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Abstract: Unsafe acts by workers are a direct cause of accidents in the labor-intensive construction
industry. Previous studies have reviewed past accidents and analyzed their causes to understand the
nature of the human error involved. However, these studies focused their investigations on only a
small number of construction accidents, even though a large number of them have been collected
from various countries. Consequently, this study developed a semantic network analysis (SNA)
model that uses approximately 60,000 construction accident cases to understand the nature of the
human error that affects safety in the construction industry. A modified human factor analysis and
classification system (HFACS) framework was used to classify major human error factors—that is,
the causes of the accidents in each of the accident summaries in the accident case data—and an SNA
analysis was conducted on all of the classified data to analyze correlations between the major factors
that lead to unsafe acts. The results show that an overwhelming number of accidents occurred due to
unintended acts such as perceptual errors (PERs) and skill-based errors (SBEs). Moreover, this study
visualized the relationships between factors that affected unsafe acts based on actual construction
accident case data, allowing for an intuitive understanding of the major keywords for each of the
factors that lead to accidents.

Keywords: construction accident case; construction workers; unsafe acts; semantic network analysis;
HFACS; human error

1. Introduction

The construction industry is one of the most hazardous industries in the world, and
many studies have shown that unsafe behavior by people is a major cause of construction
accidents [1–5]. These accidents can be attributed to unsafe conditions in the workplace,
that is, physical factors such as when the workplace environment is inadequate, and unsafe
acts by workers, that is, human factors such as inappropriate responses by workers to
hazardous situations [6–9]. Unsafe acts are a direct cause of accidents, and they occur
due to complex interactions between multiple factors including organizational factors,
the workers’ physical condition, the work conditions, and the work environment [10–12].
The construction industry is a labor-intensive industry, and there are many tasks which
workers perform directly, making it is necessary to understand human error, which is a
fundamental cause of unsafe acts.

Human error generally means inappropriate or unwanted human decisions or actions,
and it refers to mistakes, faults, slips, lapses, errors, etc. [13]. In order to understand such
human error, studies have reviewed accident cases and analyzed their causes [10,14,15].
Based on these studies, a number of attempts have been made to develop models and
methods for accident analysis in the construction sector, but these attempts have had
several limitations.

One of the limitations is that previous studies have reviewed an inadequate number
of construction accident case samples. Currently, construction accident case reports are
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becoming mandatory in many countries (United States, South Korea, Singapore, United
Kingdom, Australia), and as a result, a large volume of construction accident information
is being collected. However, these accident cases are excluded from studies as they consist
of basic accident information and do not provide concrete evidence such as detailed on-site
investigations and on-site expert testimony. Consequently, only a small number of cases
which provide concrete evidence are selected for inclusion in studies. Another limitation
is that studies have focused on surveys of workers and managers, most having been
conducted using self-reporting questionnaires to measure the workers’ behavior. These
drawbacks limit the sampling targets and can lead to various forms of bias.

This study aimed to use a large number of construction accident cases to analyze
the causes of unsafe behavior by workers due to the complex interactions between major
factors. The goal of this study was to use actual construction accident case data to develop a
semantic network analysis (SNA) model and examine the core factors which lead to unsafe
acts by workers. By doing so, it will be possible to understand the correlations between
human factors that affect safety. Moreover, the data visualized through network graphs
should be able to provide intuitive information that is different from that provided using
previous statistical methods.

2. Literature Review

In the field of construction safety, studies are being conducted to understand the
causes of unsafe acts by workers using various accident analysis models. Existing studies
have collected survey data on accidents from workers and experts and used statistical
analysis methods to understand their causes. Harvey et al. (2018) updated and reviewed
the reliability of the construction accident causation (CONCA) model by conducting
interviews with 32 construction safety managers and consultants to understand the causes
of construction accidents. Zhang et al. (2019) created a construction accident cause system
(CACS) model and used systemic accident, statistical analysis, and case study methods on
571 construction accidents to identify the causes of serious accidents. Wang et al. (2016)
performed a survey on 297 workers to discover the fundamental causes of unsafe acts,
using structural equation modeling (SEM) to identify the important factors and paths
affecting the workers’ range of safety risk tolerances. Park et al. (2020) used logistic
regression methods to examine correlations between unsafe acts and unsafe conditions
and their significance in influencing construction accidents. However, the study had the
drawback of only considering one-to-one combinations of these phenomena and being
unable to examine anything beyond one-dimensional relationships, with the correlations
between various causes remaining unclear.

