to exclude
patients with cancer treatment from the study. However, it would be of interest for future
studies to do subgroup analyses, including the different types of amyloidosis [34].

Tran et al. [32] used an approach in their study that combined bibliometric analysis
with a more complex analysis of abstract content through exploratory factor analysis and
latent Dirichlet assignment. The study revealed new areas and emerging themes in research
focused on early and population-specific stroke and heart disease detection. In light of
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these findings, the authors suggest that to maximize the benefits of AI in detecting heart
disease, one should delve into currently under-researched issues such as data management,
the reliability of the AI model, and the validation of its clinical utility.

Models have been trained despite the initial difficulties of the classification problem.
The prediction yielded better results with the sample of heart failure and CA patients. With
a sensitivity and specificity of 0.56 and 0.96, respectively, the result is comparable to other
screening tests present in the literature [6,14]. The low accuracy and modest F1 can be
explained by the disease’s low prevalence [35]. New data may be incorporated into this
proposal to see improvements in the results.

Based on the latest advances in data science and applications of machine-learning-
based algorithms, we have hypothesized that patients with heart failure caused by amyloid
deposition may show different clinical patterns than patients with the same diagnosis
without association with CA. These patterns, in both structured and unstructured data,
we believe are detectable by intelligent statistical approaches. Other authors, such as
Agibetov et al. [6], used the same approach using the biomarkers that are routinely and
widely used in the diagnosis of patients with heart disease, obtaining model results with
0.75 ROC AUC with sensitivity 84.6%, specificity 71.7%, positive predictive value 47.1%,
and negative predictive value 96.6% (FOR 3.4%).

With the extracted clinical data, both structured and unstructured, it has been possible
to train models and obtain a result despite the scarcity of positive disease cases in the
data set. Research by Basharat et al. [14] in bioinformatics has already yielded results
favorable to the use of the unstructured text of clinical records recorded by physicians
and nurses in the generation of diagnostic algorithms in cardiac patients. The validation
of the model has been as demanding as possible. The model has always been validated
on samples with representative ratios of the real prevalence of the population. In other
words, the resampling techniques are not applied to the validation sets. In addition, the
cross-validation helped to keep away the risks of an over-adjustment to the data set or the
influence of dependent samples on the validation. This can be seen in the small deviation
of metric values in the different sets. In other words, the results tend to be consistent across
all five-validation sets. Thanks to the results of the validation and to the techniques applied,
it is considered that the performance of the model obtained is difficult to improve with the
available data.

The most favorable results were obtained with a sample of patients with heart failure
and stroke. With a sensitivity and specificity of 0.56 and 0.96, respectively, the result
is comparable to that of other screening tests present in the literature [30,31]. The low
precision values and the F1 can be explained by the low prevalence of the disease, although
they should be the subject of future improvement efforts. The model’s predictive ability
and learning have been excellent, as shown by the ROC curve with an area of 0.88 in the
best case. The results promise to introduce more data from unstructured information such
as medical, radiological, nursing reports and diagnostic tests.

The work published by Agibetov et al. [6] demonstrates that machine learning applied
to the analysis of basic laboratory parameters is useful to generate a profile of patients with
heart failure (H) related to cardiac amyloidosis (CA). Compared to non-CA H patients,
opening a potential new avenue in the diagnosis of CA that allows clinicians support in
clinical decision-making.

The treatment of data by health care episodes is a novel approach that favors the
detection of rare diseases. In this approach, the patient himself generates information
with sufficient variance to be considered different in the training of an automatic learning
model. The high dimensional vectors generated from large data sets to define a patient’s
stay in a healthcare facility can help quantitatively define a patient’s health status and
care. Improving the collection and interpretation of these vectors could help discover new
patterns that improve patients’ quality of life or the efficiency of the system. In this process
of collecting quality data and its subsequent exploitation, administrators, medical and
nursing staff, scientists, and engineers’ multidisciplinary commitment is fundamental [36].
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The possibilities are there; it all depends on the quantity, quality, ease of processing and
access to data.

The final test that the algorithm must pass is the model’s production; for this, the result
here exposed must be generalizable out of the data set. Verifying that this generalization
occurs should be the work of additional tests and studies. Another future possibility arises
from the fact that the number of false positives is small enough to carry out a clinical
follow-up. Verifying whether these false positives are undiagnosed patients will validate
the model’s predictive capacity in the original data set.

5. Conclusions

The processing of information by “health care episodes” is a novel approach to the
problem of detection of rare diseases. The patient himself generates information with
sufficient variance to be considered different in the training of an automatic learning model.

High dimensionality vectors created from large volumes of data allow descriptions of
the patient’s stay in hospital. Vectors also quantitatively characterize the patient’s health
status, nursing care and services provided. Improving the construction and interpretation
of these vectors can help discover new patterns that meet patient needs.

The incorporation of unstructured data, of the temporality of the disease, and the
identification of flagship networks from scientific evidence and the consensus of clinical
experts with experience in the field, in this case of geriatrics and cardiac pathology, are
crucial to the development of successful diagnostic algorithms.

The use of artificial intelligence is considered very useful in supporting medical
decision-making. However, it is necessary to externally validate the use of algorithms as a
diagnostic test as well as the cost-effectiveness of its implementation. For this, prospective
studies are necessary for which the effectiveness of the algorithm is tested, evaluating the
care, economic and social impact. In the case of CA, it will be carried out in the next phase
of the investigation.
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