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Abstract: Residual force enhancement (rFE) is observed when isometric force following an active
stretch is elevated compared to an isometric contraction at corresponding muscle lengths. Acute
rFE has been confirmed in vivo in upper and lower limb muscles. However, it is uncertain whether
rFE persists using multiple, consecutive contractions as per a training simulation. Using the knee
flexors, 10 recreationally active participants (seven males, three females; age 31.00 years ± 8.43 years)
performed baseline isometric contractions at 150◦ knee flexion (180◦ representing terminal knee ex-
tension) of 50% maximal voluntary activation of semitendinosus. Participants performed post-stretch
isometric (PS-ISO) contractions (three sets of 10 repetitions) starting at 90◦ knee extension with a
joint rotation of 60◦ at 60◦·s−1 at 50% maximal voluntary activation of semitendinosus. Baseline
isometric torque and muscle activation were compared to PS-ISO torque and muscle activation
across all 30 repetitions. Significant rFE was noted in all repetitions (37.8–77.74%), with no difference
in torque between repetitions or sets. There was no difference in activation of semitendinosus or
biceps femoris long-head between baseline and PS-ISO contractions in all repetitions (ST; base-
line ISO = 0.095–1.000 ± 0.036–0.039 Mv, PS-ISO = 0.094–0.098 ± 0.033–0.038 and BFlh; baseline
ISO = 0.068–0.075 ± 0.031–0.038 Mv). This is the first investigation to observe rFE during multiple,
consecutive submaximal PS-ISO contractions. PS-ISO contractions have the potential to be used as a
training stimulus.

Keywords: residual force enhancement; hamstrings; training simulation; electromyography; history
dependence; muscle; in vivo

1. Introduction

There is much interest in the prevention and rehabilitation of hamstring strain injuries.
Hamstring strain injuries have a high incidence, particularly during high-speed running [1].
The function of the hamstring muscles during high-speed running is vigorously debated.
One theory proposes that in high-speed running, the hamstring muscles act eccentrically
during the late swing phase of the gait cycle [2]. In contrast, the alternate postulation
states that the hamstrings remain predominantly isometric during the late swing phase
and act isometrically during foot contact [2]. Much of our current understanding of the
dynamic function of the hamstrings is based on kinematic and kinetic investigations that
have measured the changes in distance between osteotendinous attachments, sometimes
with the calculation of corresponding joint moments [3–9]. Methodological limitations exist
wherever inferences about the behaviour of the contractile element are based on the change
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in distance between the musculotendinous origin and insertion [2]. These inferences do not
account for the behaviour of the series elastic element and other non-contractile tissues such
as aponeuroses and fascial tissues [2]. This ongoing debate concerning hamstring function,
although worthwhile, may prove to be somewhat academic if the dynamic functioning of
the hamstrings during the gait cycle of high-speed running is found to be specific to the
individual [10].

Uncertainty over the dynamic function of the hamstrings has led to conjecture over
appropriate training methods for the hamstring muscles, be it for performance, injury pre-
vention or rehabilitation. Eccentric strength, fascicle length and neuromuscular functioning
have been identified as crucial modifiable risk factors for injury [11], and are often the
focus of injury prevention programs. Flywheel training [12] and the Nordic hamstring
exercise [13] are examples of eccentrically biased training methods purported to be ef-
fective in injury risk minimization [14,15]. However, if isometric actions occur at critical
end-range moments during dynamic tasks, then there is cause to incorporate isometric
specific exercise [16]. Van Hooren and Bosch [17] suggest that isometric exercises such as
the Roman chair hold (and variations) can generate sufficient overload, while maintaining
complimentary transfer for improvements in performance and reduction in injury risk.
Van Hooren and Bosch hypothesized that high-intensity isometric contractions may prove
more effective than eccentric contractions in preventing hamstring strain injury during
high speed running [2,18]. However, Van Hooren and Bosch advocated for the use of both
eccentric and isometric contractions to be included in hamstring strain injury prevention
programs [2,17,18]. Therefore, the use of both eccentric and isometric contractions has the
potential to be most beneficial for reducing hamstring injury risk.