These studies were able to understand the causes of construction accidents based on
the opinions of workers and experts, but insufficient effort was made to find causes within
a large volume of actual accident cases. Moreover, the normal statistical analysis methods
used for examining construction accident cases tend to result in the loss of information
(due to simplification) regarding accident types and cause analyses. Statistical methods
limit the analysis of accident case data by simplifying rich information—such as linguistic
meanings and the various relationships between factors—contained in accident reports
that are described in a written (sentence) format.

Various accident analysis models have been used to identify the causes of industrial
accidents, including the domino theory (Heinrich 1969), the Ferrel theory (Heinrich 1980),
the ‘Swiss cheese’ model of human error (Reason 1990), and the human factor analysis
and classification system (HFACS) (Shappell and Wiegmann 1997, 2000). Of these, the
HFACS was developed as a tool for analyzing human error in aviation accidents and has
been widely cited in various fields (railways, mining, maritime shipping, healthcare, etc.),
including construction [15–19]. Wong et al. (2016) adopted and modified the HFACS to
classify the fundamental causes of 52 fatal fall-from-height (FFH) accidents which included
on-site expert testimony and supplemental reports. Ye et al. (2018) emphasized the need for
a systemic approach to examining human error in order to improve construction safety, and
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they developed an improved I-HFACS framework and used it to classify 150 accident cases
and perform frequency analysis. Xia et al. (2018) also modified the HFACS framework to
create the BN-HFACS model—that is, a combination of HFACS and a Bayesian network
(BN)—to predict the safety performance of construction projects. Baldissone et al. (2019)
classified data based on the HFACS classification system to develop an accident precursor
management system. In addition to these studies, many other construction safety studies
have used the HFACS to analyze and prevent accidents. In this way, previous studies have
shown the HFACS to be useful for providing systematic analysis of construction accident
causes. Consequently, this study aimed to use a modified HFACS framework to classify
the major human error factors that cause accidents discussed in the accident summaries of
construction accident case data.

3. Semantic Network Analysis (SNA)

SNA is an analysis method for finding significant structural relationships between
words in text that consists of messages [20]. SNA calculates the frequency of words
in sentences to analyze the patterns with which words create structure and meaning.
It is useful in identifying the relationships between words through text analysis and
understanding the relationships between core concepts within the overall context. It also
has the advantage of allowing the results to be presented in a manner that is intuitive and
easy to understand by using various visualization techniques.

In SNA, certain concepts are depicted as nodes, and the relationships between these
concepts are depicted as links. By depicting the concepts as nodes and links, the role of each
concept and the correlations between them can be established. The relationships between
words are shown through the phenomenon of co-occurrence in which words appear
together in a certain text unit [21]. Moreover, SNA objectively determines the relationships
between causes by detecting the patterns or behaviors of major causes without bias, based
on actual text-format data rather than theoretical background information [22].

However, text is difficult to analyze by itself as it is unstructured data. Consequently,
a mining process for extracting information is needed. Text mining is a process that con-
verts the unstructured data of text into a structured format to find useful information [23].
A computer uses natural language processing (NLP) technology to convert the unstruc-
tured data into a format that it can understand, after which it processes, extracts, and
analyzes the information. At this point, SNA is used in the text extraction and analysis
stage. The aforementioned features make SNA the most suitable method for analyzing the
relationships between human error factors that lead to unsafe acts based on large amounts
of text-format construction accident case data in this study.

4. Classification of Modified HFACS and Network Modeling
4.1. Research Methodology

This study aimed to use SNA to perform data analysis based on the simple hypothesis
that there is a higher correlation between different causes if they appear together in a single
accident case. Figure 1 shows the process of developing the SNA model, which was the
goal of this study.

