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Abstract: Asthma is a widespread respiratory disease caused by complex contribution from genetic,
environmental and behavioral factors. For several decades, its sensitivity to environmental factors
has been investigated in single exposure (or single family of exposures) studies, which might be a
narrow approach to tackle the etiology of such a complex multifactorial disease. The emergence of
the exposome concept, introduced by C. Wild (2005), offers an alternative to address exposure–health
associations. After presenting an overview of the exposome concept, we discuss different statistical
approaches used to study the exposome–health associations and review recent studies linking
multiple families of exposures to asthma-related outcomes. The few studies published so far on the
association between the exposome and asthma-related outcomes showed differences in terms of study
design, population, exposome definition and statistical methods used, making their results difficult
to compare. Regarding statistical methods, most studies applied successively univariate (Exposome-
Wide Association Study (ExWAS)) and multivariate (adjusted for co-exposures) (e.g., Deletion–
Substitution–Addition (DSA) algorithm) regression-based models. This latest approach makes it
possible to assess associations between a large set of exposures and asthma outcomes. However,
it cannot address complex interactions (i.e., of order ≥3) or mixture effects. Other approaches
like cluster-based analyses, that lead to the identification of specific profiles of exposure at risk for
the studied health-outcome, or mediation analyses, that allow the integration of information from
intermediate biological layers, could offer a new avenue in the understanding of the environment–
asthma association. European projects focusing on the exposome research have recently been
launched and should provide new results to help fill the gap that currently exists in our understanding
of the effect of environment on respiratory health.

Keywords: asthma; exposome; epidemiology; statistical methods

1. Introduction

Asthma is a heterogeneous chronic respiratory disease characterized by an inflam-
mation of the airways and which manifests by variable respiratory symptoms (wheeze,
shortness of breath, chest tightness and/or cough) and variable expiratory airflow limi-
tation [1]. Asthma affects approximately 300 million children and adults worldwide [2].
The prevalence of asthma has dramatically increased over the last decades [3]. The huge
research efforts in identifying the causes of asthma led to the identification of genetic (such
as the 17q21 ORMDL3/GSDML region for early childhood onset asthma), environmental
(such as urban vs. rural area) and lifestyle risk factors (such as tobacco smoking). It also
highlighted the complex etiology of this multifactorial disease, e.g., by the identification
of specific windows of susceptibility and complex gene-by-environment interactions [4].
The exposome concept, introduced in the recent years to complement the genome for a
better understanding of the development of complex diseases [5], offers new avenues
in environmental epidemiology. In this review, the main objective was to present how
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the new methodological framework represented by the exposome has been applied to
asthma research to date. After presenting an overview of the concept of exposome, we
will review different statistical approaches to study the exposome–health associations.
Finally, recent studies linking multiple families of exposures to asthma-related outcomes
will be discussed.

2. The Emergence of the Exposome Concept

In the twentieth century, the global average life expectancy almost doubled, and the
distribution of the causes of death has changed, in particular in industrialized countries,
with a shift in causes of death from infectious diseases to chronic diseases. These changes,
referred as the epidemiological transition, are the result of a combination of several factors,
including demographic changes (ageing population), modern medicine practice (e.g., antibi-
otics, vaccines), and changes in risk factors in relation to a more complex environment [6].
Indeed, the industrialization led to a profound transformation of our society, which resulted
in changes to our environment (e.g., atmospheric pollution, chemical pollutants with the
development of synthesis chemistry . . . ) and lifestyles (e.g., change in dietary patterns,
decreased physical activity, . . . ). The chemical revolution (mid 20th-century) led to a huge
increase in chemical production, from 1 million tons/year in 1930 to 1 billion tons/year in
1990 [7], and in the number of chemical products (more than 23,000 substances have been
registered in the EU, according to the Reach Procedure of the European Union [8].