The post-stretch isometric (PS-ISO) contraction, which combines both eccentric and
isometric stimuli, may provide the benefits of both contraction modes. A PS-ISO contraction
is initiated with an isometric contraction at a shorter musculotendinous unit length, then
moved through an active stretch phase, ending with a sustained isometric contraction
at the new longer muscle length [19]. Torque output peaks during the active stretch
phase before normalizing somewhat during the final sustained isometric steady-state.
Due to history-dependent effects, the torque observed during the PS-ISO steady-state is
consistently greater than isometric torque without active stretch [19]. This elevated PS-ISO
torque is referred to as residual force enhancement (rFE) [20], which has been observed
in vitro in single-fibre and whole-muscle preparations [20–25], and in vivo with electrical
stimulation [26–29] and voluntary contractions [27,28,30–33]. The magnitude of rFE is
greater at joint angles indicative of longest muscle lengths [23,34,35], and increases with
increasing stretch magnitudes [36–38].

rFE has been observed in the hamstring muscle group in maximal and submaximal
voluntary PS-ISO contractions [30]. The maximal PS-ISO steady-state torque was found
to be almost 9% greater than the baseline isometric torque without prior stretching. A
39% increase in torque between isometric steady-state and PS-ISO torque was found
using a submaximal PS-ISO contraction intensity (50% activation). Ultrasonographic
confirmation of contractile element lengthening (eccentric contraction), coupled with a lack
of increased muscle activation, led to the postulation that mechanical history-dependent
effects from the giant protein titin increased stiffness during the active stretch of the PS-ISO
contractions. The authors reason that the resultant torque increase via titin contribution is
congruent with the titin elasticity theory [38], which states that the giant muscle protein
titin is activated and increases stiffness within the muscle during muscle stretch. The
enhanced force resulting from increased titin stiffness is maintained during the steady-state
isometric contraction following muscle stretch (eccentric contraction) [38]. Furthermore,
the enhanced force contributed via titin is present without increased muscle activation [38].
Thus, PS-ISO contractions, which involve both eccentric and isometric contraction modes,
have the potential to significantly increase isometric torque output without increased
muscle activation of the hamstring muscle group.
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It has been shown that chronic use of eccentric contractions results in increased
eccentric strength and increased fascicle length [39], often concomitantly with a rightward
shift in the optimal operating angle on the length–tension curve [40]. The chronic use
of isometric exercise at long musculotendinous unit lengths has been shown to increase
isometric strength, pennation angle and fascicle length, and cause hypertrophy [41]. A
broadening of the plateau region of the length–tension curve has also been observed
in chronic isometric training at long musculotendinous unit lengths [42]. The potential
benefits of combining eccentric and isometric contraction modes using PS-ISO contractions
in chronic resistance training is unknown. However, it is reasonable to hypothesize that
such a chronic stimulus may provide some or all of the benefits derived individually from
chronic eccentric and isometric stimuli alone.

Notwithstanding this, before investigating the chronic training effects of PS-ISO con-
tractions, it is critical to understand the acute effects of PS-ISO contractions experienced as
a training stimulus. Presently, it is unknown whether rFE endures beyond single PS-ISO
contractions. Prior to a training study being undertaken, it is necessary to investigate
whether rFE persists in the hamstring muscle group during a series of consecutive PS-ISO
contractions across multiple sets, as applied in a training simulation. Therefore, this study
aimed to observe the presence of rFE during multiple sets of a series of consecutive sub-
maximal PS-ISO contractions using the hamstring muscle group. It was hypothesized that
rFE would be observed across all repetitions of activation-matched contractions performed
in series as a training simulation.

