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Abstract: Epidemic spreading causes severe challenges to the global public health system, and global
and local interventions are considered an effective way to contain such spreading, including school
closures (local), border control (global), etc. However, there is little study on comparing the efficiency
of global and local interventions on epidemic spreading. Here, we develop a new model based on
the Susceptible-Exposed-Infectious-Recovered (SEIR) model with an additional compartment called
“quarantine status”. We simulate various kinds of outbreaks and interventions. Firstly, we predict,
consistent with previous studies, interventions reduce epidemic spreading to 16% of its normal level.
Moreover, we compare the effect of global and local interventions and find that local interventions
are more effective than global ones. We then study the relationships between incubation period and
interventions, finding that early implementation of rigorous intervention significantly reduced the
scale of the epidemic. Strikingly, we suggest a Pareto optimal in the intervention when resources
were limited. Finally, we show that combining global and local interventions is the most effective
way to contain the pandemic spreading if initially infected individuals are concentrated in localized
regions. Our work deepens our understandings of the role of interventions on the pandemic, and
informs an actionable strategy to contain it.

Keywords: epidemic; SEIR model; global/local interventions

1. Introduction

A pandemic, such as the Spanish Flu, the Ebola virus, and COVID-19, has tremendous
impact on human economic productions and life. In early days of the rapid pandemic
spreading, especially faced with a lack of vaccines, many countries took global and local
interventions, which are essential components of public health. These strategies include
travel restrictions, school/workplace closure, border control, cancellation of massive gath-
ering activities, quarantine of exposed individuals, contact tracing and others [1–3]. Up to
now, more than 150 countries have imposed restrictions on ships/flights/trains, restricting
gathering activities, recommending people reduce travel and implementing other restric-
tions due to COVID-19. These strategies aim to reduce peak size of the pandemic and
delay the transmission time, albeit at a large economic and social cost [4–7]. However,
many governments recently propose to reopen the economy, with possibilities of the wide
spread of the virus [8–10]. The question remains, is it a good idea to lease the global and
local interventions? To what extent do these strategies reduce the spreading? Is there a
difference in the interventions of infectious diseases with different incubation periods?

Prior studies used mathematical models to study possible underlying mechanisms [11–22]
and characteristics [23–27] of the epidemic’s spreading. Empirical results also show that in-
terventions reduce the risk of transmission [28–36]. For example, initial analyses find that
the implementation of the lockdown policy, social distancing and border controls have a
restraining effect on the spread of the epidemic [6,31,37–43]. Prior work also suggests that
travel restrictions substantially delay epidemic spread, such as COVID-19, by an average
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of 3–5 days [31,32]. Given the consequential nature of such spreading, global interventions
that aim to reduce travel flows among various regions and local interventions such as school
closure and cancelling large gatherings have to be imposed together. However, we still lack of
an understanding of which strategy is more effective.

2. Materials and Methods

To quantitatively answer this question, we begin with the traditional SEIR model [44,45]
since viruses have the characteristics of incubation period, susceptible individuals may
become infected by contact with the source of infection I-infected, and thus become asymp-
tomatic E-exposed state [46]. In the case of COVID-19, the fact that WHO suggested to put
exposed individuals in quarantine prompts us to add another compartment Q to the tradi-
tional SEIR model, describing the quarantine status of exposed individuals [47,48]. To model
the global and local interventions, we consider our social system as a modular network with
each region as a community, and the network contains both inter- and intra-community
interactions.

We illustrate the model in Figure 1. There are six states in the model: S, susceptible
(uninfected but can be infected); Q, quarantine (suspected patients in contact with the
infected, undetected); E, exposed (infected but did not develop clinical symptoms, un-
detected, non-infectious); I, infected (infected with symptoms, detected, infectious); R,
recovered; D, deceased.
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Figure 1. The SQEIR model. Graphical scheme representing the interactions among different stages
of infection in the multi-regional-SQEIR model: S, susceptible (uninfected); Q, quarantine (suspected
patients in contact with the infected, undetected); E, exposed (infected but did not develop clinical
symptoms, undetected, non-infectious); I, infected (infected with symptoms, detected, infectious); R,
recovered (recovered); D, death (dead).

The spreading dynamics are governed by differential equations as follows:

.
S = −[δβ1 + (β − β1)]SI + kQ
.

