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Abstract: The enhancement of physical activity is highly correlated with the conditions of the built 

environment. Walking is considered to be a fundamental daily physical activity, which requires an 

appropriate environment. Therefore, the barriers of the built environment should be identified and 

addressed. Barriers can act as external stimuli for pedestrians, so pedestrians may diversely respond 

to them. Based on this consideration, this study examines the feasibility of information-entropy-

based behavioral analysis for the detection of environmental barriers. The physical responses of 

pedestrians were collected using an inertial measurement unit (IMU) sensor in a smartphone. After 

the acquired data were converted to behavioral probability distributions, the information entropy 

of each grid cell was calculated. The grid cells whereby the participants indicated that environmen-

tal barriers were present yielded relatively high information entropy values. The findings of this 

study will facilitate the design of more pedestrian-friendly environments and the development of 

diverse approaches that utilize citizens for monitoring the built environment. 

Keywords: walkability; environmental barrier; inertial measurement unit (imu); information  

entropy; wearable sensing; built environment 

 

1. Introduction 

The promotion of physical activity (PA) in the general population is an essential fac-

tor that improves public health [1,2]. Numerous previous studies have shown how the 

built environment influences the behavior of pedestrians [3–8]. As the most widely prac-

ticed form of both transportation and PA, walking and the walking environment have 

been the focus of many studies [9–11]. In addition to environmental benefits compared to 

driving, walking has also been linked to diverse health benefits in terms of reducing obe-

sity [12–14], improving cardiovascular health [15,16], managing diabetes[17,18], and im-

proving one’s quality of life [19,20]. To date, several built environments have been iden-

tified that correlate to PA, including walking activity. Since walking activity is usually 

performed in a built environment that incorporates various elements [21], pedestrian 

walkability is significantly affected by the conditions of the built environment [4,6,7]. 

One of the methods for improving the walkability of a neighborhood is to eliminate 

environmental barriers as an individual’s mobility may be impeded by diverse environ-

mental barriers. An environmental barrier, in terms of walkability, can be defined as an 

environmental feature that restricts the comfortable use of the built environment by an 

individual [22,23]. Considering that an environmental barrier is the result of the interac-

tion between an individual’s physical capacity and the environmental demands, it can be 

interpreted as a relative concept [24]. For example, a physically impaired person may be 

uncomfortable in a built environment that is designed for a normal person. An 
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environmental feature that causes discomfort in a certain group of pedestrians can become 

an environmental barrier [25–27]. 

To identify and address environmental barriers, governmental agencies have under-

taken various approaches including inspection by experts and encouraging individuals to 

self-report [8,28]. In these approaches, inspectors observe the built environment to iden-

tify potential environmental barriers and individuals report the environmental features 

that can act as environmental barriers in their daily living [8,28–32]. Although these ap-

proaches can identify and create a list of potential environmental barriers, there may be 

several problems in the process of identifying these impediments. First, the inspection and 

self-reporting process is time-consuming and expensive, especially for extensive areas 

[8,31]. Second, these methods may omit certain environmental barriers as some barriers 

are constant objects (fixed to a specific built environment) and others are spatial-temporal 

objects (e.g., temporary obstacles on sidewalks, illegal parking around a crosswalk, etc.). 

Recently, various sensing methods based on image processing (e.g., images, videos, 

and lidar) have been developed to identify potential environmental barriers [33–35]. Im-

age-based approaches collect data related to the interaction of pedestrians with the built 

environment. Although these approaches solve the problems associated with conven-

tional techniques in that they are not time-consuming, labor-intensive, and are not based 

on discontinuous monitoring, they may not be well-suited for the detection of environ-

mental barriers. It can be considered that environmental barriers are determined based on 

the interactions of individuals with the built environment [8]. The environmental barrier 

is a relative concept as each individual has distinct characteristics, and there are various 

situational contexts in the built environment [23,36]. Therefore, it may be difficult to detect 

environmental barriers using one objective criterion [31]. Moreover, image-based meth-

ods suffer from the limitation of the line of sight [28,32]. For example, an image acquired 

by a camera can include more than two individuals. Given that a camera usually has one 

angle, more than two individuals can be overlapped in an image. Such overlaps may cause 

a problem in that it is often not possible to secure the line of sight required for the behav-

ioral analysis of the obstructed individual. 

