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List of ICD-10 codes 

The following list contains all ICD-10 codes used for the definition of low back pain. 

 

Table S1: List of ICD-10 Codes associated with low back pain. 

ICD-10 
codes 

Code label 

M40 Kyphosis and lordosis 
M41 Scoliosis 
M42 Spinal osteochondrosis 
M43 Other deforming dorsopathies 
M45 Ankylosing spondylitis 
M46 Other inflammatory spondylopathies 
M47 Spondylosis 
M48 Other spondylopathies 
M49 Spondylopathies (not elsewhere classified) 
M51 Other intervertebral disc disorders 
M53 Other dorsopathies (not elsewhere classified) 
M54 Back pain (not elsewhere classified) 

 

We excluded all codes starting with 3-character ICD-10 codes M50.XX, which are used in cases of 
cervical disc damages. From the remaining ICD-10 codes, we have further removed:  

M42.12, M42.13, M42.92, M42.93, M43.02, M43.12, M43.22, M43.3, M43.4, M43.6, M47.12, 
M47.14, M47.21, M47.22, M47.23, M47.24, M47.82, M47.83, M47.84, M47.91, M47.92, M47.93, 
M47.94, M48.02, M48.03, M48.04, M50.-, M50.0, M50.1, M50.2, M50.3, M50.8, M50.9, M53.0, 
M53.1, M53.22, M53.23, M53.24, M53.82, M53.83, M53.92, M53.94, M54.01, M54.02, M54.03, 
M54.04, M54.11, M54.12, M54.13, M54.14, M54.82, M54.83, M54.84, M54.91, M54.92, M54.93, 
M54.94  

as they all related to cervical or thoracic diagnoses. 
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List of physicians' fee schedules 

The following list of the physicians’ fee schedule have been selected and divided into five groups. 

Table S2: List of physicians' fee positions related to back pain 

Group Codes Label 

General practitioner 03000 Specific code for treatment within standby 

 03003 19th to 54th year of age 

 03004 55th to 75th year of age 

 03005 from 76th year of age 

 03111 between 2005 - 2013: 6th to 59th year of age 

 03112 between 2005 - 2013: from 60th year of age 

Neurologist 16211 6th to 59th year of age 

 16212 from 60th year of age 

 16232 Additional fee for diagnostic/treatment 

Orthopedist 18211 6th to 59th year of age 

 18212 from 60th year of age 

 18331 Additional fee for diagnostic/treatment 

Interventions 30201 Manual therapy 

 30700, 30702 Special pain therapy 

 
30724, 34503, 30731, 
02360 

Injection therapy 

 30790, 30791 Acupuncture 

 02510 Thermotherapy 

 02511 Electrotherapy 

Imaging 34221, 34222 X-ray 

 34223, 34311 CT 

 34411 MRI 
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Methods 

Distribution of the primary outcome 

The primary outcome (number of ICD-10 codes for back pain) has a highly skewed distribution 
with a considerable quantity of zero’s (Figure S1 below). 

 

Figure S1: Frequency of ICD-10 codes for back pain observed in the training data. 

 

The score test rejected the hypothesis of no zero inflation (p<<0.001). 

## Score test for zero inflation 
##  
##      Chi-square = 661.56823  
##      df = 1 
##      pvalue: < 2.22e-16 

 



 

 
6 

 

pb 

Candidate variables 

We selected a broad sequence of variables from both data sources, which were presumably 
related to the frequency of low back pain episodes as indicated by ICD-10 codes. Table S4 in 
Exploratory variable selection shows the selected candidate variables after revision of univariate 
associations and interaction terms. In addition to these variables, we examined univariate 
associations of the following variables with the outcome: 

• job type (e.g. farmer, freelancer) 

• average von Korff back pain severity 

• comorbidities: diabetes (yes vs. no), diabetes with complications (no vs. diabetes without 
complications vs. diabetes with complications), heart failure, atrial fibrillation, myocardial 
infarction, stroke, cancer 

• interaction terms: PHQ-9 strata: sex. 