In the data collection stage, construction accident cases from 2014 to 2018 collated
by the Korea Occupational Safety and Health Agency (KOSHA) were collected, and ap-
proximately 60,000 suitable data were finally selected. The collected data were text data in
which the accident summaries were comprehensively recorded in sentence form, including
the various accident causes. To analyze the accident causes within such an unstructured
dataset, significant manual classification was required. Consequently, during the data
classification stage, the collected data were manually classified by 15 specialized human
resources, based on the modified human factor analysis and classification system (HFACS)
framework consisting of 4 levels—that is, unsafe behavior, preconditions of unsafe acts,
unsafe supervision, and organizational influences—and 17 sub-factors. In the SNA mod-
eling stage, two big data analysis techniques—that is, text mining and semantic network
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analysis—were used to analyze large volumes of text data. In the text mining stage, data
preprocessing was performed using Python 3.9.0, and morphemes were analyzed using the
KoNLPy library. Subsequently, words that were targets for detailed analysis were extracted.
Meaningless words and noise that were extracted during the morpheme analysis process
were removed to identify keywords among the analyzed data. After preprocessing was
completed, top-level factors appearing frequently were selected from among the extracted
keywords, and the Numpy and Pandas libraries were used to examine the frequency at
which these words appeared simultaneously and to arrange connection relationships in
the form of an adjacency matrix. In the SNA stage, the extracted adjacency matrix was
visualized using Gephi 0.9.2—an open-source network analysis tool—to create a network
showing the connection relationships between keywords, with the major content then
being analyzed.

Int. J. Environ. Res. Public Health 2021, 18, x  4 of 16 
 

 

 
Figure 1. Research process. 

In the data collection stage, construction accident cases from 2014 to 2018 collated by 
the Korea Occupational Safety and Health Agency (KOSHA) were collected, and approx-
imately 60,000 suitable data were finally selected. The collected data were text data in 
which the accident summaries were comprehensively recorded in sentence form, includ-
ing the various accident causes. To analyze the accident causes within such an unstruc-
tured dataset, significant manual classification was required. Consequently, during the 
data classification stage, the collected data were manually classified by 15 specialized hu-
man resources, based on the modified human factor analysis and classification system 
(HFACS) framework consisting of 4 levels—that is, unsafe behavior, preconditions of un-
safe acts, unsafe supervision, and organizational influences—and 17 sub-factors. In the 
SNA modeling stage, two big data analysis techniques—that is, text mining and semantic 
network analysis—were used to analyze large volumes of text data. In the text mining 
stage, data preprocessing was performed using Python 3.9.0, and morphemes were ana-
lyzed using the KoNLPy library. Subsequently, words that were targets for detailed anal-
ysis were extracted. Meaningless words and noise that were extracted during the mor-
pheme analysis process were removed to identify keywords among the analyzed data. 
After preprocessing was completed, top-level factors appearing frequently were selected 
from among the extracted keywords, and the Numpy and Pandas libraries were used to 
examine the frequency at which these words appeared simultaneously and to arrange 
connection relationships in the form of an adjacency matrix. In the SNA stage, the ex-

Figure 1. Research process.

4.2. Finding the Property Information of Construction Accident Data

This study collected a total of 89,355 data (88,007 accident cases, 1348 fatal cases) to
analyze the human error factor in construction accident cases. Ultimately, 60,183 data
were selected for analysis after excluding data that had been duplicated or could not be
checked—that is, the accident summary was very short, or information was missing. The
collected accident case data include a large volume of unnecessary information; therefore,
the required property information was found based on the general construction information
(project scale, region), incident information (date of accident, time of accident, accident
summary, number of dead and injured people), worker information (length of service, type
of employment, age), and hazard (disability level, number of working days lost).
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The main type of information used in this study was accident summaries. In the
accident summaries, it was possible to see the major factors and causes of unsafe acts based
on the accident circumstances. The accident summary describes the type of accident—
such as a fall, collapse, pinching, falling—including where, when, and in what place the
accident occurred, during what process, with what type of machine/equipment, and doing
what type of work. In particular, it includes any unsafe conditions regarding machinery,
equipment, structures, and the working environment at the time of the accident and any
specific human factors relating to the unsafe behavior of the injured or fellow workers.
The collected accident case data contain sufficient information to analyze the causes of
HFACS-based construction accidents despite the various levels of detail used to describe
each accident. As such, the cases caused by specific human error factors were classified
based on the modified HFACS framework (which included 17 factors). At this stage,
the accident cases were arranged as rows, and the human error factors (17 factors) were
arranged as columns. When a certain factor contributed to an accident in an accident
case, the corresponding text content was entered in that factor’s cell. Figure 2 shows
an example of the HFACS factor classification method. The accident summary shown
indicates that the safety management supervisor failed to check the (insufficient) status of
rope connections, which is clearly their responsibility. This caused an unexpected situation
in which the lifting rope broke off a hook and a soil screen collapsed, resulting in an
accident which injured a worker, even though the victim was aware of the danger of
collapse. As a result of the classification, four sub-factors were identified as the cause of the
accident—that is, inadequate supervision, hazard by others, physical problem, and decision
error—suggesting that the accident occurred due to the combined influence of each factor.
After classification was completed, SNA was performed on the accident case data, the data
being used to find correlations in the unsafe acts for each of the HFACS factors.
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4.3. Classification of Causes Based on the Modified HFACS for Unsafe Acts

