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Abstract: The prevalence of allergic diseases is regarded as one of the key challenges in health
worldwide. Although the precise mechanisms underlying this rapid increase in prevalence are
unknown, emerging evidence suggests that genetic and environmental factors play a significant
role. The immune system, microbiota, viruses, and bacteria have all been linked to the onset of
allergy disorders in recent years. Avoiding allergen exposure is the best treatment option; however,
steroids, antihistamines, and other symptom-relieving drugs are also used. Allergen bioinformatics
encompasses both computational tools/methods and allergen-related data resources for managing,
archiving, and analyzing allergological data. This study highlights allergy-promoting mechanisms,
algorithms, and concepts in allergen bioinformatics, as well as major areas for future research in the
field of allergology.
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1. Introduction

Allergies are chronic, inflammatory disorders with aberrant immune reactions to
certain environmental chemicals, which are called allergens. A number of proteins from
distinct origins can behave as allergens responsible for allergic reactions from different
environments [1]. Allergy symptoms range from miserable to life-threatening reaction
danger. The allergic reaction develops when the immune system is exposed to a relatively
harmful antigen, according to renowned allergy experts [2]. Allergies include a wide
variety of reactions. Atopy, on the other hand, is a genetic predisposition to diseases in
which immunoglobulin (IgE) antibodies are produced in response to even minor exposure
to environmental triggers that do not bother most people. Therefore, every atopic reaction
is an allergy [3]. A variety of chemical allergens (e.g., dyes, creams, fragrances in the hair,
and skincare products), food allergens (e.g., genetically modified foods, tree nuts, peanuts,
and eggs), and aeroallergens (e.g., dust mites, spores, pollens) can cause allergic symptoms
such as skin reactions, anaphylaxis allergic rhinitis, and asthma [4–6].

Clemens von Pirquet, a Viennese doctor, coined the term “allergy” in 1906 after
observing the hypersensitivity of his patients to typically harmless substances, such as
specific foods, pollen, or dust [7,8]. Previously, allergies were used to describe a wide
range of inappropriate inflammatory hyper-immune sensitive reactions. An excessive
activation of specific immune system cells that induce inflammation was thought to be the
root of the majority of cases. An allergic IgE mediated mechanism was later discovered
to disproportionately activate specific immune system cells and to release inflammatory
mediators [8]. Philip Gell and Robin Coombs proposed a new categorization system in
1963 that included immunological components and the immune process in order to identify
reactions of type I to IV hypersensitivity [9,10]. Acute IgE-mediated type I hypersensitivity
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was referred to as “allergy” in this classification system. This features the rapid onset
of hypersensitivity or allergy symptoms and develops reactions within less than 20 min
after allergic exposure. Isolation and a description of the significance of IgE were the key
findings of the allergy mechanism [11,12]. Kimishige Ishizaka and his colleagues originally
found out in 1960 that the antibody class IgE mediates type I allergic hypersensitivity.
The IgE, also known as regenic antibody or allergic antibody, was the key immunological
component that might cause atopy or allergy in immune-compromised people [12].

This article will provide an overview of the risk factors and treatment for allergy
disorders, as well as the allergy-promoting mechanism of viruses and bacteria and the role
of allergen bioinformatics approaches in overcoming this problem.

2. Signs and Symptoms

Allergens are protein molecules found in various forms in a variety of substances. Mul-
tiple organ systems are affected by allergens, including the circulatory, cardiac, digestive,
and respiratory systems. Allergens can produce edema, cutaneous reactions, hypotension,
bronchoconstriction, death, and coma depending on the sensitization rate and severity. The
sudden, life-threatening, and extreme hyper-immune response is known as anaphylaxis
and can cause death if not treated. Numerous allergenic compounds, such as latex, can
cause skin rashes and irritations, resulting in angioedema contact and dermatitis. Allergens
vary in nature and source, causing moderate to severe systemic and cutaneous symptoms
depending on the exposure mechanism and route of sensitization. These can be inhaled,
ingested, or exposed through skin contact. Many pollen and dust allergens are microscopic
airborne particles [13]. These are easily inhaled and cause symptoms in organs exposed to
the allergen, such as the nose, lungs, and eyes. Mucosal irritation, a runny nose, and sneez-
ing are the most common symptoms of allergic rhinitis (hay fever). Swelling, irritation,
and redness in the eyes are all possible side effects. Allergy particles inhaled into the lungs
can cause bronchial hyper responsiveness. Particular airborne allergens can be inhaled in
the lungs and induce asthmatic symptoms. Coughing, bronchoconstriction, and sneezing
are caused by the narrowing of the airways. The increased mucus production restricts
airflow to the lungs and thickens the airways, causing a shortness of breath (bronchial
hyperresponsiveness, wheezing, and dyspnea). Allergic reactions can also be triggered by
the ingestion of medications and food, allergen contact, drug administration, and insect
bites [14]. Food and contact allergies symptoms include hives, itchy and swollen skin,
edema, vomiting, gastrointestinal discomfort, and diarrhea. Food allergies rarely result
in rhinitis or respiratory (asthmatic) reactions [15]. Insect bites, drugs, medicines, and
insect contact with venom lead to systemic allergic responses affecting several organs
(Figure 1) [16].

3. Epidemiology

Globally, the prevalence of allergic diseases is rising rapidly in both developing and
developed countries. Some studies demonstrate that, in developed countries, allergy
disorders are significantly more prevalent compared to developing countries [17,18]. The
prevalence of allergies or allergic diseases is determined by several factors that determine
the population’s susceptibility to developing atopic conditions. The basis for allergy
incidence in individuals is a mainly genetic and environmental predisposition. A total of
8–10% of the global population suffer from one or more allergic diseases, ranging from
mild rhinitis to severe anaphylaxis or asthma [18]. The prevalence and causes of these
allergies are summarized in Table 1.
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Table 1. Symptoms, causes, and prevalence of different allergy types.

Type of Allergy Symptoms Prevalence Affected Organ Causes Reference

Allergic rhinatisis

Sneezing, itchy, watery,
and red eyes, stuffy or
runny nose, swelling

around the eyes.

Affects 10–30% of
the population

worldwide
Nose

Genetic and
environmental

factors
[19]

Asthma
Wheezing, coughing,

shortness of breath, and
chest tightness

Affects 3 to 9% of
the population

worldwide
Airways of lungs

Genetic and
environmental

factors
[20]

Food allergy

Itchiness, vomiting,
swelling of the tongue,

hives, diarrhea, low
blood pressure, trouble

breathing

Affects 8% of the
population
worldwide

Skin, respiratory
system,

gastrointestinal
tract

Immune response
to food [21]

Skin allergy

Rash, itching, swelling,
redness, cracked skin,

flaking or scaling of skin,
raised bumps

Worldwide,
lifetime prevalence

of above 20%
Skin

Latex, food, drugs,
water, sunlight,

nickel, chemicals,
soap, poison oak

or poison ivy

[22]

Drug allergy

Itching, rash, fever,
facial swelling, hives,
shortness of breath,
cardiac symptoms

Affects 10% of the
population
worldwide

Nose, lungs, throat,
ear, lining of the

stomach, and skin

Reactions to
medications [23]

Insect allergy

Itching, pain, and
swelling and appearance

of redness at the
sting/bite or

surrounding affected
areas

Many allergic
severe cases have
been documented
with insect bites

worldwide;
however, there has
been no systemic

report.