Regarding asthma, the strong increase in disease prevalence in less than 50 years in
industrialized countries, where it doubled and sometimes even tripled [1,9], suggests the
role of environmental and behavioral factors for which a change in exposure has occurred
in this time window. In epidemiology, the usual approach to address environmental
risk factors on health has long been to consider each factor separately (together with the
potential confounders of its relation to health), or by focusing on a family of exposure at
a time. Following this approach, a large range of environmental factors and behaviors
have been identified or are suspected to be involved in the development of asthma and
allergic diseases, as reported in recent reviews [10,11]. One of the most documented risk
factors for asthma is tobacco smoking, with effects whatever the window of exposure
(in utero maternal smoking, parental smoking during childhood and active smoking in
adulthood) [12,13]. Early life is a landmark period for the development of asthma: early
exposure to respiratory viral infection [14,15], aeroallergens [16], outdoor air pollution [17]
and pets are all associated with increased risk of childhood asthma while early exposure
to farm animals [18] is associated with a decreased risk. In adulthood, these factors are
still associated with asthma-related outcomes, such as exacerbations or severity of asthma.
It is now well recognized that long-term exposure to outdoor air pollution is associated
with onset of childhood asthma [19] and that acute exposure can make asthma symptoms
worse and trigger asthma attacks both in children and adults with asthma [20,21]. In
adulthood, occupational exposures to 250 agents may induce work-exacerbated asthma
in individuals with pre-existing asthma or occupational asthma in individuals without
pre-existing asthma [22]. Regarding lifestyle factors, evidence showed that obesity and
poor diet were associated with an increased incidence of asthma in adults [23], while a
healthier diet was associated with fewer asthma symptoms and greater asthma control [24].
Until now, this knowledge has led to the development of few untargeted preventive
strategies [25]. The first one was the ban of smoking in public places. According to a
Cochrane review performed on 12 studies, seven reported that the smoking ban was
associated with a significant reduction in hospital admission rates for asthma in children
and adults [26]. The use of vitamin D3 supplementation during pregnancy was also
tested on a mother–child cohort from Denmark [27]. This double-blind randomized
controlled trial showed a difference, although not statistically significant, in the incidence
of persistent pre-school wheeze and a reduced number of pre-school wheezing episodes,
all not sustained into school age. Nevertheless, these measures were not sufficient to reduce
the global asthma incidence. The factor-by-factor analytical approach might be of limited
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value if exposures mostly affect health through complex synergistic effects with other
exposures or lifestyle factors. A more global approach, considering the environment in the
broad sense, could help further decipher the etiology of this complex chronic disease.

The exposome concept was first coined by C. Wild in 2005 to encompass “the totality of
human environmental exposures from conception onwards, complementing the genome”.
It was introduced to underline the imbalance between the data often used to characterize
the environment in etiological studies, relying mainly on questionnaires, and the more
finely and extensively covered genetic information, since the advent of genome-wide
approaches [5]. In 2012, Wild [28] defined a general exposome framework, composed
of three domains, to differentiate types of exposures: 1) a general external environment,
referring to exposures shared at the community level, (e.g., air pollution, social factors,
urban–rural environment, . . . ) and mainly assessed through geographic information
system-based models; 2) a specific external environment, referring to exposures that are
specific to each individual (e.g., diet, physical activity, tobacco, occupation, . . . ), usually
assessed through questionnaires or personal censors; and 3) an internal environment,
referring to biological measures of toxicants entering the body but also the biological and
toxicological perturbations related to external exposures’ effects in the body (e.g., metabolic
factors, microbiota, . . . ) mainly assessed through biological chemical measures, including
high-output techniques [29] (Figure 1.). Miller and Jones [30] expanded the exposome
concept to “the summation and integration of external forces acting upon our genome
throughout our lifespan”, and therefore explicitly added behaviors, as well as the body’s
response and endogenous processes changing in response to environmental exposures.
Nevertheless, efforts to widely assess the exposome should not be made at the expense
of the accuracy of exposure measurements, since measurement errors in exposures have
major impacts on the performance of exposome–health association studies [31].
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Figure 1. Representation of the exposome concept. The exposome represents the totality of human
environmental exposures from conception onwards, complementing the genome. The exposome
is composed of three domains (general external, specific external and internal) which may interact
together and with genetic factors, to impact on the asthma development and on the manifestation of
the disease among individuals with asthma.
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3. Exposome-Health Associations in Practice: Statistical Approaches