2. Materials and Methods

Prior to recruitment, an a priori calculation was undertaken that calculated n = 10.
Ten recreationally trained [43] participants (seven males, three females; age 31.00 years
± 8.43 years) provided written informed consent to participate in the study. Participants
were classified as novice for performing PS-ISO contractions at the time of data collection.
All participants were confirmed to be free from diagnosed lower-limb musculoskeletal
injury and neurologic conditions in the preceding 12 weeks. The study was approved by
the Institutional Human Research Ethics Committee (ECN: 2019/090).

Each participant assumed a prone position on a Biodex System 3 isokinetic dynamome-
ter (Biodex Medical Systems, Shirley, NY, USA), which recorded torque measurements for
all experiments. The participant’s hip angle was confirmed to be between 170◦ and 180◦

(180◦ represents neutral hip position) via goniometer (J.A. Preston Corporation, Clifton,
NJ, USA). The goniometer was centred on the greater trochanter of the involved hip and
aligned with the lateral midline of the abdomen and lateral midline of the femur. The axis
of rotation of the participant’s involved knee was aligned with the axis of rotation of the
dynamometer. The ankle cuff was attached 25 mm above the dorsal surface of the foot.
Inelastic straps were placed over the L4/5 area to mitigate extraneous movements during
contractions.

Surface electromyography (sEMG) signals of the semitendinosus (ST) and biceps
femoris long-head (BFlh) muscles were recorded during all trials using a Trigno Wireless
sEMG system with double differentiated surface electrodes (Delsys, Natick, MA, USA). The
electrodes were placed as per the SENIAM guidelines [44]. The ST electrode was placed
on the muscle at 50% of the distance along the line between the ischial tuberosity and the
medial epicondyle of the tibia. The BFlh electrode was placed on the muscle at 50% of the
distance along the line between the ischial tuberosity and the lateral epicondyle of the tibia.
The electrode locations were prepared by first shaving and abrading, then wiping the site
with alcohol wipes. In addition to double-sided electrode-skin interface adhesives, surgical
adhesive tape was used to secure the electrodes to the skin.

The Biodex data was sampled at 1000 Hz using a 12-bit analogue-to-digital converter
(PowerLab System 16/35, ADInstruments, Bella Vista, Australia). The sEMG signals
were sampled at 2000 Hz (bandpass filtered at 10–500 Hz). The Biodex and sEMG were
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synchronized with LabChart software (Pro Modules 2014, version 8, ADInstruments, Bella
Vista, Australia).

2.1. Protocols and Measurements

The experimental protocol is visualized in Figure 1. A 5 min generalized warm-up
using a cycle ergometer was completed. No static or dynamic warm-up stretching was
completed as part of the warm-up protocol. Following the generalized warm-up, each
participant performed three baseline maximal voluntary isometric contractions (MVIC) of
the knee flexors (5 s duration) at 150◦ knee flexion (180◦ being representative of terminal
knee extension). To ensure that MVIC attempts were maximal, each participant was pro-
vided with verbal encouragement and visual feedback of the torque traces on a computer
monitor within a direct line of sight of the participant. The activation-matching intensity,
50% ± 5% MVIA, was calculated using the activation of the ST, as the ST has been shown
to have the greatest activation compared with other hamstring muscles during eccentric
contractions [45]. The baseline MVIC mean of ST root mean square (RMS) amplitude
(mV) sEMG (sEMGRMS: moving average window = 50 ms) was derived from a 3 s epoch,
corresponding with a 2–4 s window in the MVIC baseline contractions. The values of
50% ± 5% were entered into the LabChart software to be visualized as guidelines on a
computer monitor located in front of the participant. Each participant then performed
three sets of 10 baseline activation matching isometric contractions of the knee flexors (7 s
duration at 150◦ knee flexion), for a total of 30 contractions [46].
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Figure 1. Baseline and experimental protocols for Group 1 and Group 2. Participants were randomly allocated into each
group.