Compared to the employment/workability status (Table S4), the job type was hardly associated 
with the outcome. Instead of the average of two von Korff items (back pain severity, impairment 
due to back pain), we used the original items in the modelling process. The above mentioned 
comorbidities (diabetes, cardiovascular disease, and cancer) origin from interviews of the SHIP 
participants and represent self-reported diseases. We summarized them into a single variable 
named competing diseases (none, one, >one of: diabetes, cardiovascular disease, and cancer) as 
all univariate coefficients indicated a negative association with the number of ICD-10 codes. Using 
claims data, we were able to compute the Charlson comorbidity index based on the approach 
from [1].  

Non-linear associations 

The presence of non-linear associations was examined using a generalized additive model [2] 
provided by the R package mgcv. To discriminate nonlinear effects in the zero-part from those in 
the count-part we applied two types of models: (a) a binomial distribution for the zero-part and 
(b) negative binomial for the count-part. 

 

Table S3: Results of a generalized additive model for nonlinear associations. 

Terms edf Ref.df Chi.sq p-value Model 
s(age) 5.1 6.2 68.101 0.000 Zero 
s(bmi) 2.2 2.8 5.485 0.153 Zero 
s(height) 1.0 1.0 0.625 0.429 Zero 
s(weight) 1.0 1.0 0.167 0.685 Zero 
s(sf12_pcs) 2.2 2.8 19.183 0.000 Zero 
s(phq_sum_score) 5.7 6.6 10.114 0.179 Zero 
s(house_income) 2.2 2.8 22.143 0.000 Zero 
s(age) 1.2 1.4 6.043 0.019 Count 
s(bmi) 1.0 1.0 1.171 0.279 Count 
s(height) 1.0 1.0 1.246 0.264 Count 
s(weight) 1.0 1.0 1.123 0.289 Count 
s(sf12_pcs) 1.0 1.0 9.613 0.002 Count 
s(phq_sum_score) 1.2 1.3 0.041 0.909 Count 
s(house_income) 1.0 1.0 0.985 0.321 Count 
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Figure S2: Nonlinear associations of covariates with the presence of ICD-10 codes for back pain 
(yes/no). 

 

The results from this model suggest non-linear associations in the zero-part of the model for age, 
SF12 PCS, PHQ-9 sum score, and house income. Regarding the count-part none of the candidate 
variables appears to have non-linear associations, as effective degrees of freedom are all close to 
1. 

There are some caveats: the household income in the SHIP data represents a transformed 
variable. Participants of the SHIP study were asked about their income in non-equidistant 
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categories [([0; 500), [500; 900), [900; 1300), [1300; 1800), [1800; 2300), [2300; 2800), [2800; 
3300), [3300; 3800), 3800; Inf)). These categories were then transformed along the interval 
means and standardized according the number of individuals living in the respective household 

(√# 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠). The respective values appear to be continuous, but base in fact on categorical 
values. Please see also Figure S4 below where we made use of the R package dataquieR to 
illustrate possible outliers [3]. We therefore decided to not model a nonlinear functional form 
(spline) of this variable. 

In summary, based on AIC information criteria, we considered restricted natural splines for age 
(degrees of freedom df=4) and SF12 physical component scale (df=2) as candidate variables. 

 

Figure S3: Distributional plots of all continuous candidate variables and the classification of 
outliers. Please see this website for annotation of the different outlier classification rules. 

https://www.fvcm.med.uni-greifswald.de/Web/DD/DD_TREND0_deutsch_06.07.2021.pdf
https://dataquality.ship-med.uni-greifswald.de/VIN_acc_impl_robust_univariate_outlier.html
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Exploratory variable selection 

Best subset selection is computationally expensive with 2𝑝 − 1 possible combinations of 
covariates. To minimize computational time, we applied model-based boosting (MBB) to conduct 
an explorative variable selection for the SHIP data. MBB is applicable in high-dimensional settings 
(n<<p) and in the presence of multi-collinearity [4]. The latter is of particular interest for our 
approach since we examined some variables in alternative forms, e.g. age (original, discretized, 
smoothed). 