Skin, eyes, throat,
tongue Insects bite or sting [24]

Anaphylaxis

Itchy rash, numbness,
throat swelling,

lightheadedness,
shortness of breath

Affects 0.05–2% of
the population

worldwide

Skin, nose, throat,
lungs,

gastrointestinal
tract

Foods, insects
bites, medications [25]

4. Causes and Risk Factors of Allergy

Allergens, which can be found in a variety of environments, were found to be
the causative agents for allergy or hypersensitivity reactions. Recognizing allergy risk
factors is critical for identifying modifiable factors and individuals who may benefit from
preventive measures. Risk factors can be primary, affecting the atopic disease incidence,
or secondary, affecting allergic sensitization or triggering symptoms in someone already
sensitized. Allergy risk factors are divided into two categories: host and environmental
(Figure 1) [26].

4.1. Host Factors

Race, sex, heredity, and age are the host characteristics that influence the allergy risk,
with heredity being the most important. Host factors are not currently modifiable.

4.1.1. Race

Racial disparities in the occurrence of hay fever and asthma are difficult to explain
because it is difficult to separate environmental impacts and changes produced by mi-
gration from racial factors. Black people have higher levels of IgE than Caucasians [27].
There have been reports of racial differences in the outcomes of allergic diseases, with
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African Americans suffering disproportionately more than white people [28,29]. Fish and
shellfish allergies and a higher risk of wheat allergy are significantly more prevalent in
black children than white children. The risk of deadly anaphylaxis for black children is
two to three times more than that of white children [30].

4.1.2. Heredity

An allergic condition can be inherited; the development of allergic diseases has a
strong genetic basis. A total of 70% of homozygous twins and 40% of non-identical twins
reported similar allergy problems. Allergic people have been observed to have children
with comparable allergic conditions and serious symptoms [31]. Immune sensitivity is
more prevalent in allergic parents than non-allergic parents. The most prevalent allergy
diseases have been discovered to be hereditary. The likelihood of developing allergies
seems to be genetic and associated with a malfunction in the immune system. A total of
60–80% of biparental allergic children, 30–50% of single parental allergic children, and 12%
of children with no allergic family history will develop allergic disease [32,33].

4.1.3. Sex

Atopy is predominant among boys rather than girls. This sex difference can be
explained by a higher sensitization rate in men compared to women for cat epithelium,
grass pollen, and house dust mite. This may also explain why boys have a higher chance
of developing asthma. Although this gender disparity diminishes with age, most authors
report that men have a higher prevalence of specific IgE antibodies, skin test positivity,
and higher total IgE levels than women. However, for several atopic disorders, at least for
asthma, the prevalence of disease appears to reverse in young adulthood [34,35].

4.1.4. Age

Age affects the likelihood of allergic sensitization and atopic disease. Allergic sensi-
tivity is high in children, especially children with an atopic history. IgE levels in infancy
are at maximum and reduce quickly between 10 and 30 years of age; following that, the
decrease slows down progressively [36]. Asthma is more prevalent in children below
ten [37], and hay fever is most common in young adults and children [38]. Eczema is a
childhood disease that begins before the age of five in 87% of adult eczema patients and
has frequent remission before adulthood [39]. The prevalence of gastrointestinal allergy
disease is higher in toddlers and infants [40].

4.2. Environmental Factors

Some environmental allergens are modifiable and have been the target of preventive
measures. Immune modulation occurs as a result of environmental changes, which favors
allergy disease development in susceptible populations. Significant environmental factors
influence immune sensitization, resulting in atopy [41].

4.2.1. Passive Smoking

There is evidence that passive smoking raises serum total IgE levels and increases
the risk of allergic diseases, such as allergic rhinitis, asthma, and atopic dermatitis. Pas-
sive smoking is undeniably a significant asthma risk factor [41]. The associated allergy
conditions with smoking exposure have been evaluated in several studies. The results
were contradictory and alternated among the protection [42,43] and negative effects of
smoking [44,45] in every allergic condition; however, some studies did not discover any
effects [46,47].
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4.2.2. Pollution

Human, animal, and epidemiological studies all indicate that air pollutants play a
significant role in the aetiology of allergic diseases, such as asthma, in terms of exacerbation
and development. This involves gaseous elements, such as particulate matter (PM), ozone
(O3), and nitrogen dioxide (NO2), produced by industry and automobiles [48]. NO2
can significantly raise the allergic response to inhaled allergens, according to asthmatic
controlled-exposure studies [49]. O3 exposure has also been linked to an increase in
worsening symptoms, respiratory infections, hospital admissions, and the need for rescue
medication, peak flow rate reductions, and asthma attacks [50–53]. Gauderman et al.
observed a greater chance of developing asthma for children in high O3 areas [54], while
Ackermann-Liebrich et al. documented the lifelong history of physician-diagnosed asthma
as a result of outdoor residential NO2 levels [55]. Many researchers have looked into the
relationship between airborne traffic-related pollutants and asthma in metropolitan regions.
Asthmatic children in Mexico City are highly correlated with respiratory symptoms and
traffic-related air pollution [53]. Three birth cohorts’ studies were carried out by children in
Germany, the Netherlands, and Sweden until the age of four or six and suggest a favorable
link between medically diagnosed asthma and traffic pollution [3,56,57].

4.2.3. Dietary Habits

It is well known that, in addition to exposure to allergens and poor hygiene habits,
environmental pollution and tobacco smoke, being overweight, having a low-quality diet,
obesity, and a high caloric intake in adolescents and children are important environmental
factors that are responsible for developing allergies [58,59]. The majority of kids with
respiratory allergies, particularly asthmatics, reported poor eating behaviors, such as eating
and snacking before sleep. A reduced intake of vegetables and fruit with anti-inflammatory
and antioxidant properties is likely to adversely affect the prevalence/management of
asthma [60]. Results from cross-sectional [61–63] and case-control [60,64] studies indicate
that fast food consumption is significantly associated with allergic rhinitis (pollen fever)
and asthma. According to Wang et al., the proportion of processed foods consumed is
related to the severity and frequency of asthma attacks [65]. Diets high in vegetables,
cereals, and starch have been linked to a lower risk of allergic rhino conjunctivitis [66]
and asthma [67]. Evidence reveals that high-fat diets and foods are frequently associated
with rhinitis [68,69], asthma [63,67,70], respiratory health [71], and allergies, though some
studies have not found these associations [72].

4.2.4. Infections

Bronchial asthma and allergic sensitization are linked to respiratory infections, partic-
ularly viral infections. Childhood allergic sensitization, followed by wheezing respiratory
tract illnesses caused by respiratory pathogen infections, appears to be reproducible and
consistent among the various environmental risk factors implicated in the development
of childhood asthma [73–75]. Preschool wheezing illnesses caused by both viral [76–78]
and bacterial [79–81] pathogens are also linked to an increased asthma risk and recurrent
wheezing. The role of bacterial and viral infections in the development of allergic diseases
is discussed later.
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Figure 1. Symptoms and risk factors of allergic diseases.