Exposome studies imply collection of a large number of exposures. This can be done
relying on different methods of assessment (e.g., self-reported questionnaire, exposure
biomarkers, geographic information system-based (GIS) models, personal sensors, . . . ), for
different time windows (pre-natal, early postnatal, during childhood, adolescence, adult-
hood), and, for external factors, with different locations (home, school, work) and spatial
resolutions (e.g., urban indicators measured for various buffers (100, 300, 500 m)). From
a methodological point of view, this large number of variables (possibly larger than the
size of the study population) raises issues in terms of statistical power and false discovery
rate [32]. Indeed, the multiplicity of tests implies the rise of the alpha risk, and methods de-
veloped to correct the p-value of an association for multiple hypothesis testing [33–35] lead
to a decreased statistical power. Therefore, exposome–health association studies deserve a
sufficient sample size to achieve adequate statistical power to detect associations of low to
moderate associations sizes, as expected for most exposures [36,37]. Several other statistical
challenges specifically linked to exposome studies have to be taken into account, such as
the increased false discovery rate related to the high level of correlation between exposures
and the difficulty to consider “mixture” effects [38,39]. Until now, no consensus establish-
ing which statistical methods are to be used in exposome–health association studies has
been reached [40]. However, some simulations have allowed the comparison of the perfor-
mance of various methods in the exposome research context under some specific settings.
For example, simulation studies compared i) the efficiency of various regression-based
approaches in terms of false positive rate and sensitivity, with and without interactions
between exposures [32,39]; ii) the performance of variable selection models in case-control
studies [41]; iii) the performance of variables and function selection methods in the case of
nonlinear effects of correlated exposures [40]; and iv) methods to correct for classical-type
exposure measurement error [31]. Using the findings of these studies and a review of the
literature, we summarized in Table 1 the strengths and weaknesses of the main statistical
approaches used in exposome studies in the field of respiratory health.

3.1. Single-Exposure Regression-Based Models

The simplest approach to study the exposome–health association consists of describing
single-exposure associations. In that order, one regression model is fitted for each exposure
variable separately, and eventually adjusted for confounders. These models could also
include random effects, using mixed models, when data are hierarchically structured (e.g.,
multicenter studies, family-based studies). This approach has been standardized and is
called Exposome-Wide Association Study (ExWAS), by analogy with the Genome-Wide
Association Study in the genetic field. The ExWAS has first been used in a pilot exposome
study aimed at exploring the role of environment on type 2 diabetes mellitus [42]. The
main weakness of this method is that it is not able to account for confounding by co-
exposures nor for interactions between exposures, the so-called “mixture” effect, while we
know that individuals are continuously exposed to combined exposures in their daily life.
Nevertheless, this agnostic method has the advantage of providing results that are easy
to interpret, summarize in a figure (e.g., a volcano plot) and compare with the results of
the literature. The performance of this approach, in terms of sensitivity and specificity, has
been addressed in a simulation study that compared six linear regression-based methods
to assess exposome–health associations in a realistic setting [32]. Among them, the ExWAS
method achieved the best sensitivity (mean sensitivity (95%CI): 0.96 (0.90–0.98)) to identify
true predictors among the 237 simulated exposure variables but had a very high false
discovery proportion (FDP) even after correction for multiple testing (mean FDP (95% CI),
0.86 (0.67–0.93)).
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Table 1. Main statistical methods used in exposome-health association studies.

Type of Analysis Examples of Methods Strengths Weaknesses Reference of the Method Use of the Method in Exposome
or Asthma Field

Single-exposure
regression-based method

Exposome-Wide
Association Study

(ExWAS)

• Standardized method
• High sensitivity to identify true

predictors
• Simple interpretation
• Easy to summarize the results in a

figure (e.g., volcano plot)

• Interaction between exposures
is not tested

• Results do not account for
confounding effect by
co-exposures

• High false discovery rate

Patel et al., 2010 [42]

Sbihi et al., 2017 [43]; North et al.,
2017 [44]; Lepeule et al., 2018 [45];

Agier et al., 2019 [46]; Vrijheid et al.,
2020 [47]; Agier et al., 2020 [48];

Warembourg et al., 2019 [49];
Nieuwenhuijsen et al., 2019 [50];

Granum et al. [51]

Multiple-exposures
regression-based

methods

Deletion–Substitution–
Addition (DSA)

algorithm

• All exposure variables are
considered in a unique model
with possibility to include
interactions

• The selected model is able to
account for confounding effect by
co-exposures

• Low false discovery proportion to
identify true predictors

• Moderate sensitivity to identify
true predictors

• Instability
• Time-consuming and thus not

adapted for exposome of more
than a few hundred variables

Sinisi and van der Laan 2004 [52]