As environmental barriers may cause abnormal behavior of pedestrians, the ability 

to capture a scene that a pedestrian interacts with to identify the environmental barrier is 

important. A pedestrian’s abnormal response may be the result of the interaction between 

the individual and an environmental barrier [32]. Fortunately, recent developments in 

wearable sensing technologies have shown the potential to analyze the interactions be-

tween pedestrians and the built environment [8,30–32,37]. Wearable sensing technologies 

have been used to monitor the conditions of the built environment by collecting and ana-

lyzing the physiological responses of individuals [e.g., inertial measurement unit (IMU), 

photoplethysmogram (PPG), electrodermal activity (EDA), electrocardiography (ECG), 

etc.]. These methods can capture specific features associated with a scene when an envi-

ronmental barrier causes an abnormal response of a pedestrian by directly monitoring the 

interaction between a pedestrian’s response and the built environment. 

The abnormal responses of pedestrians have been used to detect environmental bar-

riers [8,28,31,38]. By focusing on the reason why abnormal responses occur when a pedes-

trian encounters an environmental barrier, the detection of the associated abnormal re-

sponses can indicate its existence. In particular, several studies have attempted to utilize 

gait patterns for the detection of environmental barriers [8,28,31]. In these studies, the au-

thors assumed that human gait patterns are constant in the absence of external stimuli. As 

such, human gait patterns may be dispersed when there is an external stimulus such as 

an environmental barrier. Based on this assumption, the studies investigated whether the 

location of abnormal gait patterns coincided with the location of environmental barriers. 

The results of these investigations demonstrated the feasibility of utilizing gait patterns 

for the detection of environmental barriers. 

Though previous studies have revealed the potential use of abnormal behavior in the 

detection of environmental barriers, the method of identifying this irregular response is 



Int. J. Environ. Res. Public Health 2021, 18, 11727 3 of 13 
 

 

not optimal. In previous studies, abnormality was measured based on the intensity of the 

responses of several individuals at a specific point [8,28,31,38,39]. Bisadi et. al. [39] inves-

tigated the correlation between environmental barriers using the average of the Maximum 

Lyapunov Exponential (MaxLE) and heart rate values. In a study by Lee et. al. [32], hot 

spot analysis was used based on the average of EDA values for a specific section. Kim et. 

al. [28] attempted to identify environmental barriers based on segment-specific averages 

of EDA, gait pattern, and heart rate. Although these studies demonstrated the potential 

use of abnormal behaviors in the detection of environmental barriers, the method for de-

termining abnormal behavior can potentially be improved. Previously reported studies 

have emphasized that individual behavioral characteristics are different [8,28,38,39]. As 

such, different individuals may respond differently to the same environmental barrier. 

For example, if there is an obstacle on a walking path, a pedestrian may avoid it, another 

individual may go over it, and so on. As previously indicated, environmental barriers may 

elicit different reactions depending on the individual. Thus, a measurement metric based 

on the diversity of individual responses to environmental barriers is required. 

The purpose of this study is to develop and test a method for the identification of 

environmental barriers using data (response variability of individuals) collected using 

wearable sensors. Specifically, this study aims to: (1) develop a computational model that 

quantifies the various responses of individuals that can be induced by environmental bar-

riers; and (2) investigate the feasibility of the proposed method via experimental testing. 