5. Mechanism of Allergy and Immune System

The role of the immune system is to protect the body against invading pathogens
causing different diseases. When the immune system misidentifies a harmless foreign
antigen as a pathogen, an allergic reaction occurs [82]. To protect the organism against
exaggerated stimulation signals from harmless antigens, such as environmental and self-
antigens, the immune system must be closely monitored. In genetically predisposed
individuals, an imbalance in the immune system’s regulatory mechanisms may lead to
allergic diseases or autoimmune disorders, depending on the nature of the antigen [83,84].

During an allergic reaction, the immune system must detect pathogenic stimuli and
generate a robust immune response. Specific antigen sensitization is required: naive T
and B cells identify specific sections of antigens, which are termed epitopes. First, specific
MHC (major histocompatibility complex) class II antigens synthesized on the antigen-
presenting cells (APC) surface detect allergens and deliver them to naive T lymphocytes. T
cell activation causes T helper type 2 (TH2) cells to proliferate and differentiate. Interleukin
IL-5, IL-4, and IL-13 and innate (ILC-2) lymphoid cells that can maintain and enhance
local TH2 inflammation caused by the secretion of TH2 cytokines (IL-13 and IL-5) are
the primary cytokines responsible for the allergic response [85]. These ILs act on B cells,
causing them to switch to the Ig class E (IgE). Allergen-specific IgE antibodies bind to
high-affinity IgE receptors (FcRI) on basophils and mast cells. Repeated exposure to the
allergen causes FcRI-bound IgE to crosslink, boosting the release of other mediators and
histamine that generate allergic disease symptoms. Allergen-specific cells are enlarged
and reactivated locally after 6–12 h of allergen exposure, culminating in the late phase
of an allergic reaction. Effector cells (basophils, mast cells, and eosinophils in particular)
release cytokines and inflammatory mediators, prolonging the proinflammatory response
(Figure 2). The symptoms of allergic disorders are caused by this phase, and persistent
allergen exposure causes the disease to become chronic [83,86].
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Figure 2. Allergic reaction mechanisms.

Specific antigen sensitization is required for allergic diseases development. Inflam-
matory cytokines (IL-13, IL-4, and IL-5) are produced as a result of cell expansion and
differentiation to TH2 cell subtypes. They regulate the activation and recruitment of pro-
inflammatory cells (mast cells and eosinophils) in mucosal target organs, as well as the
class switching of IgE in B cells. Allergy symptoms and inflammation are triggered by
these activations [87].

6. Allergy and Microbiota

The microbiota (intestinal microflora) are a collection of microorganisms, primarily
bacteria, that form a complex ecosystem in the human digestive tract. Microbiota are
influenced by a wide range of environmental and nutritional factors, and play a complex
role in allergic diseases. According to a recent study, gut microbiota has a substantial
impact on immune system development. The gut microbiota plays a significant role
in the formation of immune system organs and help to identify host immune response
patterns. According to research on the relationship between gut microbiota and immune
diseases, modifications in commensal bacteria can trigger immune system changes that
affect immune system maturation, oral tolerance development, and host metabolism
regulation [88,89]. Due to the fact that the immune system is regulated by the normal
intestinal ecosystem, the risk of allergy or atopy is likely to increase as the dysbiosis of the
gastrointestinal tract worsens. Dysbiosis is described as a disruption in gut homeostasis
caused by a change in the function and composition of the microbiota [90]. Numerous
studies suggest that dysbiosis intestinal, or quantitative and qualitative abnormalities in
the microflora composition, may be a factor in the pathogenesis of a variety of disorders,
including inflammatory bowel disease, necrotizing enterocolitis in newborns (NEC), celiac
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disease, irritable bowel syndrome, atopic dermatitis, allergic disorders, cancer, depression,
and others [91–93]. Many atopy and allergy patients have altered microbiota [94], as
evidenced primarily by stool microbiota analysis [95–97]. Dysbiosis has also been found
in the lower and upper respiratory tract microbiota of asthma patients [98], as well as the
skin microbiota of atopic dermatitis patients [99,100], and in the gastrointestinal tract of
food allergy sufferers [101,102].

There is mounting evidence that dysbiosis precedes the onset of allergic symptoms. A
lack of specific bacterial species from the gut microbiota among infants aged 1–3 months
was linked to a higher risk of developing a recurrent wheeze, asthma, or atopy later in life,
according to birth cohort studies [103,104]. Such changes were associated with reduced
levels or a lack of anti-inflammatory polyunsaturated fatty acids [104]. Proteobacteria,
especially Haemophilus spp., are more prevalent in asthmatic adults’ lungs than in healthy
controls, who have a higher proportion of Bacteroidetes. Furthermore, asthmatic chil-
dren have a higher abundance of Proteobacteria than healthy controls [105]. Intestinal
dysbiosis in egg-allergic children was marked by an increase in the Lachnospiraceae and
Streptococcaceae genera, as well as a decrease in the Leuconostocaceae families, when
compared to non-food-allergic controls [106]. Ege et al. compared the microbial data of
489 school-aged children from rural and urban areas in Germany and found a number of
bacteria, including Lactobacillus, Staphylococcus, and Acinetobacter, that were inversely
related to asthma and hay fever [107]. When children with allergic airway diseases were
compared to children from similar surrounding environments, such as both from urban
areas, a mild reduction in microbiota diversity was observed, and microorganisms from
the phylum Firmicutes were significantly less expressed than in healthy children [108]. A
similar pattern was observed among Swedish children. At infancy, children with asthma
have a lower diversity of gut microbes than children without asthma [109].

Breast milk provides immune factors, such as IgA antibodies, that protect against a
variety of health problems in infancy, including obesity and being overweight, necrotizing
enterocolitis, diabetes, infections, and allergic disease [110,111], as well as reducing the risk
of diseases later in life [112]. Breastfeeding, on the other hand, has been the subject of debate
in the literature regarding its ability to protect children from developing asthma and allergic
disease [113]. Epidemiological studies in the debate over whether breastfeeding can protect
against allergic disease and asthma in early childhood provide contradictory results [112].
While breastfeeding is advised for all infants, regardless of allergic history [114], with
protective effects of breastfeeding on asthma reported in young children [115,116], other
studies of children at low [117] or high risk [118,119], or adults [120], have found no
protective effects.

Dysbiosis may start even earlier, according to recent research, as meconium from
at-risk neonates displays an altered microbiota-derived metabolome and delayed gut mi-
crobial diversity, characterized principally by a lack of anti-inflammatory fecal lipids [121].
This dysbiosis is significantly linked to parental sickness, implying that maternal health
during pregnancy may have an impact on the vertical transmission of microbes that affect
early microbiota development. Changes in the intestinal microbiota composition may
induce food allergy resistance or vulnerability via a microbially responsive FOXP3+ RORt
+ Treg cell subset, which is known to be critical for food tolerance maintenance [122].