In brief, MBB starts from an intercept model in which each base-learner or candidate variable is 
iteratively evaluated in terms of fitting a loss function (negative log-likelihood) best. In each 
iteration only the best base-learner, with respect to minimizing residual sum of squares, will be 
used to update the model [4]. The R package mboost [5] has been used to build the MBB model 
in 2000 iterations (maximum mstop). Usually the best model is then identified via resampling. 
However, we applied stability selection [6] after model building to select covariates being 
predictive in 20% of the resampled data, i.e. contributing to the model in at least 20% of 
resampled data. This setting is less restrictive, i.e. more variables are retained, recommendations 
suggest to choose a threshold of 50% or higher [6]. However, we pursued an initial set of 
promising candidate variables and to remove competing effect definitions, we omitted the 
evaluation of the optimal MBB model. All predictors as specified in Table S4 were examined as 
candidate learners. 

In case of alternative effect definition, e.g. regarding age, we chose the effect with highest 
selection frequency in MBB. 
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Table S4: Candidate variables and results of explorative variable selection. 

Characteristic Data type and if required categories and 
explanation 

Model 
part 

Selection 
frequency 

ZERO 

Selection 
frequency 

COUNT 
Sex female | male zero 0.68 0.00 
Age integer count 0.00 0.61 

Age (categorized) 
[20; 40); [40; 70); [70;Inf): age has been 
categorized based on clinical hypotheses 

zero 1.00 0.55 

Age (spline) 
B-splines with 5 degrees of freedom (knots at 
quintiles) 

 0.10 n.a. 

Use of opioids no | yes count 0.03 0.38 
Use of benzodiazepine no | yes  0.01 0.01 

Use of NSAR 
no | yes; self-reported use of NSAR (over-the-
counter-drug) 

 0.10 0.11 

Use of antidepressants no | yes  0.00 0.04 
No. of drugs used in last 7d integer count 0.00 0.71 
Family status single | married | divorced | widowed zero, count 0.57 0.27 
BMI float  0.00 0.02 
Back pain in last 3 month (NRS) integer zero, count 0.99 0.41 
Impairment by back pain in last 3 
month (NRS) 

integer count 0.03 0.99 

PHQ-9 Sum score  0.00 0.00 
SF12 Physical component scale float  0.00 0.16 

SF12 Physical component scale (spline) 
B-splines with 2 degrees of freedom (knot at 
median) 

 0.08 n.a. 

Sport activities <1h a week | 1-2h a week | > 2h a week count 0.03 0.35 

Physician visits (last year) 
None | GP only | Specialist only | GP and 
specialist (visits can be unrelated to back pain) 

zero, count 1.00 0.73 

Body height float  0.00 0.01 
Body weight float  0.03 0.02 
Household income float zero 0.85 0.09 
School years <10 | 10 | >10 count 0.06 0.20 
Physical demanding job no | yes  0.04 0.04 
Workability status employable | retired | unemployed count 0.00 0.34 

Competing diseases 
0 = None | 1 = one | 2 = >1 (of diabetes, 
cardiovascular disease, cancer) 

zero 0.21 0.09 

Depression (self-reported) no | yes  0.00 0.08 
Inflammatory joint disease no | yes  0.04 0.01 
Osteoarthritis no | yes zero, count 0.57 0.28 
Disc prolapse no | yes zero, count 0.96 0.81 
Pressure pain (related to back pain) no | yes zero 0.31 0.01 
Dysesthesia (tingling, related to back 
pain) 

no | yes zero, count 0.43 0.38 

Radiating back pain  
0 = none | 1 = yes, gluteal only | 2 = yes, to knee 
| 3 = yes, to lower leg 

zero, count 0.53 0.41 

Interactions:     
depression: sex   0.08 0.04 
depression: PHQ-9   0.06 0.15 
disc prolapse: radiating back pain   zero, count 0.22 0.63 

*n.a.: not applicable as non-linear associations were not necessary to model the count part of 
the hurdle model. All variables marked with a gray background were removed by model-based 
boosting under stability selection.  
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Best subset 

From a vector of candidate variables (in the following example A, B, C) we specified a matrix of all 
their possible combinations in the following manner: 

# Variables: A, B, and C 

covars <- c("A", "B", "C") 

# each of these variables can be selected (1) or not (0) 

ps <- rep(list(0:1), length(covars)) 

# create all possible combinations 

ps_claims <- expand.grid(ps) 

# remove row in which all variables are "Null" 

ps_claims <- ps_claims[-1, ] 

names(ps_claims) <- covars 

 

Table S5: Matrix of all possible variable combinations. 

