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Abstract: Atmospheric PM2.5 pollution has become a prominent environmental problem in China,
posing considerable threat to sustainable development. The primary driver of PM2.5 pollution in
China is urbanization, and its relationship with PM2.5 concentration has attracted considerable recent
academic interest. However, the spatial heterogeneity of the effect of urbanization on PM2.5 concen-
tration has not been fully explored. This study sought to fill this knowledge gap by focusing on the
Beijing–Tianjin–Hebei (BTH) urban agglomeration. Urbanization was decomposed into economic ur-
banization, population urbanization, and land urbanization, and four corresponding indicators were
selected. A geographically weighted regression model revealed that the impact of multidimensional
urbanization on PM2.5 concentration varies significantly. Economically, urbanization is correlated
positively and negatively with PM2.5 concentration in northern and southern areas, respectively. Pop-
ulation size showed a positive correlation with PM2.5 concentration in northwestern and northeastern
areas. A negative correlation was found between urban land size and PM2.5 concentration from
central to southern regions. Urban compactness is the dominant influencing factor that is correlated
positively with PM2.5 concentration in a major part of the BTH urban agglomeration. On the basis of
these findings, BTH counties were categorized with regard to local policy recommendations intended
to reduce PM2.5 concentrations.

Keywords: PM2.5 concentration; urbanization; spatial heterogeneity; geographically weighted re-
gression model; BTH urban agglomeration

1. Introduction

In recent decades, China has achieved remarkable rapid urbanization; however, this
has led to serious environmental problems [1,2]. For example, atmospheric PM2.5 pollution
concentrations have risen to levels of public concern, given the risks posed to human
physical and mental health [3,4]. Atmospheric PM2.5 concentrations are known to be
strongly linked with the incidence of cardiovascular and respiratory diseases [5,6]. More-
over, there is a huge economic cost for society in trying to control PM2.5 pollution, especially
in high-density population areas [7]. Recently, China has become recognized as one of
the most PM2.5-polluted countries in the world [8], where 1.6 million fatalities annually
are attributable to air pollution [9]. The fact that PM2.5 pollution has become the most
prominent environmental problem in China, seriously hindering the process of sustainable
development, has prompted considerable academic interest in the driving factors of PM2.5
pollution.

PM2.5 pollution is determined by two important influencing factors, namely, PM2.5
emission and purification. On the one hand, the factors that lead to PM2.5 emissions are
extremely complex. In addition to the emission of particle pollutants, other factors that
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are related to urbanization, such as traffic transportation (e.g., traffic congestion, public
transport provision, and road construction), industrial production (e.g., petrochemical in-
dustry, construction industry, and mining industry), residential consumption (e.g., incense
burning, domestic cooking, and heating), and so on, have also played an important role
in affecting PM2.5 emission [10–14]. On the other hand, the air purification capacity could
effectively mitigate PM2.5 pollution, which is jointly determined by the air dispersion con-
ditions and the air cleaning services of the ecosystem. First, the air dispersion conditions
are mainly affected by meteorological conditions, which have been widely discussed in
relevant studies, e.g., [3,15,16]. Second, air cleaning services provided by the ecosystem are
largely determined by the scale, distribution, and structure of ecological space, which has
been greatly influenced by the process of rapid urbanization. Considering the complexity of
the driving mechanism of PM2.5 pollution, it is difficult to include all factors in one research.
Accordingly, existing studies mainly tend to focus on one or a few groups of factors to
investigate their impact on PM2.5 concentrations. For example, Shen et al. explored the
influence of urbanization-induced population migration on ambient PM2.5 concentrations
in China and found a reduction in PM2.5 exposure due to migration [17].

Urbanization is considered to be the primary driver of China’s PM2.5 pollution [18].
On the one hand, economic growth associated with urbanization is accompanied by
massive energy consumption, increased industrial pollutant emissions, and heightened
traffic volumes, which lead directly to increased PM2.5 emissions [19,20]. On the other
hand, urbanization has led to major expansion of the area of impervious surfaces and
encroachment on forests, grasslands, and other ecological lands, leading to decline in
ecosystem services and reduction in PM2.5 purification capacity [21]. Therefore, establishing
how best to achieve sustainable urbanization development in China represents a major
challenge.