Mouse studies, particularly experiments with germ-free mice, provide experimen-
tal evidence for the association of microbiomes with allergy development. Germ-free
mice have an adaptive immune response profile reprogrammed. They are especially
predisposed to TH2 cell development [123,124]. Germ-free mice may be reconstructed
by specific microbial strains and allergy protection is induced by Clostridia and other
allergy-protective-related species through IgA production, Treg cell induction, and other
immunologic effects [125,126].

It was recently demonstrated that germ-free mice colonized with healthy infants
commensals, but not colonized with commensals from cow’s milk allergic infants, were
protected against anaphylactic responses to cow’s milk allergens. The Clostridia member,
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Anaerostipes caccae, was further found in this model as protection against allergic response
to food [127]. In another food allergy model, colonization with seven species of Bacteroidales
consortium or a Clostridiales consortium suppressed food allergy in the mouse model [128].
Further studies revealed that commensals activated the MyD88–RORt pathway, resulting
in the development of Treg cells [128]. These significant experiments aid in a better under-
standing of the functional significance of dysbiosis in patients with food allergies [129].

Hence, we can conclude that environmental and dietary changes cause dysbiosis in the
gut, skin, and/or lung microbiome, resulting in quantitative and qualitative alterations in
the microbiota that directly alter immunological pathways implicated in allergic disorders
prevention. More research is needed, however, to determine the cause-and-effect link
between the microbiota and asthma/allergy clinical phenotypes.

7. Viral Infections in Allergy

Viral infections can have a variety of opposing effects on allergy and asthma devel-
opment; depending on the circumstances, viruses can either protect against or trigger
allergic disorders. During the first year of life, the immune system and respiratory tract
mature quickly, and postnatal lung development is influenced by and affects viral infec-
tion responses. The type of virus, age, intensity, timing, and location of the infection, as
well as interactions with pollutants or allergens, have all been linked to allergic diseases
development, particularly asthma, regarding viral infections [130]. By binding to certain
receptors on the airway epithelial cells surface, viruses trigger antiviral and inflammatory
responses, resulting in the innate immune responses activation, the recruitment of mononu-
clear and neutrophil cells to the area, and the release of mediators, such as chemokines
and cytokines [130,131]. Such events can alter immunological and epithelial responses to a
hyperactive state [132].

Viral respiratory tract infections and allergens can interact in a variety of ways, in-
cluding through a flawed epithelial barrier function. Viral respiratory tract infections are
related to an impaired innate immunity, suppressed antioxidant properties, and disrupted
tight junctions, which may result in a hypersensitivity to allergens and infections [133].
Asthma development has also been linked to viral infections. Asthma onset in childhood
and asthma exacerbations in adults and older children are linked to viral respiratory tract
infections. The respiratory viruses linked to asthma include those that cause influenza-like
illnesses, the common cold, and bronchiolitis, as well as wheeze in children. In school-aged
children and adults, respiratory viruses represent approximately 85% of exacerbations
of asthma [134,135]. The respiratory syncytial virus (RSV), human rhinoviruses, and in-
fluenza viruses are among the viruses linked to asthma exacerbation. Not only can RSV
infections induce asthma but, according to an epidemiological study, they can also lead to
allergic sensitization and asthma development [136]. Parainfluenza viruses, coronaviruses,
adenoviruses, and the newly discovered bocaviruses and metapneumoviruses are also
involved, but they are less common [137,138]. Although it is unclear how viruses influence
asthma onset, various studies have been carried out about the host response to respiratory
viruses and how viruses can induce the host response or how subsequent allergen exposure
and sensitization affect the host response.

7.1. Allergy Promoting Mechanism of Viruses

Although the mechanisms underlying the association of asthma and viral respiratory
tract infection are not completely understood, recent reports indicate that epithelial cell
viral infection could produce cytokines, such as IL-33 and IL-25, that interact with allergic
inflammation, inducing both antigen-specific and innate TH2 cell–related pathways, and
resulting in mucin production, increased TH2 related inflammation, enhanced IL-13, IL-4,
and IL-5, and eosinophilia [139,140]. In patients with atopic asthma, the TH2 cytokines
(IL-13, IL-5, and IL-4,) are well known as effector molecules [134]. The effects of viruses and
allergens on immune and airway epithelial cells, as well as the elicitation of TH2 responses,
are summarized in Figure 3.
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Figure 3. Overview of viral infection and synergistic or additive effects of allergen exposure causing IgE/TH2 and proTH2
inflammation. IL-25R: IL-25 receptor; GRO-a: melanoma growth stimulating activity-a; IL-13R: IL-13 receptor; IL-33R:IL-33
receptor; ENA-78: epithelial-derived neutrophil-activating protein 78; IL-4R: IL-4 receptor.

Viral infection disrupts the epithelial barrier, resulting in the thymic stromal lym-
phopoietin and pro-TH2 cytokines IL-25 and IL-33. These cytokines act on TH2 cells, DCs,
and ILC2s, causing the TH2 cytokines IL-13, IL-5, and IL-4 to be produced. These cytokines
are important in asthma: IL-13 and IL-4 promote antibody class switching to IgE in B cells,
IL-13 can also act on smooth airway muscle cells, causing bronchoconstriction and aiding
in the remodeling of airways, and IL-5 stimulates the production of eosinophil. IL-4, IL-13,
and virus actions on airway epithelial cells can elicit eotaxins, which attract eosinophils,
as well as activation-regulated chemokine (TARC), the chemokines macrophage-derived
chemokine (MDC), and thymus, which attract TH2 cells into the airway. IgE cross-linkage
with allergens in mast cells releases leukotrienes, histamine, and the prostaglandins PGE2
and PGD2, which promotes bronchoconstriction. PGD2 activates ILC2s, TH2 cells, and ba-
sophils by binding to CRTH2, a chemoattractant receptor-homologous molecule expressed
on TH2 cells. Oxidative stress can also be caused by viruses, and the formation of pathogen-
associated molecular patterns (PAMP) and damage-associated molecular patterns (DAMP)
can lead to pro-inflammatory cytokines, such as IL-6, TNF, and IL-1a/b. Propagative
cytokines are generated. This usually results in macrophage activation and neutrophilic
inflammation. Allergen-induced IL-1a can also stimulate the pro-TH2 response, resulting
in ILC2 activation and IL-33 production [141].

7.2. Allergy and COVID-19

COVID-19, caused by SARS-CoV-2 [142,143], shares many symptoms with allergic
diseases, such as coughing, olfactory, shortness of breath, nasal congestion, and taste dys-
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function [144,145]. Some allergic disorders, such as chronic rhinosinusitis with nasal polyps
(CRSwNP), allergic rhinitis, and asthma, can simulate COVID-19 symptoms: asthmatic
patients experience cough and dyspnea, whereas allergic rhinitis and CRSwNP patients ex-
perience runny noses and headaches [146]. Multiple pathophysiological processes indicate
that allergies may increase the risk of SARS-CoV-2 infection [141]. The respiratory virus
initiates a local inflammatory cascade, resulting in cytokine production, which can aggra-
vate asthma and allergy symptoms [139]. Besides, allergic patients have impaired innate
interferon secretion, increasing their susceptibility to respiratory viral infections [141]. Be-
sides, this pandemic began in the spring, when seasonal allergy sufferers are most likely to
experience some of the same symptoms [147]. Chronic airways diseases and the COVID-19
pandemic are both associated with anxiety, which should be considered when interpreting
subjective symptoms of both conditions. COVID-19 patients have been documented to
have skin symptoms and signs of eczema and urticaria that are similar to acute urticaria
or medication reactions, creating a diagnostic difficulty for allergists and dermatologists.
For this reason, it is important to pay attention to COVID-19-specific symptoms, such as
mainly fever, as well as excessive fatigue and a diminished sense of taste or smell, in order
to make an accurate diagnosis [146,147].