A B C 
1 0 0 
0 1 0 
1 1 0 
0 0 1 
1 0 1 
0 1 1 
1 1 1 

 

The validation algorithm iterated in each bootstrap sample over the rows of this matrix and 
selected the model-formula according to binary values in this matrix (1 = TRUE). 
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Model training algorithm 

Model training and evaluation were conducted in separate data to avoid overfitting [7]. In 
absence of external (independent) validation data, a so-called internal validation of a model 
should be applied, i.e. using a subsample of the same data source, which is not involved in model 
training. This approach is inferior to an external validation but a crucial model evaluation step [8]. 

We adapted a common approach of model validation as described by Filzmoser et. al [8]. 
Therefore, the SHIP-TREND-0 data were randomly splitted into training-data and validation-data 
in a ratio of 3:1 (n=2869:968). Figure S4 shows the scheme of this approach: 

 

Figure S4: Scheme of the Validation algorithm to assess model prediction accuracy. 

 

In each step of the nested model training we iterated over a matrix of predictors (please see Best 
subset for explanation) and conducted zero-inflated Poisson and negative-binomial count data 
models for all possible combinations of covariates. Respective information criteria (AIC) have 
been saved in each iteration to choose the most appropriate distribution type after completion 
of the nested model training. Each model result was used to predict the outcome of interest in 
the nested validation data. 

The accuracy of the nested prediction performance has been evaluated using the strictly proper 
scoring rules of Brier score and the Dawid-Sebastiani score [10–12]. The calculation and notation 
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of these scores is mentioned under Scores for model calibration and has been applied using the 
R package surveillance [13]. 

Overall, this scheme was applied three times: 

▪ 1st for the claims data 

▪ 2nd for the SHIP data 

▪ 3rd for the joined data using only the best subset from either claims and SHIP. 

Due to the computational complexity, e.g. 8.191.000 models (213- 1 subsets * 500 samples * 2 
distributions) were calculated for the claims data alone, we used the R package doParallel [14] to 
apply parallel computations. Further, we used the high-performance-cluster provided by the 
computation center of the University of Greifswald [15].  

Scores for model calibration 

We used two strictly proper scoring rules to evaluate a model’s prediction accuracy. For the zero-
part of the zero-inflated count data regression we used the Brier score [16] and for the count-part 
the Dawid-Sebastiani score [11] proposed by [10]. The Brierscore has the following notation: 

𝐵𝑆 =
1

𝑁
∑ (𝑝𝑖 − 𝑜𝑖)

2𝑁
𝑖=1 . 

where 𝑝𝑖 is the predicted probability for individual 𝑖 and 𝑜𝑖  the observed event of individual 𝑖. 

The Dawid-Sebastiani score has the following notation for a negative-binomial [11] count data 
regression: 

𝐷𝑆𝑆(𝑁𝐵𝐵) =
1

𝑁
∑ (

(𝑦𝑖−𝜇𝑖)
2

𝜇𝑖(1+
𝜇𝑖
𝜃
)
+ 𝑙𝑜𝑔(𝜇𝑖(1 +

𝜇𝑖

𝜃
)))𝑁

𝑖=1 . 

and in terms of a Poisson distribution with 𝜇 = 𝜎2 = 𝜆: 

𝐷𝑆𝑆(𝑃𝑜𝑖) =
1

𝑁
∑ (

(𝑦𝑖−𝜆𝑖)
2

𝜆𝑖
+ 𝑙𝑜𝑔(𝜆𝑖))

𝑁
𝑖=1 . 

The calculation of these scores is implemented in the R package surveillance [12]. 
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Missing data 

Imputation setting 

The overall frequency of missing values was low (<5%). Nevertheless, we first applied multiple 
imputations using chained equations provided by the R package mice ([17]). The imputation was 
conducted independently for training data and validation data. 