With the aim of reducing atmospheric PM2.5 concentrations, many previous studies
focused on investigating the relationship between urbanization and PM2.5 pollution. For
example, numerous studies have shown that urbanization has significant influence on
PM2.5 concentrations at different levels [22,23]. Using a panel model, Luo et al. established
that PM2.5 concentration has a positive relationship with urbanization in the Beijing–
Tianjin–Hebei (BTH) region in China [24]. Wang et al. found that high levels of urban
land size, population, share of secondary industry, and population density have increased
PM2.5 concentrations in Chinese cities [25]. However, most related studies regarded their
specific study area as a homogeneous unit with little consideration of the heterogeneity
of cities. The heterogeneity in the association between PM2.5 pollution and urbanization
means that urbanization might exert different effects on PM2.5 concentration in cities in
different locations, given that cities differ in terms of their economic development and
natural conditions [26]. Therefore, assessment of such spatial heterogeneity is conducive to
developing deeper understanding of this association.

The question of how best to measure urbanization is of major importance in related
studies. Often, a single indicator is used to measure urbanization, e.g., gross domestic
product (GDP) density [3] and proportion of urban inhabitants to the total population [27].
However, urbanization is a complex process of transformation in cities, which is accom-
panied by a series of phenomena such as economic growth, population agglomeration,
lifestyle changes, and technological progress [28,29]. Therefore, some recent studies have
attempted to characterize urbanization from multiple dimensions, and the most popu-
lar classification approach is to divide urbanization into land urbanization, economic
urbanization, and population urbanization [15,30].

In general, the spatial heterogeneity of the association between urbanization and
PM2.5 concentration is somehow overlooked in current research studies. Set against this
backdrop, the purpose of the present study is to fill this research gap by adopting the BTH
urban agglomeration as the study area. To this end, urbanization was assessed from three
dimensions, i.e., economic, population, and land urbanization, to comprehensively explore
its relationship with PM2.5 concentrations. Then, the heterogeneity of the association was
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investigated at the county level using a geographically weighted regression (GWR) model.
Finally, by grouping the influence effect, policy recommendations aimed at the reduction
of PM2.5 concentrations were proposed for each group of counties.

2. Study Area

The BTH urban agglomeration, located in the north of China, comprises 2 municipali-
ties (Beijing and Tianjin) and 11 prefecture-level cities (Chengde, Zhangjiakou, Langfang,
Tangshan, Qinhuangdao, Baoding, Shijiazhuang, Hengshui, Cangzhou, Xingtai, and Han-
dan; Figure 1). It is one of the most economically developed regions in China, supporting
8.4% of the national population and generating 10.24% of the country’s total GDP in
2015 [15]. With the remarkable urbanization that has occurred in recent decades, the urban
area of the BTH region has nearly doubled between 1990 and 2015, leading to massive
loss of farmland, grassland, and forest, which in turn has resulted in rapid reduction of
ecosystem services [31]. Under this circumstance, many environmental problems have
become increasingly prominent, especially the level of atmospheric PM2.5 pollution, which
has raised widespread concern. A report by the Ministry of Environmental Protection in
2015 noted that 7 of the 10 cities with the worst air quality in China were within the BTH
urban agglomeration, and that the BTH region was the area with the worst air quality in
the country [32]. Consequently, reduction of atmospheric PM2.5 concentration within the
BTH region is highly urgent.

Figure 1. Location of the Beijing–Tianjin–Hebei urban agglomeration and the distribution of atmo-
spheric PM2.5 concentration in 2015.

3. Data and Methods
3.1. Selection of Urbanization Indicators and Data Sources

Urbanization brings complex and comprehensive change to cities, mainly in terms of
the population, economy, and land [28]. Urbanization contributes to massive population
growth and population aggregation [33], promoting concentration of economic activity [34].
Rapid growth of an urban population requires more land to host the associated socioe-
conomic activities, leading to dramatic transformation of urban land. In the context of
rapid urbanization, the area of urban land expands continuously and shows trends of
densification and compactness [35,36]. In the view of the above, this study adopted total
GDP and population (POP) to represent economic urbanization and population urbaniza-
tion, respectively. With regard to land urbanization, urban land size has been commonly
used as an indicator to measure land urbanization, usually measured by the extent of
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the built-up area [15]. However, as another important characteristic of land urbanization,
urban compactness has also been shown to have a significant influence on PM2.5 concen-
trations [37]. Accordingly, two commonly used landscape indexes, i.e., the largest patch
index (LPI) and percentage of like adjacencies (PLADJ), were employed to represent urban
land size and compactness, which are considered to be the two main characteristics of land
urbanization [37]. The LPI indicates the degree of dominance of the urban area within the
landscape, while the PLADJ measures the aggregation of the urban class [38]. The LPI and
PLADJ were both calculated on the basis of a land use/land cover (LULC) dataset.