Adults and children with allergies are more prone to have physical and mental health
concerns during the COVID-19 pandemic. COVID-19 and allergens are independently
associated with mental health problems [148–150]. Gonzalez-Diaz, et al. reported that
patients with allergic diseases were more affected psychologically by the COVID-19 quar-
antine than those without allergies, as allergic individuals had a higher risk of depression
symptoms [151]. Allergic patients were more likely to engage in various COVID-19 pre-
ventive measures, including maintaining a six feet social distance, avoiding crowded or
public places, wearing a face mask, postponing or canceling activities, avoiding contact
with high-risk people, and sanitizing or washing their hands [152]. A greater adherence to
COVID-19 preventative activities showed the significant impact of the pandemic on the
mental health of this group, because social isolation can cause hopelessness and depres-
sion [153]. Interactions between COVID-19 and allergy-related inflammatory psychiatric
disorders, such as anxiety, post-traumatic stress disorder (PTSD), and depression, have
been reported [154]. The stress of the COVID-19 pandemic, therefore, may increase the
psychiatric reaction in those who have preexisting allergic conditions.

The COVID-19 epidemic has been a burden for allergy professionals. Since COVID-19
shares similar allergy disease symptoms, a pandemic may cause a problem in prioritizing
allergic people, face-to-face assessment, and further concerns about the potential diagnos-
tics of COVID-19. Face-to-face and hospital visits should be kept to a minimum for allergic
disease patients, and more attention and promotion should be given to social distancing,
hand disinfection, patient consultation adaptations, and sufficient PPE for health care
employees. Teleconsultation for allergic patients during COVID-19 is very promising, and
telemedicine platforms can provide a trustworthy service [155,156].

8. Bacterial Infections in Allergy

Bacteria play a dual role in allergies. They mainly concern protection, although certain
species of bacteria stimulate allergic inflammation. Bacterial exposure has long been linked
to allergy prevention. For example, mycobacteria are potent inducers of Th1 responses,
notably IFN-release, which counteract type 2 inflammation and elicit regulatory T cell
(Treg) responses, the primary anti-allergic immunological mechanism [87]. Mycobacterium
tuberculosis infection and vaccination with other mycobacteria or Bacillus Calmette-Guérin
reduce allergy prevalence in animals and humans [157–159]. Furthermore, there is a wealth
of evidence suggesting bacterial compounds influence the innate immune system. TLR4
and other innate pattern recognition receptors play an important role in anti-allergenic
effects [160].

In recent decades, the hygiene theory has been bolstered by the discovery of a con-
siderable decline in infectious diseases associated with a sharp increase in the frequency
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of allergy: “The decline in the incidence of infectious diseases in industrialized countries
throughout the past three decades is the major explanation for the increased prevalence of
allergy diseases in those countries” [161]. As the role of commensal microbiota in immune
regulation and inflammatory homeostasis became more apparent, this hypothesis was
later modified. Early exposure to innocuous endogenous and exogenous microorganisms
reduces allergy risk. In general, the alterations in the microbiome might affect allergy
manifestations, both in terms of their diversity and abundance [162–164]. Due to this
observation, the ability of specific commensal gut microflora species (probiotic strains) to
promote immunological tolerance, notably lactic acid bacteria, including Bifidobacteria or
Lactobacillus, is currently being examined. Several reports exist that detail the significance
of these strains in allergy disorders prevention [165–167].

On the other hand, epidemiological evidence suggests that infection or colonization
with specific bacterial species might cause or worsen allergies [163,168]. Bacteria, for
example, can aggravate asthma symptoms on their own or in combination with viruses,
such as the respiratory syncytial virus or human rhinovirus [169,170]. Studies in the
1970s and 1980s showed that bacterial colonization was linked with allergy disorders.
Atypical bacteria, such as Mycoplasma pneumonia, Chlamydia pneumoniae, and Chlamydia
trachomatis, have been associated with asthma exacerbations, lung remodeling, and an
increased incidence of wheezing episodes. These pathogens have also been found in nasal
washes, sera, and bronchoalveolar lavage fluid (BAL) from asthmatic patients [171–174].
Infection or colonization with Streptococcus pneumoniae, Staphylococcus aureus, Moraxella
catharralis, and Haemophilus influenzae, among the common human respiratory tract bacterial
inhabitants, has been linked to recurrent wheezing in children, obstructive pulmonary
disease, and the onset and exacerbation of asthma, [169,170,175,176]. Furthermore, the
asymptomatic M. catarrhalis or S. pneumoniae colonization of newborns is linked to asthma
development and a recurrent wheeze later in life [175].

Allergy Promoting Mechanism of Bacteria

Bacteria have been found to exhibit a variety of pro-allergenic activities (non-antigen-
specific and antigen-specific). Airway epithelial cells can be infected by bacteria, causing
cell death, inflammation, and the breakdown of the epithelial barrier. Pore-forming toxins,
such as bacterial proteases and S. aureus toxins (Hla), also play a role in epithelial barrier
breakdown. Microbial invasion is facilitated by an increased epithelial permeability, which
exposes the immune system to allergens and environmental pollutants [177].

Some bacteria can cause histamine release from mast cells and human basophil leuko-
cytes via independent or IgE-dependent mechanisms [178,179]. Several studies have shown
that bacteria can cause both naive T cells to differentiate into TH2 or TH17 cells and the
release of TH2 cytokines [178,180,181].

The induction of cytokines type 2 is likely to result in a switching of the Ig class to
IgE. IgE antibodies directed against C. pneumoniae, C. trachomatis, H. influenzae, S. aureus, M.
pneumoniae, M. catharralis, or S. pneumonia have been described [171,175,181,182]. Despite
the fact that antibacterial IgE can be measured, there is evidence of allergy protection
from exposure to S. pneumonia or H. influenzae. Specific IgE antibodies were found to
be inversely linked to asthma risk in teens in diverse proteins of these microbial species.
Furthermore, they emphasize the significance of the mechanistic and epidemiological
validation of allergen prediction [183].

House dust mites (HDM) have recently been shown to be antigen carriers for bacteria
colonizing the respiratory tract, skin, or gut, such as E. coli or S. aureus. Hence, HDM could
cause or aid bacterial antigen sensitization. This may help to explain why the IgE response
to bacterial antigens is so common in skin and respiratory allergy symptoms [184].
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Hence, bacteria exert control over general allergy-inducing pathways and may become
targets for type 2 immune responses defined by IgE antibodies and specific TH2 cells [183].
Figure 4 depicts an overview of bacteria’s allergy-promoting processes.