The experimental condition consisted of three sets of 10 repetitions of activation-
matched PS-ISO contractions, for a total of 30 PS-ISO contractions. Each activation-
matching PS-ISO repetition was initiated isometrically at 90◦ of knee flexion (using the
verbal trigger of “pull”), followed by an active stretch over a joint excursion of 60◦ at a
constant angular velocity of 60◦·s−1. This was then immediately followed by an activation-
matched post-stretch isometric contraction at 150◦ of knee flexion of 7 s duration (using the
verbal trigger of “match”). After each repetition, the dynamometer arm automatically and
immediately returned to the starting position with no effort required by the participant
(using the verbal trigger “relax”).

To ensure that all activation-matching attempts (PS-ISO and baseline) were within ±
5%, each participant was provided with verbal encouragement and real-time visual feed-
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back of the ST sEMGRMS trace on a computer monitor located within a direct line of sight
of the participant. Participants rested for 3 s between activation matching repetitions, 30 s
between activation matching sets and a minimum of 5 min between the isometric baseline
and the PS-ISO experimental condition. A counterbalanced design was used whereby 50%
of participants completed the baseline isometric activation-matched contractions prior to
experimental PS-ISO activation-matched contractions. The remaining 50% of participants
completed the experimental PS-ISO activation-matched contractions before the baseline
isometric activation-matched contractions.

2.2. Data Analysis

The mean torque output (Nm) was derived from a 3 s epoch corresponding to 3–5 s
for each baseline isometric repetition and 3–5 s for each PS-ISO steady-state repetition.
The mean sEMGRMS (mV) was derived from a 3 s epoch corresponding to 3–5 s for each
experimental trial. The rFE magnitude was defined as the absolute torque increase (Nm)
and as a percentage change from the activation-matched isometric baseline contraction at
150◦ knee flexion. The following equation, previously used by Dalton et al. [47], was used
to calculate the percentage change for rFE:

rFE%∆ =

[
( isometric torque Nm following active lengthening − baseline isometric torque Nm)

baseline isometric torque Nm

]
× 100%

2.3. Statistical Analysis

All variables of interest were tested using the Shapiro–Wilk tests and found to be
normally distributed. A 2 × 3 × 10 repeated-measures ANOVA was used to assess the
difference between condition (2), sets (3) and repetitions (10) for torque and sEMGRMS of
ST and BFlh. Where a main effect or interaction was found, a post-hoc test with Bonferroni
corrections was conducted to further determine where the differences existed between
conditions, set and repetitions. These calculations were made for all repetitions within a
set, and all sets of repetitions. Effect sizes were calculated using partial η2 (0.30 = small,
0.50 = medium, >0.50 = large effect size) [48]. Significance was determined based on an
α = 0.05. Descriptive data in figures are reported as mean values.

3. Results
3.1. Torque

The mean torque (Nm) for each repetition is presented in Table 1. A main effect of
the contraction type revealed that the activation-matched PS-ISO contraction torque was
significantly greater than the activation-matched baseline isometric torque (baseline ISO;
CV = 36.67–69.50; PS-ISO; CV = 20.27–38.61, F = 32.558, p = <0.001, partial η2 = 0.783).
However, no significant main effect of set (F = 0.640, p = 1.000, partial η2 = 0.138) or
repetition (F = 3.555, p = 1.00, partial η2 = 0.970) was found. All interactions between
contractions, sets and repetitions were non-significant (F = 1.197–3.442, p = 0.060–1.000,
partial η2 = 0.340–0.989). To examine the main effect of contraction, the post-hoc analysis
revealed that there were no differences in baseline isometric torque output between repeti-
tions (F = 3.422, p = 1.00, partial η2 = 0.969) or sets (F = 2.058, p = 1.000, partial η2 = 0.340).
Further, there were no differences in torque output in PS-ISO between repetitions (F = 0.697,
p = 1.000, partial η2 = 0.863) or sets (F = 0.193, p = 1.000, partial η2 = 0.046). However, a
significant difference between contraction modes at each repetition within each set was
found (F = 15.474–41.735, p = <0.001–0.003, partial η2 = 0.632–0.823). This demonstrated that
the PS-ISO torque was consistently elevated above the baseline isometric torque (Figure 2).
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Table 1. Torque values (Nm) for baseline and PS-ISO contractions.