Accurate measurement of PM2.5 concentrations is crucial for investigating the im-
pact of urban form on PM2.5 concentrations [39]. The stationary monitoring data has
advantages in accuracy but is less applicable for large-scale spatially explicit research.
In this case, thanks to the development of high accuracy retrieval algorithms in recent
years, satellite-derived PM2.5 grid data with long-term stability and high resolution has
been increasingly widely applied [40]. In this study, a widely used satellite-derived PM2.5
gridded dataset was employed, which estimates global PM2.5 concentrations on the basis
of multiple information sources by adopting the GWR model [40]. The raster datasets
of GDP, POP, and LULC as well as the county boundary vector data were obtained from
the Data Center for Resources and Environmental Sciences of the Chinese Academy of
Sciences (RESDC). Before further analysis, all these datasets were transformed into the
same projection coordinate system (WGS1984 UTM Zone 50N) and spatial resolution (30
m × 30 m) to avoid potential interference with the results (Table 1). The research was
conducted for the year 2015, and the data for all variables were aggregated to the county
level for further analysis. As there are 199 counties in the BTH urban agglomeration, the
values of all variables for each county can be found in Supplementary Table S1.

Table 1. Data sources and descriptions.

Name Type of Data Data Sources Spatial Resolution Coordinate System

PM2.5 Raster data

Socioeconomic Data
and Applications

Center of Columbia
University

30 m × 30 m WGS1984 UTM Zone 50N

GPD Raster data RESDC 30 m × 30 m WGS1984 UTM Zone 50N
POP Raster data RESDC 30 m × 30 m WGS1984 UTM Zone 50N

LULC Raster data RESDC 30 m × 30 m WGS1984 UTM Zone 50N
County boundary Vector data RESDC WGS1984 UTM Zone 50N

3.2. Spatial Correlation Test

To investigate whether PM2.5 concentrations in the BTH region are spatially clustered
and if so, the spatial correlation of PM2.5 concentrations at the county level was measured
using the global Moran’s I and local indicators of spatial association (LISA), which are
formulated as follows [32]:

Moran′s I =

n
∑

i=1

n
∑

j=1
wij(xi − x)(xj − x)(

n
∑

i=1

n
∑

j=1
wij

)
n
∑

i=1
(xi − x)2

, (i 6= j) (1)

where xi and xj denote the PM2.5 concentration of the i-th and j-th county in 2015, respec-
tively; x denotes the average PM2.5 concentration among all counties; n is the total number
of counties in the BTH urban agglomeration; and wij is the spatial weighted matrix. The
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value of the Moran’s I is within the range of −1 to +1; the larger its absolute value, the
stronger is the degree of spatial correlation.

Local Moran′s I =

n(xi − x)
m
∑

j=1
wij
(
xj − x

)
n
∑

i=1

(
xj − x

)2
, (i 6= j) (2)

where the representation of the parameters is similar to that of Equation (1), except that m
is the number of counties adjacent to the i-th county. Normally, the result of LISA classifies
counties within the study area into three categories: high–high (H-H) clustering, low–low
(L-L) clustering, and high–low (H-L) clustering.

3.3. Geographically Weighted Regression Model

In studies related to the association between urbanization and PM2.5 concentration,
traditional regression models such as ordinary least squares (OLS) linear regression models
and panel models incorporate the common assumption that the association between the
two is spatially consistent. In other words, the association does not change with spatial
location [41]. However, the differing natural and socioeconomic conditions between
different spatial positions lead to the existence of spatial heterogeneity [29]. It means that
the association between urbanization and PM2.5 concentration is unlikely to be spatially
homogeneous, and therefore discussion of the importance of spatial heterogeneity is
necessary. In this study, the GWR model was employed because it takes full consideration
of the spatial heterogeneity of the study area and incorporates location information into
the regression parameter estimation [42,43]. Thus, GWR can be used to calculate local
regression coefficients for each sample as follows:

yi = β0(µi, νi) + ∑
k

βk(µi, νi)xk,i + εi (3)

where yi denotes the PM2.5 concentration of the i-th county, xk,i denotes the k-th inde-
pendent variable of the i-th county, β0 denotes the intercept term, βk is the regression
parameter of the k-th independent variable, εi is the random error term, and (µi, νi) are the
coordinates of the i-th county. The estimation of the local regression parameter βk(µi, νi) is
formulated as follows:

β̂k(µi, νi) =
[

XTW(µi, νi)X
]−1

XTW(µi, νi)yi (4)

where W(µi, νi) is the spatial weighted matrix of the i-th county. The application of the
spatial function has substantial influence on the GWR results. In this study, to build the
spatial matrix, we adopted the Gaussian distance decay-based function, which is a function
used widely in the definition of space relation in GWR models. The formula is expressed
as follows:

Wij = exp

(
−

dij
2

h2

)
(5)

where dij is the Euclidean distance between the i-th county and the j-th county, and h
represents the bandwidth, which controls the degree of distance decay. Here, we used the
method of minimizing the Akaike information criterion (AIC) to determine the optimal
bandwidth. The natural logarithmic transformation was applied to all the variables to
reduce the heteroscedasticity of the original data [15]. Before conducting the GWR model,
the OLS regression model was applied to explore the relationship between independent
variables and dependent variables. In the OLS model, a positive regression coefficient
indicates a positive association between the dependent and independent variables, and
vice versa.
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4. Results and Discussion
4.1. Spatial Pattern of PM2.5 Concentration

The levels of PM2.5 concentration in 2015 are illustrated in Figure 2. Tianjin has
the highest PM2.5 concentration (78.55 µg/m3) and Zhangjiakou has the lowest PM2.5
concentration (22.70 µg/m3). Thus, the PM2.5 concentration in Tianjin is 3.46 times higher
than that in Zhangjiakou, which illustrates the major heterogeneity of the PM2.5 distribution
in the BTH urban agglomeration. The average annual PM2.5 concentration in the BTH
region is 60.43 µg/m3. According to the Ambient Air Quality Standard posted by the
Ministry of Ecology and Environment of China, the annual average PM2.5 concentration in
cities should meet the standard of 35 µg/m3 to achieve good air quality. However, in 2015,
only Chengde and Zhangjiakou met this requirement, while the PM2.5 concentration of the
remaining 11 cities was substantially higher than the standard.

Figure 2. Annual average PM2.5 concentration of cities in the Beijing–Tianjin–Hebei urban agglomer-
ation in 2015.

The uneven distribution of PM2.5 concentration is confirmed in Figure 1, which shows
that the PM2.5 concentration in 2015 increased from the northwest toward the southeast.
This might be attributable to the large amount of vegetation distributed within the north-
west region, which has greater capability for purifying air pollution [31]. To measure the
clustering characteristics within the BTH urban agglomeration, spatial correlation tests
were conducted. The value of the global Moran’s I was 0.769 (significant at the 1% level),
indicating a significant spatial autocorrelation of the PM2.5 distribution. Moreover, the
result of LISA confirmed a significant L-L (H-H) cluster in the northwestern (southeastern)
region of the BTH urban agglomeration (Figure 3).

The clustering characteristics reflect the spatial spillover effect of PM2.5 pollution,
which means that local PM2.5 pollution can have a positive impact on adjacent areas [44].
There are two possible reasons for this effect. On the one hand, PM2.5 pollution can spread
easily from cities with high PM2.5 concentrations to surrounding areas because of the local
atmospheric circulation [3]. On the other hand, strengthened socioeconomic connections
between neighboring cities can lead to PM2.5 pollution associated with industrialization
of a certain city affecting the level of pollution in adjacent cities [45]. The existence of the
spatial spillover effect highlights the complexity of PM2.5 pollution regulation. It is evident
that regulation is required not just regarding specific measures for pollution reduction
for each city but also regarding the development of a regional policy for control of PM2.5
concentrations.
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Figure 3. Local indicators of spatial association of PM2.5 concentrations in the Beijing–Tianjin–Hebei
urban agglomeration in 2015.