Transformed variables, such as body mass index and strata of the PHQ score, were not imputed; 
instead passive imputation has been used, which was defined as: 

# mice::methods for imputation 

meths["bmi"] <- "~I(weight/((height/100)^2))" 

 

# a customized function to categorize phq score into strata 

mycutfun <- function(x) { 

 x <- cut(x,  

          right = FALSE, 

          breaks = c(0, 1, 5, 10, 15, Inf), 

          labels = c("no signs", "minimal", "mild", "moderate", "severe")) 

  

} 

 

# mice::methods for imputation 

meths["phq_strata"] <- "~I(mycutfun(phq_sum_score))" 
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Imputation diagnostics 

We used inbuilt functions of the R package mice for imputation diagnostics. Further, variance 
increase (%) by using Rubins’ rule [18] for calculating the pooled variance from the variance 
between and within the imputed data sets. 

Overall, the increase in variance was very low, for most covariates <1%. Due the small increase in 
variance and in line with recommendations for the application of multiple imputations in case of 
missingness < 5% [19] we restricted the imputations to 𝑚 = 1 in the training data.  

However, the validation data contained m=20 imputations. 

 

Table S6: Imputation diagnostics. 

Variable Category Location 
Before 

imputations 
After 

imputations 
V increase 

Household income  Mean 1,296.77 1,297.83 4.58 
BMI  Mean 28.28 28.29 0.38 
Body weight  Mean 81.26 81.27 0.12 
Body height  Mean 169.37 169.37 0.28 
Back pain (NRS)  Mean 2.72 2.73 0.28 
Impairment due to back pain (NRS)  Mean 1.05 1.06 0.38 
SF12 PCS  Mean 46.97 46.90 1.24 
PHQ-9 sum score  Mean 3.97 3.97 3.74 
Use of medication (last 7d)  Mean 2.49 2.49 0.46 
Family status Single Proportion 0.10 0.10 0.00 
 Married/Partner Proportion 0.77 0.78 0.00 
 Separated Proportion 0.06 0.06 0.00 
 Widowed Proportion 0.06 0.06 0.00 
Work categories Never working Proportion 0.01 0.01 0.00 
 At desktop, not physically Proportion 0.30 0.30 0.02 
 At desktop and physically demanding Proportion 0.13 0.14 0.02 
 Not at desktop, not physically Proportion 0.20 0.22 0.11 
 Not at desktop but physically demanding Proportion 0.32 0.34 0.14 
Physical demanding job yes Proportion 0.45 0.47 0.16 
 no Proportion 0.51 0.53 0.16 
Work status employable Proportion 0.54 0.55 0.01 
 retired Proportion 0.32 0.36 0.00 
 unemployed Proportion 0.09 0.10 0.01 
School years <10 Proportion 0.25 0.25 0.00 
 10 Proportion 0.53 0.53 0.00 
 >10 Proportion 0.22 0.22 0.00 
Physical activity No sport Proportion 0.22 0.22 0.01 
 1-2h/week Proportion 0.57 0.58 0.01 
 >2h/week Proportion 0.20 0.20 0.00 
Radiating back pain no Proportion 0.68 0.68 0.00 
 gluteal only Proportion 0.16 0.16 0.00 
 to knee Proportion 0.10 0.10 0.00 
 to lower leg Proportion 0.06 0.06 0.00 
Pressure pain yes Proportion 0.17 0.17 0.01 
 no Proportion 0.82 0.83 0.01 
NSAR no Proportion 0.90 0.90 0.00 
 yes Proportion 0.10 0.10 0.00 
Tingling, prickling yes Proportion 0.12 0.12 0.00 
 no Proportion 0.88 0.88 0.00 
Claudication yes Proportion 0.02 0.02 0.08 
 no Proportion 0.95 0.98 0.08 
Osteoarthritis yes Proportion 0.29 0.30 0.01 
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Variable Category Location 
Before 