Set 1 Set 2 Set 3

Rep BL PS-ISO BL PS-ISO BL PS-ISO

1 46.43
(27.00)

77.29
(21.97) *

50.29
(24.57)

77.86
(24.03) *

48.34
(20.11)

73.40
(19.08) *

2 41.18
(24.47)

73.20
(21.01) *

48.92
(22.19)

78.81
(18.50) *

48.42
(17.76)

73.29
(17.78) *

3 44.09
(27.79)

73.35
(26.20) *

48.07
(26.55)

74.22
(20.11) *

47.15
(17.77)

73.27
(19.16) *

4 43.29
(30.09)

75.12
(23.98) *

47.43
(23.02)

76.22
(22.65) *

47.43
(20.40)

72.59
(17.60) *

5 45.28
(24.11)

70.84
(27.35) *

47.45
(23.19)

71.01
(20.04) *

44.06
(18.74)

67.19
(19.34) *

6 45.81
(28.76)

70.14
(24.25) *

45.02
(21.67)

68.74
(20.98) *

46.01
(17.07)

74.62
(15.12) *

7 50.11
(30.22)

69.63
(23.06) *

42.83
(23.85)

70.43
(19.59) *

44.85
(18.98)

63.48
(17.55) *

8 44.63
(25.91)

70.53
(21.78) *

45.84
(21.14)

67.13
(18.81) *

39.74
(22.10)

66.23
(15.38) *

9 47.90
(30.78)

66.01
(20.04) *

44.91
(17.86)

65.38
(20.58) *

42.63
(18.06)

64.23
(16.61) *

10 46.28
(27.02)

67.72
(20.76) *

45.94
(20.90)

68.34
(21.43) *

40.25
(18.69)

66.66
(15.98) *

Note. Torque values mean (SD). All values in Nm. * indicates a significant difference between baseline (BL) and
post-stretch isometric (PS-ISO) repetitions.
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3.2. sEMGRMS

No main effect of contraction type (ST; baseline ISO = 0.095–1.000 ± 0.036–0.039 Mv,
PS-ISO = 0.094–0.098 ± 0.033–0.038, F = 0.312, p = 0.590, partial η2 = 0.033 and BFlh;
baseline ISO = 0.068–0.075 ± 0.031–0.038 Mv, PS-ISO = 0.071–0.079 ± 0.030–0.038, F = 1.931,
p = 0.198, partial η2 = 0.177), set (ST; F = 1.280, p = 1.000, partial η2 = 0.242 and BFlh;
F = 0.247, p = 1.000, partial η2 = 0.058) or repetition (ST; F = 1.000, p = 1.000, partial
η2 = 0.900 and BFlh; F = 1.111, p = 1.000, partial η2 = 0.909) were found for muscle-activation
variables. No interactions were found for all muscle activations between main effects of
contraction, sets and repetitions for ST and BFlh (ST; F = 1.000–1.500, p = 0.110–1.000,
partial η2 = 0.600–0.700 and BFlh; F = 0.224–9.472, p = 0.052–1.000, partial η2 = 0.343–0.988)
(Figure 3).
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Figure 3. Mean baseline isometric and PS-ISO muscle activation (sEMGRMS) measured in millivolts (Mv) of semitendinosus
(ST) and biceps femoris long-head (BFlh) muscles during 10 consecutive repetitions during 3 sets (i. Set 1, ii Set 2 and
iii Set 3). No difference in muscle activation was observed between baseline isometric and PS-ISO contractions for all
repetitions and sets of semitendinosus (p = 0.590) and biceps femoris long-head (p = 0.198). ST sEMGRMS is depicted in
the left column and BFlh sEMGRMS is depicted in the right column for Set 1 (i Set 1), Set 2 (ii. Set 2) and Set 3 (iii. Set 3).
Repetitions in each set are visualized on the x axis and sEMGRMS on the y axis of each graph.
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4. Discussion