4.2. Global Regression Analysis

For the purposes of investigating the global association between urbanization and
PM2.5 concentration and of drawing a comparison with the GWR model results, OLS
regression was conducted, and the results are presented in Table 2. The variance inflation
factor (VIF) of each variable was <10, indicating no significant multicollinearity among
the independent variables [46]. All the regression coefficients of the independent variables
were significant to at least the 10% level. The results show that GDP and LPI have a negative
impact on PM2.5 concentrations, while POP and PLADJ have a positive effect. It means
that economy and urban land size show a negative correlation with PM2.5 concentrations,
while population and urban compactness show a positive one.

Table 2. The results of the OLS regression and the VIF values for all independent variables.

Regression Coefficient VIF

Intercept −0.037 **
ln GDP −0.259 * 3.226
ln POP 0.327 *** 2.992
ln LPI −0.171 *** 1.930

ln PLADJ 1.011 *** 1.857
Adjusted R2 0.426

Note: ***, **, and * denote p < 0.01, p < 0.05, and p < 0.1, respectively; VIF: variance inflation factor.

The possible reasons for this association between multidimensional urbanization and
PM2.5 concentration are as follows. First, according to Li and Zhang, in the BTH urban
agglomeration, heavy industries with high levels of pollution have been transferred from
the developed counties to the less developed counties that are not urban centers. Accord-
ingly, the levels of air pollutant emission are relatively higher in these less developed
counties [47]. Conversely, urban centers tend to have a higher level of GDP and larger
urban size, thus leading to a negative correlation between GDP and PM2.5 concentration
and between the LPI and PM2.5 concentration. Second, dense urban populations can lead
to higher energy consumption and greater traffic congestion problems, resulting in higher
levels of air pollution [48]. For example, in the city of Beijing, the most densely populated
city in the BTH urban agglomeration, the average time of congestion on weekdays in the
first half of 2012 was 70 min [49]. Besides, the energy consumption had been increased
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by 191.33 million tce in Beijing over the period of 2009–2018 due to population growth.
Third, urban compactness has a positive relationship with PM2.5, as also found in previ-
ous studies [50,51]. Although a compact urban form is proven to reduce transportation
pollutant emissions by reducing commuting distances [52], in developed areas such as the
BTH region in China, urban expansion has been extremely rapid and the area of green
spaces has declined drastically. Thus, a compact urban form would further reduce the mix
of urban and green spaces, which is not conducive to purification of air pollution [50].

A comparison of the statistical results of the fitting effect between OLS and GWR
models is presented in Table 3. In terms of both R2 and adjusted R2, the values for GWR are
approximately twice as large as those for OLS regression, while in terms of the value of the
AIC, the result for GWR are notably smaller than that for OLS regression, suggesting that
GWR is much more effective than the OLS regression model in relation to the dataset used
in this research. This result further confirms the importance of incorporating location infor-
mation in the regression model. Accordingly, different PM2.5 pollution control measures
must be established in consideration of distinguish situations of different counties.

Table 3. Statistical test comparison of ordinary least squares (OLS) regression and geographically
weighted regression (GWR).

OLS GWR

R2 0.441 0.919
Adjusted R2 0.426 0.886

AIC 163.641 −141.907

Note: R2: coefficient of determination; AIC: Akaike information criterion.

4.3. GWR Analysis
4.3.1. Spatial Correlation between Urbanization and PM2.5 Concentration

To estimate the degree of heterogeneity in the relationship between multidimensional
urbanization and PM2.5 concentration in the BTH urban agglomeration, the GWR model
was implemented (as described in Section 3.3) for further analysis. The estimated regression
coefficients of the independent variables, illustrated in Figure 4, show that the relationship
between each dimensional indicator of urbanization and PM2.5 concentration shows signif-
icant spatial differences. This demonstrates the complexity of the relationship, highlighting
the fact that policies dedicated to improving local PM2.5 pollution should be tailored to the
particular local context.

Figure 4. Spatial distribution of the local regression coefficients of the independent variable: (a) ln GDP, (b) ln POP, (c) ln
LPI, and (d) ln PLADJ.