Figure 4. Allergy inducing mechanisms of bacteria. * Eo, eosinophil; FCεR, high affinity IgE receptor; B, B cell; Bas, basophil;
TSLP, thymic stromal lymphopoietin; MC, mast cell; ILC2, innate lymphoid cell type 2; DC, dendritic cell; Th, T helper cell.

Bacteria have described a number of pro allergenic pathways. Bacterial toxins and
proteases break down the epithelial barrier, allowing for the entry of conventional allergens
and microbial invasion. This causes the release of potent immune mediators (TSLP, IL-33,
and IL-25) and local inflammation (a). This pathway helps to recruit and differentiate naive
T-cells into effector T-cells (TH17 and TH2), which leads to the release of pro-allergenic
Th2 cytokines. Type 2 cytokine secretion is also elicited by tissue-resident ILC2s (b). B
cells differentiate into IgE-secreting plasma cells after undergoing an Ig class switch (c).
IgE promotes the activation and recruitment of basophils, mast cells, and eosinophils (d).
Bacterial components can potentially cause the IgE-independent degranulation of these
effector cells, increasing allergic inflammation (e) [183].

9. Treatments

Advances in allergy research have made a significant impact on the treatment of mod-
erate to severe allergic disorders. Numerous treatments for different symptoms of allergic
disorders, as well as several drugs that effectively control and treat atopic conditions, are
available. Epinephrine shots for anaphylaxis are available and can be carried with the
patient, while anti-inflammatory and antihistamine medicines are commonly administered
to relieve symptoms in others [185,186].
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The treatment of allergic diseases in children follows a similar pattern to that of
adults. Treatment options include allergen avoidance through environmental control,
pharmacotherapy, and immunotherapy. The main goal of treatment is to control symptoms
without affecting the child’s functioning. The second, but equally important, goal is to
prevent the development of the sequelae of allergic diseases. Currently, the best approach
for a child at a high risk of developing allergies is to implement dietary and environmental
control measures early in order to reduce sensitization, and to acknowledge and treat the
signs and symptoms of allergic disease as they emerge [187–189].

Various methods of diagnosis have been created based on allergen sources, and
therapy strategies based on diagnostic methods have been developed to address allergic
reactions concerns. Some of the treatments utilized for allergic diseases are the following.

9.1. Allergen Avoidance

The primary focus of allergy treatment should always be the strict avoidance of
specific allergens that cause allergic disease. The greatest and best guideline for reducing
allergy reactions in sensitive people is to avoid allergen exposure. Food allergies and some
stinging insect allergies are treated primarily through avoidance, which can be quite helpful
if patients are well trained about preventive measures. However, it is impossible to avoid
certain allergens that travel through the air and are easily inhaled without control or notice.
Avoidance is impossible in these circumstances, and additional therapeutic procedures are
necessary to overcome difficulties [16,190].

9.2. Pharmacotherapy

Pharmacotherapy can relieve allergen-induced symptoms when allergen prevention
and tracking are impossible and allergy exposure is inevitable. Many drugs are developed
that are antagonistic to and block the actions of allergic mediators. Anti-leukotrienes
and antihistamines are two common drug targets that prevent the onset of allergic symp-
toms and inhibit the action of inflammatory mediators [185,186]. The FDA has approved
adrenaline (epinephrine), antihistamines, glucocorticosteroids, and theophylline, which
primarily act as anti-inflammatory molecules. Decongestants, mast cell stabilizers, and
eosinophil chemotoxins, along with anti-leukotrienes, such as zafirlukast (Accolate) or
montelukast (Singulair), are commonly used as drugs to monitor and prevent chronic and
acute allergic diseases.

9.3. Immunotherapy

Allergen-specific immunotherapy entails administering an increasing dose of allergens
to a patient over time to ensure immunological and clinical tolerance. Allergen injection
immunotherapy induces T cell tolerance through a variety of methods, including alteration
in secreted cytokines, decreased allergen-induced proliferation, stimulation of apoptosis,
and T regulatory cells production. This results in the reduction of inflammatory mediators
and cells in the affected tissues, production of blocking antibodies, and suppression of
IgE [191]. This sort of immune therapy has been demonstrated to be effective in studies,
and long-term use has indicated that immunotherapy can help to avoid the development
of atopy. The intravenous administration of monoclonal anti-IgE antibodies is the second
type of immunotherapy. These attach to both B-cell-associated and free IgE, signaling and
killing them [192]. Sublingual immunotherapy is a third type of therapy that is given orally
and is based on oral immune tolerance to non-pathogens, such as resident bacteria and
foods. Allergy shot therapy may become the most effective allergy treatment method in
the future. Close supervision and a long-term commitment are required in this therapy for
successful individual treatment [193].
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9.4. Ineffective and Unproven Treatments

An enzyme potentiated desensitization (EPD) experimental treatment has been tested
in some recent investigations, but no encouraging outcomes have been found. The same
method is currently used in many hypoallergenic food preparations. The treatment ap-
proach, however, was not convincing, and was not acknowledged as effective. EPD uses
allergen dilutions with beta-glucuronidase enzymes to polarize T-regulatory lymphocytes
and to change the allergen nature, which down-regulates IgE induction, favors desensitiza-
tion, and prevents allergic reactions [194].

10. Role of Bioinformatics in Allergic Diseases Management

Allergy research has progressed quickly in recent years [195]. Recent advances in pro-
teomics, analytical methods, and genomics have resulted in massive amounts of allergen-
related data. The pathophysiology of many allergy conditions based on epidemiologic,
experimental, and clinical information for allergic reactions can be related to this data.
A continuous data increase requires effective archival, data management, and data anal-
ysis. In the modern era, bioinformatics applications are used to predict allergens and
their allergenicity. Bioinformatics complements wet-lab research by providing tools for
managing this avalanche of data. Despite the fact that a large amount of biological data
is difficult to manage, specific tools and databases are available to handle data. Several
tools, databases, and servers contain a wide range of information about allergens and other
potential side effects. The goal of allergy-related databases is to make data retrieval, collec-
tion, and analysis easier. Furthermore, bioinformatics techniques can be used to organize
allergens and to identify areas that may account for common IgE binding patterns and
cross-reactivity [196]. These findings can be used to help allergy sufferers choose the best
treatment options. Hence, the discipline of allergy bioinformatics has emerged, which in-
cludes allergen-specific resources/databases, as well as computational tools/methods [197].
Many research papers on allergen bioinformatics and immunoinformatics have been pub-
lished by various groups of researchers [198,199]. For example, Zhang et al. identified
key genes and Le Chen et al. identified hub genes in a murine model in allergic rhinitis
by bioinformatics analysis [200,201]. Deocaris et al. used bioinformatics analysis in the
detection of nascent allergens in GMO and conventional rice [202]. L’Hocine et.al identi-
fied allergens from Canadian mustard varieties of Brassica juncea and Sinapis alba [203].
Chenbei et.al performed a bioinformatics analysis of the dataset to identify pathways and
potential different expressed genes (DEGs) related to childhood allergic asthma [204].

Allergen bioinformatics deals with tools/algorithms for allergenicity/allergen pre-
diction, allergenic cross-reactivity prediction, allergen databases, and allergen epitope
prediction [197].