This is the first study to confirm rFE, in the absence of increased muscle activation,
in the hamstrings during multiple and consecutive submaximal PS-ISO contractions per-
formed as a training simulation. Notably, the hypotheses were supported. Interestingly,
the magnitude of rFE in the current study (55%), was greater than that of the previous in-
vestigation of the hamstring muscle group (39%) [30] and of that found in other lower-limb
muscles (25%) [49]. It is evident from the findings that an increase in muscle activation
cannot account for the elevated PS-ISO torque during this series of PS-ISO contractions.
Furthermore, in this submaximal PS-ISO condition (50% MVIA), there was no reduction in
the magnitude of rFE during multiple, consecutive PS-ISO contractions. Thus, we posit
that mechanical factors influenced by history-dependent muscle contractions, such as
titin stiffness, are likely primarily responsible for the torque increase in the experimental
condition. These findings are the first to observe the repeatability of enhanced torque (i.e.,
rFE) using PS-ISO contractions as per a traditional training simulation. These findings may
have practical application to chronic resistance-training exercises focused on hamstring
injury prevention.

The current study demonstrates that the mechanisms responsible for rFE persist
beyond a single bout. We posit that this mechanism is most likely to be the giant protein
titin. Titin elasticity theory states that during muscle stretch, titin binds to the actin
filament, reducing free spring length. This, in turn, increases sarcomeric stiffness, thereby
contributing additional passive force to the total force output [38,50–52]. Furthermore,
as a consequence of titin involvement, it has been suggested that forces in the enhanced
state come at a reduced metabolic cost [53]. Although muscle lengthening was not directly
observed in the current study, the assertion that titin contributed force during an active
stretch in the current study is further supported by the following:

(i) A lack of increased muscle activation during PS-ISO contractions, which suggests
that increased torque was primarily mechanical in nature and minimally influenced
by neuromechanical factors [54–56].

(ii) The levels of isometric pre-activation in the current study were sufficient to in-
fluence muscle lengthening and activation of titin. Previous investigations have
suggested that modulation of muscle lengthening is influenced by muscle–tendon
interaction [57] and the elimination of muscle slack [58] during the isometric pre-
activation phase. The influence of sufficient isometric pre-activation on muscle stretch
and magnitude of rFE has been demonstrated in maximal and submaximal PS-ISO
contractions [30,50,59].

(iii) A recent investigation of submaximal PS-ISO contractions was undertaken by the
current authors, which directly confirmed muscle lengthening of BFlh via ultrasound
during PS-ISO contractions [30]. That study used the same body position, joint
excursion, angular velocity and submaximal contraction intensity as the current
study [30]. We therefore surmise that it is highly likely that muscle lengthening,
and therefore engagement of titin, took place in the current study. However, it is
acknowledged that other non-contractile elements, such as tendons and aponeuroses,
may also have contributed to the enhanced PS-ISO steady-state force.

This study demonstrates that the phenomenon responsible for rFE is reproducible dur-
ing consecutive PS-ISO contractions, similar to standard resistance-training protocols [60].
The potential benefits of a contraction mode that incorporates an eccentric stimulus, re-
sulting in an enhanced isometric steady-state force at a reduced metabolic cost [53], are
intriguing. Evidence suggests that with chronic use of eccentric contractions, increased
eccentric strength and increased fascicle length [39] often occur concomitantly with a right-
ward shift in the optimal operating angle on the length–tension curve [40]. These changes
to the structure and behaviour of the muscle have been found to increase the resilience of
the hamstring to strain injury [61]. However, athlete compliance with eccentrically biased
programs remains an issue [62]. Notwithstanding the evidence for the benefits of eccen-
tric contractions in hamstring resilience, the importance of isometric hamstring strength
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has recently been proposed [2,17,18,63]. It is known that with chronic implementation of
isometric exercise at long musculotendinous unit lengths, increases in isometric strength,
pennation angle, fascicle length and hypertrophy occur [41]. Furthermore, a broadening
of the plateau region of the length–tension curve is also known to occur with the imple-
mentation of chronic isometric training at long musculotendinous unit lengths [42], which
have the potential to provide similar prophylactic effects to hamstring strain injury. The
results of the current study indicate that the use of post-stretch isometric contractions that
incorporate both an isometric and eccentric stimulus results in enhanced force output of
the muscle during both the eccentric and post-eccentric isometric steady-state phases. This
increase in force was found to occur in the absence of increased muscle activation, hence,
PS-ISO contractions that result in rFE may be more metabolically efficient when compared
to eccentric or isometric contractions to achieve similar levels of force [53,64]. However, the
effects of the combined use of these contraction modes shown to be beneficial to hamstring
injury resilience are currently unknown.