Agier et al., 2019 [46]; Vrijheid et al.,
2020 [47]; Agier et al., 2020 [48];

Warembourg et al., 2019 [49];
Nieuwenhuijsen et al., 2019 [50]

Granum et al. [51]

Elastic Net (ENET) and
Least Absolute Shrinkage

and Selection Operator
(LASSO)

• Able to deal with
correlated variables

• The selected model is able to
account for confounding effect by
co-exposures

• Good prediction performance

• Moderate sensitivity to identify
true predictors

• Instability
Zou and Hastie 2005 [53];

Tibshirani 1996 [54]
Pries et al., 2019 [55];

Cowell et al., 2019 [56]

Weighted Quantile Sum
(WQS) regression

• Able to deal with
multicollinearity

• The use of quantiles reduces the
impact of outliers

• Not able to consider categorical
exposures

• All exposures must be
associated with the outcome in
the same direction (i.e., all
protective or all risks factors)

Carrico et al., 2015 [57] -
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Table 1. Cont.

Type of Analysis Examples of Methods Strengths Weaknesses Reference of the Method Use of the Method in Exposome
or Asthma Field

Supervised clustering
approaches

Latent Class Analysis
(LCA)

• Suitable for longitudinal data
(Latent Transition Analysis [58])

• Able to consider the outcome in a
supervised approach

• Not able to deal with
continuous exposures

• Model requires low correlation
between variables

• Interpretation of results may be
difficult in case of large number
of clusters

• Limited dimension of the
exposome (in relation to the
sample size)

Goodman et al., 1974 [59] Buck Louis et al., 2019 [60];
Harmouche-Karaki et al., 2019 [61]

Bayesian Profile
Regression (BPR)

• Consider all exposure variables in
a unique model

• Able to determine the number of
clusters minimizing the
least-squared distance to the
probability matrix

• Able to deal with combined
continuous and
categorical variables

• Computing time
• Interpretation of results may be

difficult in case of large number
of clusters

• Unstable method

Molitor et al., 2020 [62] Berger et al., 2020 [63];
Belloni et al., 2020 [64]

Analysis accounting for
the hierarchical structure

of the data

Meet-in-the-Middle
(MITM)

• Considers the hierarchical layers
in the exposome and the causal
link between them to better
document the causality in
exposome–health associations

• Needs an a priori selection of
intermediate layers Chadeau-Hyam M et al., 2011 [65]. Vineis et al., 2020 [66]; Jeong et al.,

2018 [67]; Cadiou et al., 2020 [68]

Bayesian Kernel Machine
Regression (BKMR)

• Use of a smooth kernel function
able to deal with non-monotonic
exposure-outcome relationship

• Able to deal with a priori
knowledge about group
of exposures

• Able to deal with
multicollinearity

• Not able to deal with
categorical outcomes

• The hierarchical variable
selection option can select only
one variable per group

Bobb et al., 2015 [69] Berger et al., 2020 [63]
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3.2. Multi-Exposure Regression-Based Models