Q = (β − β1)SI − kQ − (1 − k)qQ
.
E = δβ1SI − σE
.
I = σE + (1 − k)qQ − (γ + α)I
.
R = γI
S(t) + Q(t) + E(t) + I(t) + R(t) + D(t) = 1

(1)

where β1, β, σ, and γ quantify the transmission rate to the susceptible status, contact rate
with the infected status, diagnosis rate, and recovery rate, respectively. Additionally, k
represents the fraction of people whose quarantine period was longer than incubation
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period in the quarantine compartment; q represents the rate of diagnosis during quaran-
tine; δ = (1 − ϕintra)

∨
(1 − ϕinter) represents global and local interventions with the OR

operator
∨

; ϕintra and ϕinter are the strength of local and global interventions, respectively.
δ = 1 − ϕintra if node i and node j are in the same region and local interventions are
imposed, δ = 1 − ϕinter otherwise.

In this paper, we study the epidemic spreading on undirected and unweighted net-
works, denoted by G(V, E), where V and E represent the set of nodes and edges, respec-
tively [49–52]. To model the community structure, we use the traditional LFR benchmark
network [53], which explains the real-world heterogeneity of node degree and community
size. The main parameters of LFR benchmark network are as shown in Table 1.

Table 1. Parameters of the LFR benchmark network.

Parameter Meaning Value

N Number of nodes in the created graph 2000
k Desired average degree of nodes in the created graph 15

maxk Maximum degree of nodes in the created graph 50
minc Minimum size of communities in the graph 40
maxc Maximum size of communities in the graph 70

µ Fraction of intra-regional edges incident to each node 0.18

We illustrate global and local interventions in Figure 2. Specifically, the disease easily
spreads throughout the whole network without any intervention. With local interventions
only such as school closure or local travel restrictions, the disease only spreads among
different regions but not within individual regions. Global interventions, on the other hand,
efficiently prevents the epidemic spreading among regions.
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Figure 2. The schematic of the travel restriction of multi-regional-SQEIR model. The solid lines
represent relationships between nodes. The dashed-dotted lines represent the regions. The red nodes
represent the infected while the white nodes represent the susceptible.

3. Results
3.1. The Effectiveness of Global and Local Interventions

The first question we ask is, are global and local interventions effective in inhibiting the
spread of virus? To this end, we compare the epidemic spreading under the conditions of
no travel restriction (the Null model) with the one under both global and local interventions.
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We set the initial fraction of infected individuals be ρ = 0.001 (I(0) ≈ 2). The network ini-
tialization and experimental details are in the Supplementary Materials. We find in Figure 3
that implementing global and local interventions has remarkable effects. Specifically, by
imposing strict local and global travel restrictions, the proportion of susceptible individuals
has a slower decay rate, and the peak of the infected individuals are substantially lower
than the Null model. Note that the transmission process of susceptible individuals under
travel restrictions show multiple peaks due to the quarantine compartment Q, which is
consistent with the current real-world scenarios [43,51,54]. In addition, the withdrawal of
the peak of the infected under full interventions is also consistent with prior studies [31,32].
Finally, statistical analysis shows that imposing global and local interventions can signif-
icantly reduce the peak of infected individuals (Figure 3b, p-value = 0.041) by less than
one sixth of Null model, and increase the fraction of susceptible individuals (Figure 3b,
p-value < 10−6) by more than 30%. The effectiveness of such interventions prompts us to
ask a further question: Are local interventions more effective than global ones, or the other
way round?
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Figure 3. The results of the susceptible and the infected under no travel restrictions and under both local and global
restrictions in the multi-regional-SQEIR model. In (a), the dashed-dotted lines represent simulations results with no travel
restriction, the solid lines represent with both travel restrictions, the red lines represent the fraction of infected individuals,
the blue lines represent the fraction of susceptible individuals. In (b), the steady state results of the susceptible and the
peak results of the infected, the red bar represent the peak of infected individuals, the blue bar represent the steady state of
susceptible individuals. (a) The transmission processes. (b) The steady and peak results.