2. Materials and Methods 

2.1. Hypothesis 

According to entropy theory, if one event is more likely to occur than another, then 

the amount of information that can be determined based on observations of that event is 

small [40,41]. Conversely, more information can be obtained by observing rare events 

[42,43]. Several approaches have been proposed to utilize the Shannon entropy or infor-

mation entropy to understand the interaction between pedestrians and external condi-

tions. Zhang et al. [44] attempted to analyze crowd safety based on the distribution uni-

formity. Li et al. [45] Shannon entropy based on data collected from pressure sensors to 

measure overcrowding conditions. Procházka and Olševičová [46] quantified emerging 

patterns using Shannon entropy. If we examine the amount of information (information 

entropy) based on the interaction between an individual’s response and the walking en-

vironment, the interaction can be understood based on the following concept. 

In the absence of external stimuli, human gait tends to maintain homeostasis [47]. 

External stimuli disturb the homeostasis of one’s gait, which may be interpreted as differ-

ent responses to stimuli [37,38]. As such, human behavior is more predictable in stable 

physical conditions and is less predictable when environmental barriers are present. 

Therefore, environmental barriers in a built environment increase the unpredictability of 

responses as they may cause disruptions in normal routines. For example, although most 

pedestrians (users) perform their normal gait on a well-maintained sidewalk, they will 

often modify their response in the case of a defective sidewalk. If a pedestrian recognizes 

an environmental barrier, he/she may slightly modify his/her path to avoid the barrier or 

perhaps cautiously walk over it (change his/her gait pattern). Even in instances wherein 

the individual does not recognize the barrier, it may affect his/her gait pattern. 

2.2. Development of Entropy-Based Abnormality Assessment Method 

In information theory, the entropy of a random variable is the average level of infor-

mation or uncertainty [48–50]. Shannon [51] introduced the concept of information en-

tropy to quantify the uncertainty of a random variable. The Shannon entropy (SE) can be 

calculated using Equation (1). 

�(�) =  − � �(��) log �(��)
�

���
log �(��) (1)
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where H(X) is the entropy, and p(xi) is the probability distribution. 

To detect environmental barriers using information-entropy-based on a pedestrian’s 

behavioral response, it is necessary to first calculate the distribution of the response (p(xi) 

in Equation (1)) at a specific point. The pedestrian’s behavioral response can be expressed 

as a wide variety of features. In this study, the distribution of the responses was estimated 

based on the strength of the responses used in previous studies [8]. The intensity of the 

reaction was expressed as the sum of the three-axis acceleration acquired based on the 

inertial measurement unit and can be expressed as Equation (2). 

����� =
�∑ ���

� + ��
� + ��

��
��� �

�
 (2)

where n is the total number of IMU measurements of the jth participant on the ith grid 

cell, xk is the kth acceleration of the anterior-posterior axis, yk is the kth acceleration of the 

horizontal axis, and zk is the kth acceleration of the vertical axis. 

Although an signal vector magnitude (SVM) has the potential to capture a subtle 

bodily response [52–54], an SVM range varies depending on the individual because 

his/her physical characteristics and interaction with an environmental barrier are unique. 

This difference may lead to a difficultly in the integration of multiple behavioral re-

sponses. Therefore, the SVM values of each pedestrian were normalized to correct for in-

ter-individual variance [52]. After calculating the normalized SVM values, the normalized 

values were classified in the range of 0.2. The total number of sections used was 40. The 

normalized values of gaits ranged from −3.0 to 5.0 (x-axis in a probability distribution) 

and each section had a range of 0.2. For example, the first section ranged from −3.0 to −2.8 

(in normalized value of gait) and the last symbol ranged from 4.8 to 5.0. Moreover, to 

understand the range in terms of gait, it should be noted that the closer the symbol’s range 

is to 0 (e.g., range is from −0.2 to 0.0, and range from 0.0 to 0.2), the closer it is to normal 

walking. The classified values of all the subjects were sorted by location, and the sorted 

values were used to establish a probability distribution by location. 

Figure 1 illustrates the five steps for calculating the information entropy. First, each 

participant’s SVM values for all the experiments were collected. Second, all the collected 

data of each subject were calculated as SVM values, and these SVM values were normal-

ized. Third, the normalized SVM values were distributed to the corresponding grid cells. 