To go a step further from single-exposure analyses, multivariate analyses allow cor-
rection for cofounding by co-exposures of multiple exposures. For example, an extension
of the ExWAS consists of fitting a multivariate linear/logistic regression (ExWAS-MLR)
from all the exposures reaching a p-value below 0.10 (or below 0.20 in some cases) [46].
Moreover, in a few exposome studies [46–51], the iterative Deletion–Substitution–Addition
(DSA) algorithm has been applied. This algorithm switches between deletion, substitution
and addition of variables in order to identify the multivariate model minimizing the root
mean square error (RMSE) using x-fold (generally five) cross-validated data [52]. This
method has the advantage of adjusting for the selected co-exposures, to allow addition of
nonlinear terms and inclusion of interaction terms between exposures. A simulation study
comparing six regression methods in a two-way interactions setting showed that this DSA
approach reached the lowest FDP (mean FDP (95% CI): 0.28 (0.21–0.33)) while keeping
mean sensitivity at 0.73 (0.65–0.80) [32]. Nevertheless, this method is time-consuming and
suffers from high instability due to the cross-validation procedure. Indeed, to achieve a
stable selection, exposome studies which have used DSA so far had to add a stabilization
step, considering only the exposures selected in an arbitrary-set fraction of repeated runs, a
protocol which could possibly increase the FDP [70]. Other multivariate analyses appro-
priate for exposome studies are the penalized regression models, such as the Elastic Net
(ENET) and the Least Absolute Shrinkage and Selection Operator (LASSO) methods [53,54].
These methods estimate regression coefficients for all exposure variables with the least in-
formative predictors attributed to estimates close to zero. In two simulation studies, ENET
performed better in term of specificity than ExWAS and DSA but at the cost of a reduced
sensitivity [32,41]. Finally, in the context of environmental chemicals, Weighted Quantile
Sum (WQS) regression has been developed, with the aim of dealing with multicollinearity
between exposures [57]. With this method, the weighted sum of the quantiles of each
exposure chemical is considered in a regression model. The use of quantile of exposures
has the advantage to not be influenced by potential outliers but makes the model unable to
deal with categorical exposures. Moreover, one of the constraints imposed on the weights
associated with exposures is to be between zero and one: thus, the effects of all exposures
are supposed to act in the same direction (the WQS cannot consider “protective” and “risk”
factors in the same model). Recently, this method has been extended by adding a causal
inference method, known as g-computation, to estimate the joint effect of all exposures in a
mixture without assumption on directional homogeneity [71]. Finally, the g-computation
allows for non-linearity and non-additivity of the effects of individual exposures and the
mixture as a whole.

3.3. Cluster-Based Analyses Relating Profiles of Exposure to Health Outcome

Another way to tackle exposome–health associations is to identify groups of individ-
uals sharing the same exposures pattern and outcome level by performing supervised
cluster-based analysis. The general approach relies on two principles: the within-cluster
homogeneity (two individuals from the same cluster should have similar exposures and
outcome) and the between-cluster separability (two individuals from two different clusters
should have different exposures and outcome). This approach, that takes into account all
exposures simultaneously, is able to account for the additive and mixture effects of the
exposures; thus, it is expected to be more representative of the mode of exposure in real life.
Overall, clustering methods take into account correlations between exposure variables and
reduce the size of the exposome (a set of hundreds of exposures is summarized in a finite
number of clusters, generally lower than 10). Thus, this approach has the major advantage
of dealing with the multiple tests issue since it allows the comparison of these clusters
of individuals in terms of health outcome in a single test experiment. By comparison,
the ExWAS analysis performed on an exposome composed of k exposures would require
k tests. Moreover, some clustering approaches also include a selection of variables step.
Currently, several clustering methods exist, including K-means, hierarchical clustering,
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and model-based approaches (e.g., Latent Class Analysis (LCA) or Bayesian Profile Re-
gression (BPR)) [59,62]). Compared to other clustering methods, BPR is able to deal with
intra-class dependencies, and therefore allows the inclusion of correlated exposures and to
deal with both continuous and categorical variables. However, this method might suffer
from instability, in particular with a wide exposome. To limit this instability issue, a recent
study proposed to apply the supervised BPR in a restricted set of exposures selected from
the ExWAS results (detailed below) [72].

3.4. Analyses Accounting for the Hierarchical Structure of the Data

The exposome can be seen as being composed of several layers of data, as illustrated
in Figure 1, and this hierarchical structure of the data could be integrated into the statis-
tical analysis to account for the possible causal links between the different layers. As an
example, because methylation is considered as a biological pathway between environmen-
tal exposures and health, information from methylome data can be usefully integrated
in an exposome–heath association study. Among the different existing approaches, the
meet-in-the-middle approach consists of studying the association between intermediate
layers, usually biomarkers, with external exposures (the exposome) and subsequently
with a health outcome. Therefore, this approach attempts to account for the biological
structuration of the different layers by identifying putative mediators [65]. Recently, a
tailored Meet-In-The-Middle (MITM) approach [68] has been proposed to overcome one of
the main issues of exposome studies, that is the high false-positive rate [32]. The approach
proposed by Cadiou S et al. relies on a four-step approach: (1) selection of genes involved in
biological pathways a priori relevant for the health outcome; (2) association study between
Cytosine-Phosphate-Guanine (CpGs) in genes identified in step 1 and the outcome; (3)
association study between the exposome and the CpG sites identified in step 2 (adjusted
for the outcome); (4) association study between the reduced exposome identified in step 3
and the health outcome. The authors of this targeted MITM approach hypothesized that
it could lead to a higher specificity in the identification of true predictors compared to
the agnostic approach (e.g., ExWAS), although a simulation study would be required to
validate this hypothesis.