When the HFACS was first developed, it was classified into 20 sub-items within
4 major categories: that is, (1) unsafe acts, (2) preconditions for unsafe acts, (3) unsafe
supervision, and (4) organizational influences [24,25]. When the HFACS is used, it has the
advantage of being able to distinguish between latent failures and active (human) failures
at each level. Latent failures include factors such as inadequate organizational management
practices, inadequate or missing resources, supervisor violations, inadequate equipment
design, and inadequate personnel training and procedures. Conversely, active (human)
failures include unsafe acts that occur close to the moment when an accident occurs.
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This study modified the classification system based on the HFACS framework used
by Wong, L. et al. (2016). In their version of the HFACS framework, there were a total
of 20 sub-items, but this study modified their version by excluding items that could not
be known from the accident case data, with 17 sub-items being chosen (Figure 3). The
meanings of each sub-item are shown in Table 1.
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The two excluded sub-items were ‘organizational climate’ and ‘exceptional violation.’
‘Organizational climate’ in ‘(4) organizational influences’ was excluded because it is difficult
to understand the inappropriate organizational safety structures and politics or cultural
factors within an organization. In addition, ‘exceptional violation’ in ‘(1) unsafe acts’—
which refers to exceptional violations of established rules and procedures—was excluded
for the same reason. Moreover, the three sub-factors (‘adverse mental states (ADM),’ ’ad-
verse physiological states (ADP),’ ’physical/mental limitations (PML)’) in the subcategory
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‘conditions of operator’ under ‘(2) preconditions for unsafe acts’ were changed to the more
inclusive terms ‘physical problem (PP)’ and ‘mental problem (MP)’ as it is difficult to
understand the workers’ individual state of health or specific psychological state.

Table 1. The modified HFACS used in this study.

Classification Factors Descriptions

1© Unsafe acts

Decision error (DE) Actions and plans intentionally chosen by operators
are inappropriate and lead to unsafe situations.

Skill-based error (SBE)
Unintentional errors that can be reduced through
learning. The actions are related to a routine task

or procedure.

Perceptual error (PER)
Misperception of an object, equipment, environment,
threat, or situation; visual, auditory, proprioceptive, or

vestibular illusions; cognitive or attention failures.

Routine violation (RV) Intentionally ignoring established rules
and procedures.

2© Precondition of unsafe acts

Physical environment (PE) The environmental factor conditions that affect the
actions of individuals.

Technical environment (TE) The workspace that affects the actions of individuals.

Hazard by others (HBO) Risks that, unknown to the victim, were caused by
another party.

Mental problem (MP) Lack of mental capabilities to cope with a situation
when performing certain tasks.

Physical problem (PP) Lack of physical capabilities to cope with a situation
when performing certain tasks.

Crew resource management (CRM) Factors that include communication, coordination,
planning, and teamwork issues.

Personal readiness (PR)
Preparatory actions or behavior by an individual in
order to perform safe work, such as abstaining from

drinking or taking sufficient rest before work.

3© Unsafe supervision

Inadequate supervision (IS) Inappropriate supervision that fails to control the risk
of workers.

Planned inappropriate operation (PIO) Inappropriate work plans that pose unnecessary risks
to workers.