Fourth, the probability distribution of each grid cell was established. Finally, the entropy 

of each grid cell was calculated using Equation (1). 

 

Figure 1. Example of the calculation process of entropy. 
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2.3. Experiment Design 

To confirm the feasibility of identifying environmental barriers using information 

entropy values based on a pedestrian’s behavior, an experiment was performed in a walk-

ing environment. A total of 36 participants (20 males and 16 females) were recruited in-

cluding 14 participants aged 65 years or older. None of the participants had a history of 

medical problems and they each voluntarily expressed their intention to participate in the 

experiment. Prior to the experiment, all participants were informed that the trial had been 

approved by the institutional review board (IRB) and that all data would be anonymized 

and used for research purposes only. Table 1 summarizes the demographic information 

of the participants. 

Table 1. Summary of participants’ information. 

Statistical Parameter Age Height (cm) Weight (kg) 

Mean 42.28 170.86 70.63 

Median 31 171 68.94 

Standard Deviation 20.87 8.07 11.51 

Maximum 70 183 90.48 

Minimum 20 158 48.76 

All of the participants were asked to walk at a comfortable pace along a route estab-

lished for this study (total distance of approximately 1 km). Each participant attached a 

smartphone to his/her waist. A fitness belt was used to affix the smartphone to the body 

during the experiment. During data acquisition, the smartphone collected 3-axis acceler-

ation data and location information. To minimize the effect of changes in the external tem-

perature or humidity, the experiment was conducted for 3 groups of 12 individuals over 

3 days, from 3 September 2021 to 5 September 2021. During the experiment, the tempera-

ture was between 26 °C and 28 °C, and the humidity was between 30 and 40%. 

The details of the experiment are shown in Figure 2. First, each participant listened 

to an introduction about the experiment for approximately 10 min at the Start Point (Point 

S in Figure 2) and walked along the set path to the finish point. After a break of 10 min, 

the experimenter and the participant walked along the path together to examine and rec-

ord the points at which the participant experience discomfort or an environmental barrier. 

This information was used to analyze the correlation between the information entropy 

and the environmental barriers suggested by the participants in the data analysis process. 

 

Figure 2. Overview of the experimental site including the path and environmental barriers. 
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3. Results 

After the participants walked along the path, it was traversed a second time with an 

experimenter to document the locations where discomfort was experienced, which were 

determined to be environmental barriers in this study. Table 2 exhibits information re-

garding the type and location of the environmental barriers. There are a total of 16 envi-

ronmental barriers. Apart from broken blocks, which were investigated in several studies 

[8,29], illegal parking on sidewalks and stocked materials were also recognized as envi-

ronmental barriers. The location of the environmental barriers was used for comparison 

with the information entropy value of each grid cell. 

Table 2. Environmental barriers at the experimental site. 

Cell # Description Figure Cell # Description Figure 

3 Broken blocks 98 Obstacle 

12 
Parked vehicles with 

narrow path 
120 Broken blocks 

33 
Parked vehicles with 

narrow path 
123 

Parked vehicles with 

narrow path 

48 
Parked vehicles 

(narrow path) 
136 

Parked electric 

scooter  

64 Illegal smoking area 144 
Broken and unfixed 

blocks 

69 Unfixed blocks 147 
Illegally stocked ma-

terials  

70 Illegal smoking area 156 
Parked vehicles with 

narrow path 

84 Stocked materials 161 
Illegally parked bicy-

cle 

92 Trash 172 Unfixed manhole 

The results of the experiments are presented in Figure 3. Each result was calculated 

based on the information entropy and the average of the SVM values collected from all of 

the participants. There are 18 grid cells marked in grey that represent the existence of 

environmental barriers as determined based on surveys performed in the second phase of 

the experiment. Figure 3a shows the SVM value of each grid cell. In several grey locations, 

the SVM values are higher than those of the cells which do not contain an environmental 

barrier. The average of the SVM values in the cells associated with environmental barriers 

is 14.56, and the average of the SVM values in the cells that are not associated with envi-

ronmental barrier cells is 13.93. Similar to previous studies [8,28,39], this result shows an 

increase in the intensity of the response of the pedestrians to the environmental barriers. 
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However, half of the 18 environmental barriers did not exhibit a significant difference in 

terms of the SVM values. In particular, the SVM values of cells (48, 64, 68, 70 84, 92, 136, 