It can be seen from Figure 4a that GDP has a positive impact on PM2.5 concentrations
in the northern part of the region, but a negative impact in the south. The northern part of
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the BTH urban agglomeration is mostly mountainous and hilly [26]. In counties with lower
GDP of this region, the level of natural vegetation coverage is remarkably high, which is
usually associated with better air quality. Conversely, as the counties with higher GDP are
predominantly located in the urban centers, the rapid expansion of impervious surfaces in
the urban centers due to rapid urban economic development has encroached on existing
green spaces, resulting in relatively poor air quality. Thus, GDP has a positive effect on
PM2.5 concentration in the northern region. In the southern region, mostly in the cities
of Xingtai and Handan, the terrain is flatter and more land is available for construction.
The counties surrounding the urban centers of Xingtai and Handan have a large number
of coal-fired industrial enterprises, which result in serious air pollution [53]. Given this
circumstance, GDP shows a negative association with PM2.5 concentration in the southern
region.

The association between POP and PM2.5 concentration is relatively weak, as is the
case for the association between the LPI and PM2.5 concentration (Figure 4b,c). Specifically,
POP has a weak positive effect on PM2.5 concentration in northeastern and northwestern
regions, whereas the LPI has a weak negative effect on PM2.5 concentration in some central
to southern areas and a positive effect in a small part of the north. Northwestern and north-
eastern parts of the BTH, mainly consisting of Zhangjiakou and Qinhuangdao, respectively,
have a more developed tourism sector and relatively few highly polluting industries. In
this context, population size becomes the main driver of PM2.5 concentration. The counties
in which the correlation between the LPI and PM2.5 concentration is negative are mainly
located around better developed counties. The presence of some highly polluting industries
leads to higher PM2.5 concentrations in these counties.

Among the four indicators, PLADJ shows the strongest and spatially widest positive
relationship with PM2.5 concentration, demonstrating that urban compactness is the most
dominant driver of PM2.5 pollution in multidimensional urbanization (Figure 4d). Espe-
cially in the area from Beijing to Handan, the over-compact urban form generates very high
levels of PM2.5 pollution. There are three possible explanations for the positive relationship
between urban compactness and PM2.5 concentration. First, compact urban development
has been demonstrated to exacerbate the problem of urban traffic congestion in China,
which would significantly increase PM2.5 emissions [35]. Second, a compact urban form
would accommodate a large number of human activities in a limited space, resulting in
high energy consumption and high pollution emissions [54]. Third, as a main characteristic
of compact cities, land densification would lead to the reduction and uneven distribution
of urban green spaces, which would further lower the capacity of air purification of the
urban ecosystem [36].

4.3.2. Classification of Counties and Policy Recommendations for PM2.5 Reduction

To develop location-specific PM2.5 reduction policies, all the counties within the BTH
urban agglomeration were categorized into different groups based on the relationship
between multidimensional urbanization and the PM2.5 concentration, among which five
groups showed significant characteristics (Figure 5).

The first group, characterized by a positive correlation between urban compactness
and PM2.5 concentration, comprised counties located mainly in Baoding, Shijiazhuang,
Beijing, and Langfang (marked in red in Figure 5b). These counties have the most significant
impact on PM2.5 concentration in terms of compact urban form, highlighting the priority of
addressing the issue of urban over-compactness. Therefore, we suggest that counties in this
group increase urban green spaces to reduce urban compactness. Meanwhile, a polycentric
development pattern would be more conducive to PM2.5 reduction in these counties.

The second group includes counties distributed mainly in Tangshan, Qinhuangdao,
and Zhangjiakou (marked in green in Figure 5b). In addition to urban compactness,
population size also has a positive effect on PM2.5 concentration in these counties, implying
that increased residential energy consumption and heightened traffic volumes generated
by population concentration have significant impact on PM2.5 pollution [48]. In addition
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to adopting measures to increase green spaces, as recommended in relation to the first
group of counties, these counties should also control excessive population concentration
and enhance public transportation services to mitigate the associated negative effects.

Figure 5. (a) Relationship between urbanization indicators and PM2.5 concentration and (b) associ-
ated classification of counties in the Beijing–Tianjin–Hebei urban agglomeration. The “+” and “−”
symbols represent positive and negative correlation with PM2.5 concentration, respectively.

The counties of the third group are gathered at the border of Chengde, Zhangjiakou,
and Beijing (marked in purple in Figure 5b), and they exhibit a positive correlation be-
tween urban compactness and PM2.5 concentration, and between the economy and PM2.5
concentration. Counties in this group have a high level of vegetation coverage, which
provides excellent PM2.5 purification capacity, especially in the underdeveloped areas.
In this case, the economically developed counties in this area have a high level of PM2.5
concentration. Therefore, these counties should improve energy efficiency and reduce
energy consumption per unit GDP, thereby mitigating the air pollution problems caused
by economic development.