Failed to correct problem (FCP)
Failure to correct this problem even though defects in
personal, equipment, training, or related safety issues

are known to the supervisor.

Supervisory violation (SV) The intentional violation of existing regulations/rules
by the supervisor.

4© Organizational influence Resource management (RM)
Matters related to decision making with regard to the

budget and resource distribution at the
organizational level.

Organizational process (OP)
Official processes at the organizational level, including

safety management, safety education and training,
operation speed, and work schedule.

The biggest change in this study’s modified HFACS framework was ‘(1) unsafe acts.’
Most of the studies that have used the HFACS framework divided ‘(1) unsafe acts’ into
‘errors’ and ‘violations,’ as was conducted in the existing classification system [26]. Ac-
cording to Fogarty and Shaw (2010), the frequency of ‘violations’ was generally lower
than the frequency of ‘errors,’ and in this study’s data too, the frequency of ‘violations’
was very low; consequently, in this study, ‘(1) unsafe acts’ were primarily classified as
‘errors.’ In general, the classification of human error varies based on one’s concept of ‘error’
and perspective, with there being no universally accepted classification. James Reason,
who pioneered formal research on human error, wrote that the role of ‘intention’ must be
considered first when considering ‘errors’ [27]. As Reason asserted, research on ‘intention’
is important for understanding human error. Therefore, this study classified the sub-items
under ‘(1) unsafe acts’ by focusing on whether the worker’s unsafe act was intended or
unintended. The two sub-factors for unintended unsafe acts were ‘skill-based errors (SBEs)’
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and ‘perceptual errors (PERs),’ and the sub-factors for intended unsafe acts were ‘decision
errors (DEs)’ and ‘routine violations (RVs)’ (Figure 3).

5. Semantic Network Analysis Results
5.1. Overall Data Social Network Analysis Results

Figure 4a shows the overall network diagram, and Figure 4b shows the degree, degree
centrality, closeness centrality, and betweenness centrality values for each factor in the
SNA results. A total of 16 nodes appeared in the approximately 60,000 data—except for
‘supervisory violations (SVs),’ which had less than 50 instances—and 56 links were formed
between the nodes. It is thought that there were so few SVs because managers excluded
their own mistakes when reporting accidents in most cases.
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As a degree centrality value increases, the size of the node in Figure 4a becomes larger,
representing the frequency at which the factor appears in the overall accident case data.
Degree is the number of directly connected nodes, its value being visualized in Figure 4a.
Among the four factors in ‘(1) unsafe acts’ in the network graph, the node with the largest
node size and highest degree centrality was ‘PER,’ meaning that most of the accidents
among the accident cases occurred due to misunderstanding of objects and threats or a lack
of cognitive ability (mistakes in seeing or hearing). The ‘PER’ factor also had high closeness
centrality and betweenness centrality in addition to high degree centrality. Closeness
centrality refers to how closely a node’s degree of closeness is connected to all other nodes
in the network [28]. In other words, if closeness centrality was high, the node could be
said to be the closest to other nodes in the network, meaning that the node could affect
or be affected by other nodes the most quickly. Betweenness centrality is a method of
measuring whether a node performs the role of a bridge (intermediary) with other nodes
when building the network [29]. The more often a node appears on the shortest path
between other nodes, the higher the node’s betweenness centrality—that is, a node with
high betweenness centrality has control over the flow of information, this node having a
significant effect on the network’s overall connections and flow. Of the four factors under
‘(1) unsafe acts’ in the network, the factor with the second-highest centrality was ‘SBE,’ the
two factors ‘PER’ and ‘SBE’ being unintended unsafe acts in the category of ‘(1) unsafe acts.’
From this, it can be surmised that a larger number of accidents were caused by unintended
unsafe acts in comparison to intended unsafe acts.



Int. J. Environ. Res. Public Health 2021, 18, 12660 9 of 14

5.2. The Key Factors Affecting Unsafe Acts

To understand the strength of the relationships between other factors that affect the
factors in ‘(1) unsafe acts,’ the ‘direction’ of the relationships was set under the assumption
that unsafe acts were affected in the order of ‘organizational influences’ → ‘unsafe super-
vision’ → ‘preconditions for unsafe acts’ → ‘unsafe acts’. A directed network contains
relationships that have directions wherein a starting point and an end point exist. In an
undirected network, the relationships between two nodes are the same for each node. In
this study’s data, there were four factors in the category of unsafe acts, and the factors
which lead to unsafe acts were divided based on whether they were intended or not. The
unintended unsafe acts include skill-based errors (SBEs) and perceptual errors (PERs), and
the intended unsafe acts include decision errors (DEs) and routine violations (RVs). The
SNA analysis was conducted based on these categories, the results being as follows.