3.2. The Global and Local Interventions

To answer this question, we study the effect of intensity ϕ and starting time τ of global
and local interventions on epidemic spreading. Figure 4 shows the fraction of susceptible
individuals when the simulation reaches the steady state. First, we find the proportion of
susceptible individual increases as the intervention intensity, demonstrating the effective-
ness of such strategy. By comparing Figure 4a with Figure 4b, we find the change rate of
the susceptible individual fraction as a function of global and local intervention intensity
show substantially different patterns. Specifically, when the local intervention intensity
increases, the proportion of susceptible individuals gradually increases from 0.2 to 1, while
the same quantity shows abrupt increase as a function of global intervention intensity. In
order to carry out further quantitative analysis, we perform a nonlinear fit using a function
form as follows:

y =
C1

1 + (x/x0)
a + C2, (2)

where the parameter a represents the tendency of the dependent variable to change. We find
the average effect of local intervention intensity is a = 8.00 (Figure 4a), which is substantially
larger than global intervention intensity (a = 3.93, Figure 4b). The result shows that the
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proportion of susceptible individuals changes faster under local interventions, which
indicates that local interventions are more effective. Finally, to further quantify the average
effect of the different travel restrictions intensities, we use a linear regression, finding
the average slope in Figure 4a,b is 0.07 and 0.04, respectively. Specifically, when local
intervention intensity increases by 10%, the final survival proportion increases by 7%. On
the other hand, the same quantity only increases by 4% when global intervention intensity
increases by 10%. Note that strong global interventions are effective only if there is little
local intervention.
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and adjust ϕintra.

Next, we study the effects of the starting time of such interventions on epidemic
spreading (Figure 5). Intuitively, early local interventions yield a higher proportion of
susceptible individuals. Moreover, nonlinear fitting shows that early local interventions
play a more effective role in virus transmission than early global interventions. Specifically,
Figure 5a shows that no matter how late the global intervention, early local interventions
always yield high fraction of susceptible individuals. On the other hand, the final suscepti-
ble individuals reach less than 80% even if later local interventions are imposed (Figure 5b).
We then use similar non-linear form to fit the curve, finding that the average effect of
local intervention intensity is a = 4.52 (Figure 5a), which is larger than global intervention
intensity (a = 4.15, Figure 5b).
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3.3. The Incubation Period and Interventions

The main determinant of whether a continuous outbreak of an infectious disease
can be classified as an ongoing epidemic is the rate of transmission of the disease. The
incubation period Et of the disease is closely related to the transmission speed of the disease,
which is an important basis for the prevention of infectious diseases. Here we ask, how can
we intervene infectious diseases with different incubation periods effectively? To answer
this question, we study the impact of different of incubation periods on epidemic spreading.

Figure 6 shows the effect of intervention intensity ϕ on epidemic spreading. Overall,
the longer the incubation period, the easier it is for intervention to suppress the spread
of epidemics. This shows that for epidemics with a short incubation period, only strong
intervention can inhibit the spread of the virus, otherwise a global pandemic will break
out. Moreover, there is an obvious transition line (S ≈ 0.8), below which infectious diseases
erupt out of control. And as the incubation period grows, the dividing line gradually
moves to the lower left, which also shows that the intensity that can suppress the spread
of epidemics is inversely proportional to the length of the incubation period. Finally,
strong intervention affects economic development. When resources are limited, different
interventions based on the characteristics of infectious diseases can ensure the Pareto
optimality to the maximum.
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Figure 7 shows the impact of the start time of intervention τ during different incubation
periods on the spread of the epidemic. First, we find similar conclusions as above, that is,
the shorter the incubation period, the more it is necessary to start intervention as soon as
possible. In addition, Figure 7 also has a similar transition line (S ≈ 0.8) and a clear and
stable inflection point, that is, the effect of intervention rapidly deteriorates when ϕintra and
ϕinter are about 8–10 days later, the intervention effect rapidly deteriorates. This shows that
infectious diseases in different incubation periods have similar intervention date critical
points, which are not easy to change with changes in incubation periods. Finally, rapid
intervention requires huge resources to support. Timely intervention when resources are
abundant can effectively curb the outbreak of infectious diseases. When resources are
limited, there is a Pareto optimal solution according to the specific conditions of social
resources, which can most economically and effectively suppress a full-scale outbreak of
infectious diseases.
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3.4. Initial Distribution of the Infected Individual

Anecdotal evidence shows pandemic often exhibits local outbreaks within a city or a
community rather than random outbreaks. Does such initial infected distribution affect
the results? Which intervention strategy is effective under different conditions? To answer
these questions, we study the impact of the initial distributions of infected individuals on
epidemic spreading. We set initial infected individual density to be ρ = 0.025 (I(0) ≈ 50
in the LFR networks). The network initialization and experimental details are in the
Supplementary Materials. The initial infected distribution is the random distribution and
the regional distribution. The regional distribution refers to the distribution of the infected
nodes in a same region while the random distribution means that the infected nodes are
randomly distributed throughout the entire network.