161, and 172) that are associated with environmental barriers do not show clear peak 

points. Although several cells with environmental barriers do not show a clear peak point 

in SVM values, there is a statistical difference between cells with an environmental barrier 

and cells that do not contain an environmental barrier (α < 0.05, p = 0.009). Therefore, they 

are not manifest in the data in a way that could serve as crucial information for detecting 

an environmental barrier in a walking environment. 

Figure 3b illustrates the results for the information entropy by location. In cells that 

do not contain an environmental barrier, the range of the information entropy values 

ranged from 3.290 to 3.898, with an average of 3.606. Considering that human behavior 

during walking follows a regular cycle [37,38,44], the probability associated with the cells 

that do not contain an environmental barrier follows a normal distribution (high regular-

ity). However, the information entropy values associated with environmental barriers are 

relatively high compared to those of cells that do not contain an environmental barrier. In 

the case of environmental barriers, information entropy values range from 4.082 to 5.176, 

and the average is 4.588. Moreover, all the information entropy values in the cells associ-

ated with the environmental barriers are over 4.0. In addition, a t-test was performed to 

confirm the differences between the younger and elderly groups. The significance level 

was set at α < 0.05, and the p-value was less than 0.001. Based on this result, it can be 

confirmed that the difference between the two groups is statistically significant. 

 

Figure 3. Calculation results: (a) Average of SVM values; and (b) Information entropy values. 

Comparing the SVM value and the information entropy value in more detail, the fol-

lowing three interesting points can be observed. First, both the peak value of the SVM and 

the peak value of information entropy coincide with the environmental barrier at Box No. 

1 in Figure 3. However, in Box No. 2, the SVM values in the cell corresponding to the 

environmental barrier are not represented as peak values. However, in the case of infor-

mation entropy, the peak values and the existence of environmental barriers coincide. The 

SVM values do not exhibit peak values even when the behavior of pedestrians changes 
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due to the environmental barriers because their response is diverse. Some participants 

displayed a stronger reaction (high magnitude of the response) to an environmental bar-

rier; others displayed behaviors including walking cautiously in response to external stim-

uli. In this case, the average SVM value at a point may not coincide with the value associ-

ated with the existence of an environmental barrier. Although the SVM values in Box No.2 

do not coincide with the existence of environmental barriers, the peak points of infor-

mation entropy and the existence of environmental barriers coincide. As the variability of 

the response increases, the irregularity increases. As such, as the amount of information 

increases, the value of the information entropy increases. Finally, the points identified by 

red rectangles for Box No. 3 in Figure 3a show higher SVM values than the average value 

despite the absence of environmental barriers. Conversely, the points identified by the red 

rectangles in Box No. 3 in Figure 3b are within the range of information entropy values 

for cells that do not contain an environmental barrier. 

To confirm the feasibility of using information entropy to detect environmental bar-

riers, the relationship between each calculated value (SVM and information entropy based 

on the presence or absence of environmental barriers was quantitatively compared. The 

SVM and information entropy values of the cell are continuous variables, whereas the 

existence of environmental barriers can be represented as a binary variable (existence as 1 

and nonexistence as 0). To investigate the relationship between the existence of an envi-

ronmental barrier and the response of the participant in a statistical manner, this study 

used the point biserial correlation coefficient. The point biserial correlation coefficient is 

generally used when one variable is dichotomous and the other is continuous. For this 

coefficient, the values that relate to the existence of the environmental and the pedestrian’s 

response were calculated using Equation (3) as follows: 

2
1 0 1 0

2

1

) ( / )(

1
( )

pb n

i
i

M M n n n
r

X X
n 





 

(3)

where rpb is the point biserial correlation coefficient; M1 is the mean value of the continuous 

variable X (SVM values or information entropy values) for all data points in group 1 (ex-

istence of environmental barrier); M0 is the mean value of the continuous variable X (SVM 

values or information entropy values) for all data points in group 2 (nonexistence of en-

vironmental barrier); n1 is the number of data points in group 1; n0 is the number of data 

points in group 2, and n is the total sample size. 