imputations 
After 

imputations 
V increase 

 no Proportion 0.69 0.70 0.01 
Disc prolapse yes Proportion 0.09 0.09 0.00 
 no Proportion 0.90 0.91 0.00 
Inflammatory joint disease yes Proportion 0.05 0.06 0.01 
 no Proportion 0.93 0.94 0.01 
Competing disease None Proportion 0.79 0.79 0.00 
 One Proportion 0.16 0.16 0.00 
 >1 Proportion 0.04 0.04 0.00 
Physician visit No physician visit Proportion 0.18 0.19 0.01 
 GP visit only Proportion 0.56 0.56 0.01 
 Specialist only Proportion 0.03 0.03 0.01 
 GP and specialist Proportion 0.21 0.21 0.01 
Use of medication (last 7d, y/n) yes Proportion 0.71 0.71 0.00 
 no Proportion 0.28 0.29 0.00 
Depression no Proportion 0.69 0.71 0.02 
 yes Proportion 0.28 0.29 0.02 
Opioids no Proportion 0.98 0.98 0.00 
 yes Proportion 0.02 0.02 0.00 
Benzodiazepine no Proportion 0.98 0.98 0.00 
 yes Proportion 0.01 0.01 0.00 
Antidepressants no Proportion 0.94 0.94 0.00 
 yes Proportion 0.06 0.06 0.00 
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Comparative analyses 

For comparative analysis we applied randomforest (RF) in this study, which has been shown to 
provide excellent prediction accuracy [20,21]. In RF, bootstraps of original data, i.e. random 
samples of the data with replacement, are used to build ensembles of uncorrelated decision trees 
on so-called in-bag observations. 

It is advised to build a high number of trees (ntree) in RF but the number of trees is not considered 
a tuning parameter [22]. The following parameters have a higher impact on prediction accuracy: 

• the number of variables (mtry) considered for splitting the trees 

• the minimum terminal node size (nodesize), and 

• the sample size of inner bootstraps (sampsize). 

We used the R package tuneRanger to conduct this tuning [22].  
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Figure S5: Joined data means claims data and SHIP data analyzed together. Variable importance 
resulting from a tuned random forest approach (mtry=9, nodesize=60, sampsize = 1674, 
ntree=10000). 
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Results 

Association of covariates 

For most continuous or count variables we found low to moderate associations. Particularly the 
association of self-reported back pain (SHIP-data) with the frequency of ICD-10 codes for back 
pain (claims data) was low. 

 

Figure S6: Correlation plot of continuous or count data. 
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Best subset selection 

In this section, the distribution of mean scores across all 500 bootstrap samples is shown for the 
individual candidate variable, the full set and the best subset of all candidate variables. The scores 
obtained for the models in the claims data are much lower on average, i.e. the predictive value 
of these variables is higher than those for the SHIP data. 

Computational times for best subset were 28h for claims and SHIP data on two nodes à 16 cores, 
and 21h for joined best subsets on one node à 16 cores. 

Brier scores (Zero-part) 

 

Figure S7: Brier scores claims data. 
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Figure S8: Brier scores SHIP data. 

 

 

Figure S9: Brier scores joined data. 
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Dawid-Sebastiani scores (Count-part) 

 

Figure S10: Dawid-Sebastiani scores claims data. 

 

 

Figure S11: Dawid-Sebastiani scores SHIP data. 
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Figure S12: Dawid-Sebastiani scores joined data. 
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Goodness of fit 

To visualize the fit of the optimal model obtained from the joined data we used rootograms [23]. 
The bars in Figure S13 correspond to the observed counts of ICD-10 codes. The red line indicates 
the fitted response of the hurdle model from a Poisson distribution. 

 

Figure S13: Rootograms of the optimal model from the joined data evaluated in training data and 
the validation data. 

 

By design, the counts of the zero-part are perfectly fitted in the training data and slightly 
overestimated in the validation data, i.e. in the validation data the actual counts are slightly lower 
than what has been estimated by the model. The model fit is very reasonable. 
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Prediction accuracy and missing data 

In Figure S14 we have depicted the ROC curves of predictions in the validation data for each 
imputed data set (m=20). 

 

Figure S14: ROC curves for the best subset model applied on validation data with multiple 
imputations. 

  

There is almost no difference between the different data sets which relates (a) to the low 
magnitude of missing data in most covariates and (b) that particularly in those variables selected 
as the best subset missingness was <1%. 
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Subgroup analyses 
Table S7: Subgroup analyses through stratification for seek of care. 