10.1. Allergen Cross-Reactivity Prediction

Cross-reactivity has a major role in clinical and immunological allergic reactions. The
prediction of cross-reactivity in allergy was therefore considered to be significant [205].
In the majority of cases, the prediction of allergenicity is associated with the allergens
cross-reactivity prediction. This is due to the fact that the antigenic determinants that cause
allergen cross-reactivity are also responsible for allergenicity [206]. Hence, many of the
algorithms/tools designed to predict allergen/allergenicity can also predict cross-reactivity.
The criteria set by FAO/WHO experts aid in the allergen cross-reactivity identification [207].
Stadler and Stadler [208] proposed a sequence-based approach and claimed that a motif-
based strategy outperforms the WHO/FAO guidelines for cross-reactivity calculations.
AllerTool [209] is a cross-reactivity webserver based on the WHO/FAO guidelines and
amino acid sequence. It also depicts published and projected allergen cross-reactivity
patterns graphically. A sequence-based technique for determining the allergen cross-
reactivity is included in SDAP [210], a specialized allergen database. AllerHunter [211] is a
web server based on SVM that efficiently analyzes allergen cross-reactivity in proteins. A
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recently developed algorithm for an allergenicity prediction based on a fuzzy inference
system can also predict allergen cross-reactivity [212].

10.2. Allergen Databases

Significant technological advances in the fields of proteomics and genomics, as well
as considerable improvements in analytical methods, have occurred in recent years. As
a result, significant progress has been made in allergy research. Hence, the number of
identified protein allergens has been steadily increasing in recent years [213,214]. As a
result of the constant accumulation of allergen-related clinical and molecular data, efficient
data storage and management has become critical. Allergy databases are therefore very
essential resources for fundamental allergy research because they are used to archive
available knowledge about allergens [215]. Table 2 provides a summary of allergen-specific
databases.

10.3. Allergen/Allergenicity Computational Prediction

Allergens are primarily proteins found in pollens, food, and other biological entities
in the environment. As a result of the health risks associated with allergic reactions to these
proteins, it has become necessary to evaluate their potential allergenicity. Food processing
and genetic engineering methods have been frequently used in recent years to modify
the existing or new proteins. Analyzing the allergenicity of such products/proteins and
biopharmaceuticals is critical to avoid the allergenic molecule transfer. The most common
method for assessing allergenicity is computational prediction or evaluation, and a range
of bioinformatics methods/tools have been effectively used for this purpose [223]. Most
of these strategies are based on amino acid sequences and their different properties, with
only a few approaches based on structural information [224]. The list of computational
servers/tools available for the allergenicity/allergen prediction is shown in Table 3.

10.4. Allergens Epitopes Computational Prediction

Epitopes are distinguishing amino acid residuals on antigens and are significant pre-
dictors of immune responses. The identification of epitopes is considered to be a key step in
the creation of effective multi subunit vaccines, as well as efficient therapeutic and allergy
diagnostic procedures. IgE binding epitopes, also known as B cell epitopes, are proteins
that recognize IgE binding sites in allergens. They play a significant role in the interaction
between the allergen and IgE antibody. IgE-binding epitopes have distinct characteris-
tics that distinguish the antibody epitope from other epitopes. Complex allergens and
antibodies are widely used in allergen immunotherapy and aid in the understanding of
allergy phenomena. There are a large number of epitopes in databases that can be used as
a template for novel epitope predictions [229].

The antigen contains T cell epitopes; it is also known as the antigenic determinant
that interacts with the T cell through T cell receptors. Allergen T cell epitopes have been
discovered to play an important role in allergic reactions. As a result, the identification
of allergic disorders would be cured by developing new epitope-based immunotherapy,
which would allow for the production of effective vaccines [229].

Although experimental methods have proven to be effective in discovering epitopes,
their utility is restricted due to their high cost and time requirements, as well as their
incapacity to deal with large-scale epitope elucidation. Computational approaches are
therefore deemed highly useful because they are cost effective and time efficient. A
wide range of highly effective algorithms and methods for the prediction of epitopes
have been developed throughout the years. Both T cell and B cell epitopes, including
discontinuous (conformational) and sequential (linear) epitopes, are predicted using these
approaches [230,231]. Table 4 lists some of the most popular tools and servers for B cell
and T cell epitopes prediction.
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Table 2. Details of allergen-specific databases.

Database URL Maintained by Type of Data Archived Last Update Number of Aller-
gens/Haptens/Epitopes Reference

IUIS Allergen
http://www.allergen.org
(Accessed on: 19 August

2021)

World Health Organization
(WHO)

and
International Union of

Immunological Societies (IUIS)

Allergenicity, structure,
sequence

(isoforms/isoallergens)

Updated
continuously 853 [216]

Structural Database of
Allergenic Proteins

(SDAP)

https://fermi.utmb.edu
(Accessed on: 19 August

2021)

Sealy Centre for
Structural Biology,

University of Texas, USA

IgE epitopes, structure,
sequence, structural models 2013 1526 [210]

AllerBase

www.bioinfo.net.in/
AllerBase/Home.html

(Accessed on: 19 August
2021)

Bioinformatics Centre,
Savitribai Phule PuneUniversity,

India

Structure and sequence
(cross-links), IgE epitopes, IgE
cross-reactivity, experimental
evidences of allergenicity, IgE

antibody

Updated
continuously 2311 [217]

AllFam

http://www.meduniwien.
ac.at/allfam

(Accessed on: 19 August
2021)

Department of Pathophysiology
and Allergy Research, Medical
University of Vienna, Austria

Cross-link to Pfam database,
allergen family data 2011 936 [218]

Allergen Online

http://www.
allergenonline.Org

(Accessed on: 20 August
2021)

Food Allergy Research and
Resource Program (FARRP) at

the University of
Nebraska-Lincoln

Allergenicity, sequence 2016 1956 [219]

Allergen Database For
Food Safety (ADFS)

http://allergen.nihs.go.
jp/ADFS/

(Accessed on: 20 August
2021)

National Institute of Health,
Japan

IgE epitopes, sequence,
structure, small molecule

allergens
2016 2028 [220]

AllergenPro

http://nabic.rda.go.kr/
allergen

(Accessed on: 20 August
2021)

The National Agricultural
Biotechnology Information

Center
(NABIC), Korea

IgE epitopes, sequence 2015 2434 [221]

Allergome

http:
//www.allergome.org

(Accessed on: 20 August
2021)

Centre for Clinical
and Experimental
Allergology, Italy

Sequence
(isoforms/isoallergens), clinical,

cross-reactivity, structure,
epidemiologically

Updated
continuously 3075 [222]

http://www.allergen.org
https://fermi.utmb.edu
www.bioinfo.net.in/AllerBase/Home.html
www.bioinfo.net.in/AllerBase/Home.html
http://www.meduniwien.ac.at/allfam
http://www.meduniwien.ac.at/allfam
http://www.allergenonline.Org
http://www.allergenonline.Org
http://allergen.nihs.go.jp/ADFS/
http://allergen.nihs.go.jp/ADFS/
http://nabic.rda.go.kr/allergen
http://nabic.rda.go.kr/allergen
http://www.allergome.org
http://www.allergome.org
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Table 3. Tools/servers for allergen/allergenicity prediction.