Based on the point biserial correlation, the correlation between each metric and the 

existence of an environmental barrier was compared. The coefficients of each metric were 

0.254 (α < 0.05, p = 0.002) for the SVM values and 0.842 (α < 0.05, p < 0.001) for the infor-

mation entropy values. According to previous studies [49,50], a correlation coefficient 

over 0.7 indicates a high degree of correlation. In the results, it was determined that the 

information entropy (of a pedestrian’s collective response) and the existence of environ-

mental barriers are highly correlated. The correlation of SVM is much lower than the cor-

relation of information entropy. As previously mentioned, the SVM values of cells (num-

ber 48, 64, 68, 70 84, 92, 136, 161, and 172 in Figure 3a) do not match well with the existence 

of environmental barriers. Upon comparing the information entropy values are well 

matched with the existence of environmental barriers, the more unmatched points of the 

SVM decrease the coefficient of correlation. As previously indicated, environmental bar-

riers can be partially identified only by the intensity of the pedestrian’s behavior (SVM 

value). However, it can be experimentally confirmed that the value of the information 

entropy, which considers that pedestrians have a diversity of responses owing to the char-

acteristics of the environmental barrier, can be more effective for detecting environmental 

barriers.  
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4. Discussion 

4.1. Effectiveness of Data Collection from Diverse Groups 

In this study, 22 individuals in their 20’s to 30’s (the younger group) and a second 

group with members over 65 years (the elderly group) were recruited. Figure 4 shows the 

information entropy values of each group according to location. Overall, the younger 

group and the elderly group show similar plots. However, the average values of the 2 

groups are 3.331 (the younger group) and 4.268 (the elderly group). Apart from the simi-

larity of the patterns, the average values of the information entropy of these two groups 

show a clear difference. In particular, several cells show different patterns of information 

entropy between the two groups for the same environmental barrier, as indicated by the 

three blue boxes in Figure 4. In cell no.33, motorcycles were illegally parked on the side-

walk. The elderly group show a relatively high information entropy value although the 

space on either side of the motorcycle (approximately 80 cm) was sufficiently wide for a 

pedestrian to pass through. Second, there was an illegal smoking area in cell no. 64. When 

the experiment was conducted, smokers were temporarily present. A smoker was in the 

cell when six of the younger group passed that cell during the experiment. Although it 

was a temporary situation, the six younger participants appeared to have exhibited unu-

sual behavior in the process of avoiding the smoking area. For this reason, it appears that 

a high information entropy value was observed for this cell. Finally, in cell 144, the pave-

ment blocks of the pedestrian path were not fixed. Although the area of broken and un-

fixed blocks was not large, it was determined that they served as an environmental barrier 

that could induce significant behavioral changes in the elderly group. In addition, a t-test 

was performed to confirm the differences between the younger and elderly groups. The 

significance level was set at α < 0.05, and the p-value was less than 0.001. Based on this 

result, it can be confirmed that the difference between the two groups is statistically sig-

nificant. A comparison of the information entropy values of the two groups indicates that 

the data collected from various groups can assist in the detection of additional potential 

environmental barriers. 

 

Figure 4. Information entropy by group: (a) Younger group; and (b) Elderly group. 
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4.2. The Possibility of Wearable-Based Sensing Approaches for Detecting Environmental Barriers 

Built environmental monitoring and assessment is usually conducted by experts or 

trained inspectors from governmental agencies. Despite the importance of maintaining 

sufficient functions and conditions of the built environment for citizens, the time interval 

between inspections may be long depending on the availability of staff and funding. For 

this reason, continuous monitoring of the built environment is rarely performed. The re-

cent development of wearable sensing devices and the innovation of people-centric sens-

ing is expected to not only solve existing problems, but also provide new opportunities. 