The counties of the fourth group are mainly located in Shijiazhuang, Xingtai, and
Handan (marked in dark cyan in Figure 5b). This group is characterized by a positive
correlation between urban compactness and PM2.5 concentration and, in contrast to the
third group, a negative correlation between the economy and PM2.5 concentration. As
mentioned in Section 4.1, such characteristics are likely due to the large number of highly
polluting industries located in counties that are not regional urban centers. Counties of this
group should change their energy consumption structure and reduce their use of energy
sources associated with high levels of polluting emissions, such as coal.

The counties of the fifth group are distributed in Beijing, Baoding, and Shijiazhuang
(marked in dark sky blue in Figure 5b). Similar to the first four categories, urban com-
pactness shows a positive correlation with PM2.5 concentration, but with the difference
that urban land size shows a negative correlation with PM2.5 concentration. This means
that the pollution in these areas comes mainly from underdeveloped counties with smaller
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urban land size, and therefore these counties should be the focus of PM2.5 pollution control.
Moreover, the southeastern region, mainly comprising the cities of Hengshui, Cangzhou,
Tianjin, and Langfang, shows no significant correlation between urbanization and PM2.5
concentration. Consequently, the driver of PM2.5 pollution in this area might be more
complex and it will require further investigation in future studies.

5. Conclusions and Limitations

The BTH urban agglomeration has the highest level of atmospheric PM2.5 pollution
in China, which causes huge socioeconomic losses. The urbanization process, which has
been the dominant driver of socioeconomic development in China in recent decades, has
highly complex and multidimensional characteristics. It is of great importance to explore
the effect of multidimensional urbanization on PM2.5 pollution, especially in relation to a
heavily polluted region such as the BTH urban agglomeration. In this study, we employed
GDP, POP, LPI, and PLADJ to measure the county-level economy, population, urban land
size, and urban compactness of the BTH region. Additionally, the GWR model was used
to investigate the spatial heterogeneity in the relationship between multidimensional ur-
banization and PM2.5 concentration. The results showed that the four indicators influence
PM2.5 pollution in different ways. Economic urbanization was found to exert positive and
negative effects on PM2.5 concentration in the northern and southern parts of the region,
respectively. Population size was found slightly positively correlated with PM2.5 concentra-
tion in northwestern and northeastern areas. Urban land size had a negative effect on PM2.5
concentration from central to southern regions of the BTH. Moreover, urban compactness
had the strongest positive impact on PM2.5 concentration, indicating that counties within
the BTH urban agglomeration generally face the problem of an over-compact urban form.
On the basis of the derived associations, the counties of the BTH urban agglomeration
were categorized into different groups such that local policy recommendations could be
properly tailored to the specific characteristics of each group of counties.

This study shed new light on the heterogeneity of the relationship between urban-
ization and PM2.5 concentration. Moreover, the findings of this study proved useful for
developing PM2.5 reduction policies and promoting sustainable urban development within
the BTH urban agglomeration. However, certain limitations of the study should be ad-
dressed in future studies. First, the driving mechanism of PM2.5 pollution is complicated,
and there are certainly some other influencing factors such as PM2.5 emission, meteoro-
logical parameters, etc. However, for large-scale studies, some factors (e.g., the accurate
monitoring data of PM2.5 emission) are difficult to acquire due to the lack of data avail-
ability. In addition, incorporating many factors into the regression model might make it
difficult to meet the required minimum sample size and weaken the influences of target
factors on PM2.5 concentrations in the analysis results. Accordingly, the main focus of this
study has been placed on the influence of urbanization. Nonetheless, the other factors that
could have an impact on PM2.5 pollution should be investigated where feasible. Second, in
this study, the positive relationship between urban compactness and PM2.5 concentration
is not based on the analysis of industrial activity or traffic volume data due to the lack of
data availability. Although this argument is supported by the results of a number of recent
studies, it should be further verified when more data are available. Third, our findings
showed that the southeastern region, comprising mainly Tianjin, Langfang, Cangzhou, and
Hengshui, has no significant correlation between urbanization and PM2.5 concentration.
This suggests that the drivers of PM2.5 pollution in this region might be related to factors
not specifically linked with urbanization and should be explored further in future work.
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