‘Skill-based errors (SBEs)’ are unintended unsafe acts. They are errors which can occur
as a worker performs an action in a skilled state, and they can be divided into slips and
lapses in short-term memory. Typical examples include getting one’s gloves caught in a
drill during drilling or forgetting to tighten a screw. Figure 5a shows the weights of the
factors having the most influence on ‘SBEs’ when the directionality of the relationships
between nodes is set. The factors having the most influence on ‘SBEs’ are ‘TE (1367),’ ‘RM
(51),’ and ‘PIO (44),’ in that order.
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The ‘perceptual errors (PERs)’ in Figure 5b are also unintended unsafe acts, and they
refer to poor recognition of objects, hazards, or situations, including impairments to sight,
hearing, cognition, and attention. Typical examples include being unable to see a chainsaw
blade due to the glare of the sun or being unaware of a working crane behind oneself due
to ambient noise. In Figure 5b, the factors having the most influence on ‘PERs’ are ‘TE
(868),’ ‘PP (729),’ and ‘PR (105),’ in that order.

In Figure 5c, ‘decision errors (DEs)’ are intended unsafe acts, and they mean that the
selected plan is unsuitable or improper for achieving the desired results. These errors
do not occur because the technology for performing tasks is inadequate. Rather, they
include decisions that exceed capacity, improper responses to emergency situations, and
inadequate procedural decisions. Typical examples include climbing on scaffolding outside
of the designated path and falling, or falling after a pipe gives way while working above
an exhaust duct. In Figure 5c, the factors having the most influence on ‘DEs’ are ‘TE (72),’
‘PP (30),’ and ‘PIO (23),’ in that order.

In Figure 5d, ‘routine violations (RVs)’ are intended unsafe acts, and they mean that
the specified rules and procedures have been intentionally ignored. Typical examples
include working without wearing a hardhat or having a brick fall and strike the head when
the hardhat has fallen off because of an unfastened chinstrap. In Figure 5d, the factors
having the most influence on ‘RVs’ are ‘TE (15),’ ‘IS (11),’ and ‘HBO (8),’ in that order.

Next, the major factors that have an effect on unsafe acts at each of the major category
levels in the HFACS are described based on the analysis results shown in Figure 5.

(1) Organizational Influences: The factor having the most influence on ‘(1) unsafe acts’ at
the level of ‘(4) organizational influences’ is ‘resource management (RM).’ ‘RM’ refers
to problems in the acquisition, distribution, and management of the organization’s
resources. Typical examples include inadequate resources or the provision of faulty
or worn-out equipment.

(2) Unsafe Supervision: The factors that influence ‘(1) unsafe acts’ at the level of ‘(3)
unsafe supervision’ are ‘planned inappropriate operation (PIO)’ and ‘inadequate
supervision (IS)’. ‘PIO’ refers to causing unnecessary hazards for on-site workers
due to defective task planning. Examples include excessive workload orders and
inappropriate personnel arrangements. ‘IS’ refers to inappropriate supervision that
causes workers to be unable to recognize and control hazards. A typical example is
lax safety supervision.

(3) Preconditions for Unsafe Acts: The factors that influence ‘(1) unsafe acts’ at the level of
‘(2) preconditions for unsafe acts’ are ‘technical environment (TE),’ ‘physical problem
(PP),’ ‘hazard by others (HBO),’ and ‘personal readiness (PR).’ ‘TE’ refers to work
environment factors (workspace, design factors) that affect a worker’s individual job.
Typical examples include getting caught in a machine due to limited space or machine
failure. ‘Physical problem (PP)’ refers to workers’ bodily limitations (reduced stamina,
alcohol, drug usage, etc.). ‘Hazard by others (HBO)’ refers to hazardous situations
created not by the victim of the accident but by others. Examples include faults
in the safety status of a structure or bricks falling from the second floor. ‘Personal
readiness (PR)’ refers to workers’ physical stamina and stress (time pressure), as well
as insufficient rest.