In this part, we study the effect of intervention intensity ϕ and starting time τ on
virus transmission under different initial distributions. Figure 8 shows the effect of travel
restriction intensity ϕ. Overall, strong local intervention intensity yields a high proportion
of susceptible individuals (red area on the right side of Figure 8), indicating that local
intervention strategy is effective for both distributions. While a global intervention strategy
is more effective in suppressing the transmission of the epidemic under the regional
distribution. To further discuss the effects of global and local interventions under different
scenarios, we performed a multiple linear regression, where the dependent variable is
the fraction of susceptible individuals and independent variables are the intensity of
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local and global intervention strategies. We find that the coefficients of local and global
intervention strategy of random distribution are respectively 0.7063 and 0.3196, and of
regional distribution are 0.6639 and 0.4281. The local intervention strategy shows consistent
higher coefficient, which suggests that local intervention strategy in general has a more
important role than global intervention strategy in both distributions. Moreover, global
intervention strategy is necessary when the initial infected individuals are in the same
region, as high global intervention intensity effectively inhibits the spread of the virus.
Regression results also suggest similar conclusion as the coefficient of global intervention
strategy increases substantially. Figure 9 shows the effect of intervention starting time on the
epidemic spreading under different initial distributions, and we find similar conclusions.
Specifically, regression coefficients of local and global intervention strategy under the
random initial condition are −0.0220 and −0.0133, respectively. The coefficients under
local initial condition are −0.0239 and −0.0183.
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4. Conclusions

This paper developed a new model that contains “quarantine status” to study the
effect of global and local interventions on epidemic spreading. Our findings that such
interventions can effectively reduce the transmission of pandemic are consistent with
previous studies [28–36]. What’s more, we studied the relationship between different incu-
bation periods and intervention measures, finding that early implementation of rigorous
intervention significantly reduced the scale of the epidemic, and there is a Pareto optimal
in the intensity and time of intervention when resources were limited. Moreover, we
systematically compare the efficiency of global and local interventions, finding that intense
and earlier implementation of local interventions could notably reduce the magnitude of
the outbreak. Finally, under the regional initial condition that is similar to real-world cases,
combining local and global interventions reduces the magnitude and delays the peak of
the infected individuals, but at the same time failure to implement such strategies would
have accelerated the spread of the virus.

Our results suggest several key points. First, our simulation results support and
validate the idea that global and local interventions such as travel restrictions and school/
workplace closure have significantly reduced the epidemic’s spreading. Second, the local
and global interventions have different roles. Global interventions have substantially
reduced population movements between different regions/countries (for example, coun-
tries have adopted measures for ships/flights/trains, and people’s entry), while local
interventions have reduced contacts between people in the same region (for example,
lockdowns, prohibit large-scale gatherings, close entertainment venues, advise people to
reduce going out, etc.). By comparing these two strategies, we find local interventions are
systematically more important than global ones. What’s more, early implementation of
rigorous intervention significantly reduced the scale of the epidemic under ideal conditions.
However, when resources are limited, scientific and reasonable interventions based on the
characteristics of infectious diseases according to the specific conditions of social resources,
which can most economically and effectively suppress a full-scale outbreak of infectious
diseases. Finally, our simulation results show that when the virus initially presented a
random distribution, although global intervention strategies had a certain effect on reduc-
ing the virus in the early stages of transmission, local interventions were more effective
in comparison. Although global intervention strategies also played an equally important
role, local intervention strategies were more effective in suppressing the spread of the
epidemic under regional distribution. This further demonstrates that in the early stage of
the epidemic, it is important to timely implement inter-regional travel restriction such as
city lockdown, border controls, etc. During the spread of the epidemic, the importance
of inter-regional travel restriction, such as home isolation, social distance, etc., is more
important for epidemic prevention and control.

Our work is not without limitations. First, we do not consider social and economic
cost of such interventions in the model. In fact, travel restrictions carry a significant
social/economic cost, which limits the duration of restrictions and affects the actual imple-
mentation. Second, our model parameters are static, which may not be true in real-world
cases. For example, the cure rate (mortality rate) of infected individuals may increase
(decrease) with time, but in this model, it is set as a constant.

Finally, our paper is a guideline for such global and local interventions. The effective-
ness of different interventions varied, while these interventions that were used to contain
the outbreak in various countries appear to be effective. According to many situations,
deployment and adjustment of interventions are made to maximize the benefits of these
interventions. Our work on combining local and global interventions improves our under-
standing of the impact of global and local interventions on pandemic, and will provide a
reference for global response.
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