Therefore, based on the findings of this study, future research should test the efficacy
of the chronic use of PS-ISO contractions in hamstring strain injury prevention. The
potential exists that with the chronic use of PS-ISO contractions, athletes could experience
benefits including increased muscle hypertrophy, increased eccentric and isometric strength,
increased fascicle length and a rightward shift or broadening of the plateau of the optimum
angle in the length–tension curve [12,41,65–67].

An intermediate consideration, however, is the possibility that chronic performance of
PS-ISO contractions in resistance training may modify the history dependence of force. For
instance, a modification to the history dependence of force could result in a decrease in rFE.
This is because it has been hypothesized that increased fascicle length in a muscle may result
in less stretching of titin per sarcomere, leading to a reduction in passive force following
active lengthening and a reduction in rFE [49]. The influence of muscle architecture
changes on rFE has recently been investigated, with varied effects found [49,68,69]. For
example, Hinks, Davidson, Akagi and Power [67] found no significant changes in rFE
following chronic isometric training at long or short muscle lengths, despite the fascicle
length increasing and decreasing, respectively [67]. In contrast, evidence of the effect of
concentric and eccentric training on rFE is less certain. Chen and Power [49] observed an
increase in rFE magnitude following concentric training and a decrease following eccentric
training that corresponded to changes in fascicle lengths. These findings are tempered by
their conclusion that their results were influenced by a change in non-responder rates and
antagonist co-activation between conditions [49]. Thus, the influence of chronic isometric,
concentric and eccentric training on history dependence of force deserves greater attention.
Notwithstanding the need for further investigation of the influence that resistance training
may have on rFE, it is clear that alternative injury-prevention strategies are needed to arrest
the high levels of hamstring strain injury incidence. PS-ISO contractions have the potential
to benefit from both eccentric and isometric stimulus, with the added benefits of enhanced
torque output (rFE) at a lower metabolic cost. Therefore, an investigation into the effects of
a training study using PS-ISO contractions of the hamstrings is recommended.

5. Conclusions

This is the first investigation to observe rFE during multiple, consecutive submaximal
PS-ISO contractions across multiple sets. The absence of increased muscle activation during
PS-ISO contractions suggests that mechanical phenomena, such as increased stiffness in the
giant protein titin, were the primary contributors to increased passive force in the enhanced
state [30]. Debate exists over the most effective and efficient ways to improve hamstring
function and injury resistance, yet the use of chronic eccentric and isometric training is
often advocated for hamstring injury prevention [17]. Eccentric and isometric strength
training are known to share similar benefits (increase in strength, fascicle length increase
and a broadening or rightward shift in the optimum angle of peak torque [12,41,65–67]).
PS-ISO contractions incorporate both an eccentric and isometric stimulus, with the added
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benefits of enhanced isometric torque at reduced metabolic cost. It would appear intuitive
that the use of PS-ISO contractions in resistance training could combine the benefits of
eccentric or isometric training effectively and efficiently. Investigation of the effects of
chronic resistance training that uses PS-ISO contractions, particularly in the hamstring
muscles, is certainly warranted.
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