5.3. Semantic Network Analysis Results of Unsafe Acts

Figure 6 and Table 2 show the results of performing an SNA on accident cases contain-
ing the three factors (TE, PP, PIO) that have the greatest influence on unsafe acts. Table 2
shows the result of centrality analysis of the SNA diagram. The initial SNA diagram
exhibited too many links and nodes; therefore, it was reduced to an analyzable level by
adjusting the connection strength between nodes.

(1) Technical environment (TE)-PER/SBE: The combinations ‘TE’ and ‘SBE’ (weight:
1367) and ‘TE’ and ‘PER’ (weight: 868) had the highest weight values among the
mutual relationships between the HFACS factors. The analysis results for these
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two combinations were similar. Figure 6a,b show network graphs that display their
major keywords and the correlations between them. It can be seen that most of
the extracted keywords that both factors had in common were from accidents that
occurred during demolition and dismantling work (18.63%) and installation work
(12.46%). In particular, the values of nodes such as ‘dismantling,’ ‘during work,’
‘(scaffold) pipe,’ ‘formwork,’ and ‘finger’ were large, the connections between these
nodes being prominent. This phenomenon shows that the degree of hazard caused by
work environment factors (TE) (upper floor work, narrow work environments, lack
of work platforms and fall prevention nets, hazards from falling material, etc.) was
high in demolition and dismantling work in comparison to other types of work. Such
hazardous work environment factors during dismantling work may combine with
the ‘PER’ factor (for example, being unable to see material falling from above) and the
‘SBE’ factor (such as mistakes in the sequence of dismantling tasks due to unskilled
labor) to cause fatal accidents.

(2) Physical problem (PP)-PER: The combination ‘PP’ and ‘PER’ (weight: 729) had the
third highest weight among the mutual relationships between the HFACS factors.
This combination’s network graph is shown in Figure 6c, and it can be seen that node
values for ‘outdoor,’ ‘weight,’ ‘rebar,’ ‘carrying,’ ‘back,’ and ‘strain’ were large and the
connections between them prominent. This shows that inadequate physical capacity
(PP) for performing certain work often occurs when handling heavy materials (such
as rebar) during outdoor work that is affected by weather (such as heat waves).
Moreover, it can be seen that when physical capacity reductions occur, there is an
increased possibility of misunderstanding objects, threats, and situations as well as
visual, auditory, cognitive, and attention deficits (PERs) at the same time, this being
linked to not only light injuries (such as back strain) but also large secondary accidents
(such as slipping due to momentary dizziness). However, there are many cases in
which accidents happen because workers overestimate their own physical capacities
and continue to work. A typical example is a worker straining physically but thinking
that they are fine. The worker continues to work before suddenly losing strength
and collapsing.

(3) Planned inappropriate operation (PIO)-SBE: The combination ‘PIO’ and ‘SBE’ (weight:
105) had the fourth highest weight among the mutual relationships between the
HFACS factors. This combination’s network graph is shown in Figure 6d, and it can
be seen that node values for ‘grinder,’ ‘finger,’ ‘amputation,’ ‘oxygen,’ and ‘fire’ are
large and the connections between them strong. In work plan faults (PIO), there
are many cases where accidents occur because unskilled workers are provided, or
workers perform unexpected work due to a manager’s work adjustments. These
situations occur at small- to mid-sized work sites. Typical examples of accidents
include frequent finger amputation accidents when using grinders and fire accidents
when using oxygen cutting equipment.

Table 2. Centrality analysis result of semantic network analysis on accident cases.