Another way to consider exposome data is to group exposures by family (e.g., phenols,
phthalates, air pollutants), which could be seen as a cluster approach relying on a priori
information. For example, Bayesian kernel machine regression (BKMR) has been proposed
to estimate the health effects of combined exposures (mixtures) by integrating information
of data structure [69]. In BKMR the health outcome is regressed on a flexible function of the
combined exposures (specified with a kernel function). To account for correlated exposures,
a hierarchical variable selection can be included in the modeling approach to incorporate a
priori knowledge on the structure of the exposome (e.g., exposure families). At this time,
this method is available only for continuous outcomes.

All these methods present strengths and weaknesses and none of them can be con-
sidered as more efficient in all cases. The choice of the statistical method should be made
according to the design of the study, the type of outcome, the type of exposome data, the
sample size and to the main objective of the study. Therefore, the results of such studies
should be interpreted considering the characteristics of the statistical method used.

4. Exposome and Asthma: Literature Review

In past decades, many studies exploring the role of various individual environmental
factors on asthma characteristics have been published, and summarized in recent literature
reviews [10,11]. Here, in order to address how the new methodological framework repre-
sented by the exposome has been applied to asthma research, we conducted a PubMed
search for journal articles published up to November 30, 2020 with the search terms “(res-
piratory OR lung function OR asthma OR allergy) AND “exposome”. As there is no
rigorous definition for exposome when it comes to studying exposome–health association
in epidemiology, we a priori arbitrarily defined exposome studies by studies investigat-



Int. J. Environ. Res. Public Health 2021, 18, 1138 9 of 14

ing simultaneously at least two distinct families of exposures and, overall, at least ten
different exposure variables, acknowledging that this could be debated. The PubMed
search identified 141 full texts, of which 89 were not original articles but commentaries or
reviews. Among the remaining 52 manuscripts, only four original studies investigated the
link between at least two families of exposures and 10 exposure variables, and asthma or
respiratory outcomes while the 48 others did not consider large range of exposures or did
not consider asthma-related outcomes.

Among the four original exposome studies identified, three performed single-exposure
analyses, followed by multiple-exposures analyses, eventually including a variables se-
lection step. In contrast, the most recent study applied a two-step approach consisting of
single-exposure analyses (ExWAS) followed by a supervised cluster analysis on a restricted
set of relevant exposures from ExWAS results.

The study that uses for the first time the term “exposome” in the field of respiratory
epidemiology was based on the Kingston Allergy Birth Cohort and aimed at exploring the
role of exposome on respiratory symptoms of 235 children [44]. The exposome was assessed
through 21 prenatal and 17 postnatal exposures including a general external exposome
(socioeconomic status (SES), rural or urban residence), specific external exposome (cigarette
smoke, breastfeeding, mold or dampness), and “internal exposome” (gestational age and
some clinical parameters). Univariate Cox proportional hazard models, not corrected
for multiple testing, identified two prenatal (SES and prenatal smoke) and five postnatal
exposures (SES, air freshener, candles or incense, indoor mold and postnatal smoke)
positively associated with parental report of respiratory symptoms at 2 years of age, with
hazard ratios (HR) ranging from 1.85 (1.09–3.13) for prenatal SES to 3.26 (1.56–6.78) for
postnatal smoke. Breastfeeding for at least 6 months was negatively associated with the
child outcome (HR (95% Confidence Interval, CI): 0.41 (0.23–0.71)).