 Seek of care for low back pain* 

Characteristic 0|0 0|1 1|1 1|0 
N 2229 267 601 740 
Age (years)     

Mean (SD) 49.9 (16.0) 49.8 (13.1) 56.3 (12.3) 58.7 (15.2) 
Age discrete     

<40 years 670 (30.1%) 64 (24.0%) 58 (9.7%) 102 (13.8%) 
40 to 69 years 1239 (55.6%) 186 (69.7%) 448 (74.5%) 419 (56.6%) 
> 69 years 320 (14.4%) 17 (6.4%) 95 (15.8%) 219 (29.6%) 

Sex     
male 1142 (51.2%) 110 (41.2%) 247 (41.1%) 316 (42.7%) 
female 1087 (48.8%) 157 (58.8%) 354 (58.9%) 424 (57.3%) 

Workability status     
Employable 1333 (59.8%) 174 (65.2%) 301 (50.1%) 298 (40.3%) 
Retired 663 (29.7%) 66 (24.7%) 253 (42.1%) 378 (51.1%) 
Unemployed 233 (10.5%) 27 (10.1%) 47 (7.8%) 64 (8.6%) 

Physical demanding job     
Yes 1005 (45.1%) 120 (44.9%) 285 (47.4%) 400 (54.1%) 
No 1224 (54.9%) 147 (55.1%) 316 (52.6%) 340 (45.9%) 

Household income     
Mean (SD) 1290 (656) 1410 (707) 1400 (632) 1200 (538) 
Missing 1100 [167, 5070] 1450 [149, 3580] 1360 [149, 3580] 1100 [167, 3580] 

Competing diseases     
None 1815 (81.4%) 229 (85.8%) 470 (78.2%) 514 (69.5%) 
One 335 (15.0%) 32 (12.0%) 115 (19.1%) 171 (23.1%) 
>One 79 (3.5%) 6 (2.2%) 16 (2.7%) 55 (7.4%) 

Inflammatory joint disease     
Yes 77 (3.5%) 10 (3.7%) 56 (9.3%) 66 (8.9%) 
No 2152 (96.5%) 257 (96.3%) 545 (90.7%) 674 (91.1%) 

Disc prolapse     
Yes 82 (3.7%) 13 (4.9%) 117 (19.5%) 106 (14.3%) 
No 2147 (96.3%) 254 (95.1%) 484 (80.5%) 634 (85.7%) 

Dysesthesia (tingling)     
Yes 174 (7.8%) 26 (9.7%) 130 (21.6%) 136 (18.4%) 
No 2055 (92.2%) 241 (90.3%) 471 (78.4%) 604 (81.6%) 

Back pain in last 3 month (NRS)     
Mean (SD) 2.07 (2.38) 2.56 (2.38) 3.79 (2.68) 3.76 (2.81) 

Back pain irradiation (ref: no)     
no 1761 (79.0%) 190 (71.2%) 281 (46.8%) 393 (53.1%) 
gluteal only 274 (12.3%) 40 (15.0%) 144 (24.0%) 146 (19.7%) 
to knee 136 (6.1%) 21 (7.9%) 102 (17.0%) 114 (15.4%) 
to lower leg 58 (2.6%) 16 (6.0%) 74 (12.3%) 87 (11.8%) 

Medication (NSAIDs, Opioids, 
Benzodiazepine) 

    

Yes 183 (8.2%) 26 (9.7%) 118 (19.6%) 151 (20.4%) 
No 2046 (91.8%) 241 (90.3%) 483 (80.4%) 589 (79.6%) 

Physician visit (last 4 weeks, self-reported)     
No physician visit 567 (25.4%) 50 (18.7%) 43 (7.2%) 57 (7.7%) 
GP visit only 1381 (62.0%) 169 (63.3%) 275 (45.8%) 358 (48.4%) 
Specialist only 42 (1.9%) 5 (1.9%) 43 (7.2%) 44 (5.9%) 
GP and specialist 239 (10.7%) 43 (16.1%) 240 (39.9%) 281 (38.0%) 

 

*Seek of care:  
0|0 = no ICD-10 codes suggestive for LBP in any of the analysis periods,  
0|1 = ICD-10 codes suggestive for LBP only during follow-up,  
1|1 = ICD-10 codes suggestive for LBP in all analysis periods,  
1|0 = history of back pain prior baseline and/or ICD-10 codes suggestive for LBP at baseline but not in the follow-up 
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