Server URL Method Efficiency Reference

AlgPred
http://www.imtech.res.in/

raghava/algpred/
(Accessed on: 21 August 2021)

SVM and allergen sequence features,
epitopes, sequence motifs

Accuracy: 85%
Specificity: 88.1% [4]

AllerHunter
http://tiger.dbs.nus.edu.sg/

AllerHunter/
(Accessed on: 21 August 2021)

SVM and iterative pairwise
sequence similarity

Accuracy: 95.3%
Specificity: 96.41% [211]

PREAL
http://gmobl.sjtu.edu.cn/PREAL/

index.php
(Accessed on: 21 August 2021)

Physicochemical and biochemical
descriptors, sequence features,

subcellular locations, SVM, and
mRMR

Accuracy: 93.42% [225]

AllergenFP
http:

//ddg-pharmfac.net/AllergenFP/
(Accessed on: 21 August 2021)

Descriptor-based fingerprints of
residues, auto and cross-covariance Accuracy: 88% [226]

AllerTOP
http://www.ddg-pharmfac.net/

AllerTOP
(Accessed on: 22 August 2021)

Machine learning,
sequence based descriptors,
cross and auto -covariance,

Accuracy: 85.3%
Specificity: 88.1% [227]

AllerCatPro
https:

//allercatpro.bii.a-star.edu.sg/
(Accessed on: 22 August 2021)

Sequence similarity, structure
similarity

Accuracy: 84%
Specificity: 67% [228]

http://www.imtech.res.in/raghava/algpred/
http://www.imtech.res.in/raghava/algpred/
http://tiger.dbs.nus.edu.sg/AllerHunter/
http://tiger.dbs.nus.edu.sg/AllerHunter/
http://gmobl.sjtu.edu.cn/PREAL/index.php
http://gmobl.sjtu.edu.cn/PREAL/index.php
http://ddg-pharmfac.net/AllergenFP/
http://ddg-pharmfac.net/AllergenFP/
http://www.ddg-pharmfac.net/AllerTOP
http://www.ddg-pharmfac.net/AllerTOP
https://allercatpro.bii.a-star.edu.sg/
https://allercatpro.bii.a-star.edu.sg/
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Table 4. Tools/servers for B cell and T cell epitopes prediction.

Type Server URL/Website Method Reference

Linear B cell Epitope

ABCPred (http://www.imtech.res.in/raghava/abcpred/)
(Accessed on: 25 August 2021) ANN [232]

BepiPred (http://www.cbs.dtu.dk/services/BepiPred/)
(Accessed on: 25 August 2021) HMM [233]

LBtope (http://www.imtech.res.in/raghava/lbtope/)
(Accessed on: 25 August 2021) SVM [234]

BCPreds (http://crdd.osdd.net/raghava/bcepred/)
(Accessed on: 25 August 2021) SVM [235]

BEST (http://biomine.ece.ualberta.ca/BEST/)
(Accessed on: 25 August 2021) SVM [236]

SVMTriP (http://sysbio.unl.edu/SVMTriP/)
(Accessed on: 25 August 2021) SVM [237]

Conformational/Discontinuous B
cell Epitope

DiscoTope 2.0 (http://www.cbs.dtu.dk/services/DiscoTope/)
(Accessed on: 27 August 2021) Structure-based method [238]

B-Pred (http://immuno.bio.uniroma2.it/bpred)
(Accessed on: 27 August 2021) SVM [239]

ElliPro (http://tools.immuneepitope.org/tools/ElliPro)
(Accessed on: 27 August 2021) Thornton’s method [240]

CBTOPE (http://crdd.osdd.net/raghava/cbtope/)
(Accessed on: 27 August 2021) SVM [241]

EpiPred (http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred/)
(Accessed on: 27 August 2021) Structure-based method [242]

T cell Epitope

EpiTOP (http://www.pharmfac.net/EpiTOP/)
(Accessed on: 29 August 2021) QSAR [243]

CTLPred (http://www.imtech.res.in/raghava/ctlpred/index.html)
(Accessed on: 29 August 2021) ANN, SVM [244]

PREDIVAC (http://predivac.biosci.uq.edu.au/)
(Accessed on: 29 August 2021) MM [245]

MHCPred (http://www.ddgpharmfac.net/mhcpred/MHCPred/)
(Accessed on: 29 August 2021) QSAR [246]

NetMHCIIpan-3.0 (http://www.cbs.dtu.dk/services/NetMHCIIpan-3.0/)
(Accessed on: 29 August 2021) ANN [247]

http://www.imtech.res.in/raghava/abcpred/
http://www.cbs.dtu.dk/services/BepiPred/
http://www.imtech.res.in/raghava/lbtope/)
http://crdd.osdd.net/raghava/bcepred/
http://biomine.ece.ualberta.ca/BEST/)
http://sysbio.unl.edu/SVMTriP/
http://www.cbs.dtu.dk/services/DiscoTope/
http://immuno.bio.uniroma2.it/bpred
http://tools.immuneepitope.org/tools/ElliPro
http://crdd.osdd.net/raghava/cbtope/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred/
http://www.pharmfac.net/EpiTOP/
http://www.imtech.res.in/raghava/ctlpred/index.html
http://predivac.biosci.uq.edu.au/
http://www.ddgpharmfac.net/mhcpred/MHCPred/
http://www.cbs.dtu.dk/services/NetMHCIIpan-3.0/
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11. Conclusions and Future Perspectives

Allergies are a severe problem that affects millions of individuals throughout the
world. It may be difficult to avoid offending allergen exposure if the causative allergen
is rare or unknown. Allergic patients can, however, minimize symptoms by avoiding
allergen exposure. Currently, available diagnosis and treatment methods aim to alleviate
symptoms; however, medication would not provide long-term relief from allergic disorders.
Researchers are conducting new studies and investigations to find solutions for allergy
treatment. Advances in analytical, proteomic, and genomic approaches have resulted in
a massive amount of data concerning allergens and allergies. In allergen bioinformatics,
analyzing and archiving these data poses a significant challenge. The tools and resources
of bioinformatics play a crucial role in overcoming this challenge. With the ever-increasing
volume of data, it is critical to focus on the development of resource/databases that will in-
tegrate and provide quick access to information from literature and other sources. An anal-
ysis of such data can be used to have a clear understanding of allergic reactions. Allergen
structural properties influence allergenicity significantly; this knowledge is used to develop
effective methods for predicting allergen cross-reactivity and allergenicity/allergen. Recent
epitope prediction advancements have focused on antibody-specific epitope prediction
methods. The use of these techniques for IgE-binding epitopes predictions will be critical
in the development of better and more efficient strategies for allergic disease treatment and
diagnosis. Allergen immunotherapy (AIT), a treatment approach based on allergens, has
been regarded as a prototype of personalized medicine or precision medicine. Bioinformat-
ics could play a significant role in the development of breakthrough AIT methodologies
and in the advancement of allergen bioinformatics. This will certainly contribute to a better
knowledge of allergy diseases and will have a beneficial impact on future research in the
field.
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