More recently, the European Human Early-Life Exposome (HELIX) project combined
six European longitudinal birth cohorts to explore the role of exposome on various health
outcomes [46,51,73] using an ExWAS and the DSA algorithm. The exposome was com-
posed of 85 prenatal and 125 postnatal exposures covering 17 exposure families, including
chemicals. Among 1033 children with validated spirometry data (median (inter quartile
range, IQR) age = 8.1 (6.5–9.0) years), the forced expiratory volume in 1 s (FEV1) was
positively associated with three prenatal exposures (two perfluorinated alkylated sub-
stances’ biomarkers levels and the distance of the residence to the nearest road during
pregnancy). On the contrary, FEV1 was negatively associated with nine postnatal expo-
sures (copper, ethyl-paraben, five phthalate metabolites internal levels, house crowding
and facility density around schools) in ExWAS adjusted for confounders [46]. None of
these associations remained statistically significant after correction for multiple testing
and no exposure was selected with the DSA algorithm. Furthermore, based on the Helix
cohorts, an analysis considered the role of the exposome (composed of 90 prenatal and
107 childhood exposures) on allergy-related outcomes [51]. The ExWAS analysis identified
two prenatal (inverse distance of the residence to nearest road and one phthalate) and three
childhood exposures (population density, cadmium biomarker and one phenol biomarker)
positively associated with rhinitis in the 1270 6–11-year-old considered children. Moreover,
one prenatal (particulate matter absorbance) and three childhood exposures (cat at home,
blood molybdenum and perfluorooctane sulfonate levels) were negatively associated with
rhinitis. None of these nine associations remained statistically significant after correction
for multiple testing and only the three prenatal exposures were selected in the additional
DSA analysis. These three first studies should be commended as they provided a first step
towards the exposome approach in respiratory research by systematically reporting the
association of a large set of exposures with asthma-related outcomes using a standardized
protocol within each study. They confirmed some previous findings (e.g., prenatal smoke,
breastfeeding) and identified some suspected factors (e.g., phthalate metabolites) for which
further investigations would be required. Nevertheless, these first studies did not attempt
to address the effect of combined exposures. When dealing with a multifactorial disease
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or health parameter, such as asthma, allergic diseases and lung function, comprehensive
statistical approaches able to jointly consider a large set of exposures are needed.

Finally, the fourth study identified relied on an older French population, the Epidemi-
ological Study on the Genetics and Environment of Asthma (EGEA) [74]. In this study,
the role of exposome, assessed by 53 lifestyle/environmental exposures from 17 families
of exposures, on the forced expiratory volume in 1s (FEV1) of 599 adults with asthma
was investigated [72]. The first step of the statistical analysis consisted of an exposome
dimension reduction by selecting exposures variables which showed a trend for an asso-
ciation with FEV1 (p-value below 0.20 in the ExWAS analysis). Then, a supervised BPR
method was applied by considering the selected exposure variables in step 1 and FEV1,
in order to identify clusters of individuals sharing a similar profile of exposures and a
similar level of lung function. The study identified three clusters including one cluster
of 30 individuals showing the lowest mean ± SD FEV1 (79% ± 21 vs. 90% ± 19 and
93% ± 16) and characterized by a specific exposure pattern (heavy smoking, poor diet,
higher outdoor humidity and proximity to traffic). Interestingly, this study identified a
specific profile of joint lifestyle and environmental factors associated with a low FEV1 in
adults with asthma while none of the exposures revealed significant association when
considered independently in the ExWAS. The differences in the results observed between
these two steps using different statistical methods (single exposure regression-based model,
ExWAS, and cluster-based analysis, the BPR) support the hypothesis that comprehensive
statistical approaches could be useful to address the effects of the environment in complex
multifactorial health parameters.

These four studies constitute the very first efforts to address the respiratory health
environmental determinants via an exposome approach. This approach is still in its infancy,
but we can expect that the literature will be expanded with original studies based on
detailed exposome [75] and comprehensive approaches.

5. Conclusions

Asthma is a widespread multifactorial disease, which deserves a comprehensive
approach to better understand its etiology and development. Although most of previous
studies in environmental epidemiology focused on a single exposure (or single exposure
family), with the recent emergence of the exposome concept, several studies and European
projects have started to assess the effect of multiple exposures on respiratory health. These
studies are expected to contribute to a better understanding of the associations between
the environment and health by using various holistic approaches. Although the first
association studies between the exposome and asthma-related outcomes conducted so
far mainly rely on the ExWAS method for successive single-exposure analysis and the
DSA algorithm for multi-exposures analysis [46,48–51,76], further studies on larger sample
size should attempt to apply more comprehensive statistical approaches, either able to
account for the hierarchical structure of the multiple layers of the exposome or to account
for the possible mixture effects in order to be more consistent with the complex structure of
exposure data.
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