TE-PER TE-SBE PP-PER PIO-SBE

DC BC CC DC BC CC DC BC CC DC BC CC

Dismantling 0.10 0.06 0.21 Dismantling 0.29 0.09 0.39 Outdoor 0.11 0.02 0.13 Finger 0.16 0.18 0.31
Work 0.10 0.09 0.22 Work 0.27 0.09 0.40 Rebar 0.08 0.04 0.13 Occurrence 0.16 0.04 0.26
Finger 0.08 0.06 0.21 Working 0.19 0.03 0.36 Weight 0.07 0.05 0.15 Amputation 0.16 0.09 0.30
Pipe 0.07 0.03 0.19 Formwork 0.19 0.04 0.35 Soil 0.06 0.01 0.11 Work 0.12 0.06 0.25

During work 0.05 0.03 0.18 Accident 0.17 0.03 0.35 Bear 0.03 - 0.11 Oxygen 0.12 0.13 0.25
Frame 0.04 0.03 0.18 Disaster 0.13 0.02 0.34 Back 0.03 0.01 0.09 Steel surface 0.11 0.01 0.24
Tree 0.04 0.02 0.16 Finger 0.12 0.02 0.33 Handrail 0.02 - 0.09 Fire 0.11 0.07 0.24

Direction 0.04 - 0.17 Occurrence 0.12 0.02 0.33 Rib 0.02 - 0.09 Grinder 0.10 0.05 0.28
Excavators 0.04 0.05 0.17 Pipe 0.11 0.01 0.32 Injury 0.02 - 0.09 During work 0.08 0.01 0.22

Valve 0.03 0.02 0.17 Amputation 0.10 0.02 0.32 Sprain 0.02 - 0.09 Accident 0.06 0.05 0.28

DC: degree centrality; BC: betweenness centrality; CC: closeness centrality.
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6. Conclusions

This study performed a network analysis using approximately 60,000 construction
accident case data to identify the human error affecting unsafe acts by construction work-
ers. Network analysis provided an approach which could compensate for the problems
of previous studies—such as the limited number of construction accident case samples
and the reliance on surveys and statistical analysis. This study used a modified HFACS
framework to classify the major human error factors which were the causes of accidents
for each accident case in the accident case data. An analysis was performed primarily on
‘(1) unsafe acts,’ one of the modified HFACS framework’s four levels—that is, unsafe acts,
preconditions for unsafe acts, unsafe supervision, and organizational influences—and the
analysis focused on whether the workers’ unsafe acts were intended or unintended.

The analysis results show that ‘PERs’ and ‘SBEs’ were the nodes with the largest node
size and highest degree among the four factors belonging to ‘(1) unsafe acts’ in the network.
These two factors were classified as unintended unsafe acts from among ‘(1) unsafe acts.’
It can be seen that an overwhelming number of accidents were caused by unintended
unsafe acts as compared to intended unsafe acts. An SNA was performed on ‘TE,’ ‘PP,’ and
‘PIO’—which were the factors having the most influence on unsafe acts. As a result, the
keywords that were the causes of the accident case factors were identified. This study was
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able to identify the cause materials and accident types associated with accident cases and
present an analysis of the results as well as an approach for accident countermeasures.

It is expected that text-based analysis using a large volume of accident cases (accident
report documents) will play an important academic and practical role in establishing new
safety management systems. Previous studies have attempted to analyze all the causes
of accidents within each focus, and no methodology has been provided to quantitatively
and qualitatively analyze the interrelationships between the causes that lead to accidents.
However, the SNA graph pattern of this study can identify the relationship between human
factors that affect workers’ unsafe behavior within actual accident cases. This intuitively
grasps the main keywords that cause accidents for each factor and provides a scenario for
the process in which accidents occur. Furthermore, this can be used to identify possible
accident occurrence scenarios for each major factor in the future when establishing accident
prevention measures.

However, this study took a significant amount of time and resources to classify the
causes of the accidents considering various factors and has a disadvantage in that it is
difficult to check the consistency of the data. Consequently, based on the results of this
study, a text mining-based automatic classification study of accident causes would be
needed in the future, in order to improve the consistency, productivity, and efficiency of
the process. One such study could standardize the various words that are used in the
construction industry to automate data classification. Such a study would alleviate the
classification and analysis difficulties that exist as a wide variety of different words are used
in construction accident cases based on the accident reporter and the construction site (even
though the words may have the same meaning). Moreover, it will be necessary to conduct
studies on preventing unintended unsafe acts. This study’s results show that unintended
unsafe acts occur often, making it much more difficult to establish preventive measures for
unintended acts than intended acts. Consequently, it has been determined that there is a
need for various studies on methodologies for preventing unintended unsafe acts.
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