If the users of a built environment use wearable equipment and supply data acquired 

during daily activity, this can serve as the basis for monitoring. The information-entropy-

based approach proposed in this study can provide information on the interaction be-

tween citizens and environmental barriers. In particular, this study suggests a method 

wherein data can be continuously collected and utilized data to identify environmental 

barriers using smartphones. The proposed approach can identify a location using an en-

tropy value, which facilitates identification based on continuous monitoring. Despite 

these advantages, several challenges must be addressed to improve the feasibility of the 

approach, including the recruitment and sampling of participants [55], and the protection 

of their privacy [56]. 

4.3. Contibutions of the Proposed Method 

The information entropy-based environmental barrier detection method proposed in 

this study hypothesizes that pedestrians’ responses become more irregular when environ-

mental barriers are present. This hypothesis was confirmed through the results of the ex-

periments. Information entropy is a metric used to confirm the existence of environmental 

barriers. When there is an environmental barrier, pedestrians exhibit various reactions in 

response to the barrier. Information entropy based on the diversity of behaviors is highly 

correlated with the existence of environmental barriers compared to existing intensity-

based approaches. The reason for this result can be inferred as follows. First, responses 

due to individual physical and cognitive differences are diversified, and information en-

tropy is a metric that can represent this diversity well. In addition, information entropy is 

the average of all the available information. That is, various responses to the external en-

vironment mean that the amount of information increases, which in turn implies that even 

if only some of the pedestrians show irregular responses, they are included in the infor-

mation entropy calculation process. Therefore, information entropy can be used as a met-

ric to find the discomfort groups (e.g., the elderly, children, disables, etc.) that may be 

vulnerable to environmental barriers. Therefore, it can be observed that the information 

entropy of pedestrians has high utility for environmental barrier detection. In addition, 

the method proposed in this study can enable citizens to play the role of data providers 

in future smart cities. In other words, a citizen with a smartphone generates data during 

the walking process, and the server analyzes the data to automatically identify environ-

mental barriers. This analysis can be performed in near-real-time if the server has suffi-

cient data transmission/reception and processing capabilities. 

4.4. Limitations and Future Research 

This study focused on investigating the feasibility of utilizing information-entropy-

based behavioral analysis for detecting environmental barriers. Although the results indi-

cate that the suggested approach is feasible, there may be several limitations related to its 

real-world application such as diverse pedestrians and their behavior, and complex envi-

ronments. In this study, the recruited participants were healthy individuals who had no 

discomfort in walking. However, some of the participants may have been more sensitive 

to the conditions of the walking environment or the presence or absence of environmental 

barriers than others. In particular, it was necessary to consider children or individuals 

who required assistive devices (e.g., wheelchairs, canes, walkers, etc.) because their 
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ambulatory characteristics are different from those of normal healthy adults. Second, the 

walking environment that was investigated in the study did not effectively represent a 

typical real-world environment. In the real world, not only the fixed walking environ-

ment, but also the non-fixed walking environment must be considered. For example, there 

are factors such as the movement of vehicles or other pedestrians in the walking environ-

ment. In this study, the temporary environmental barriers such as the smokers in cell No. 

64 may be considered as a time-dependent factor. Moreover, privacy issues must also be 

resolved for the general application of the proposed approach. In this study, the authors 

collect data from people’s daily lives and identify environmental barriers. In this process, 

the travel route, length of stay, and physical activity can be examined via the individual’s 

daily life data, and as a result, the potential infringement of privacy must be considered. 

In the investigation, the authors manually handled and anonymized all the data collected 

from the participants. Once the suggested approach is practically applied to a broad extent 

such as at the city level, such a manual anonymization process may not be possible. Thus, 

data processing for anonymization and encryption will be investigated in the future. 

5. Conclusions 

Environmental barriers in the walking environment may cause discomfort to pedes-

trians or serve as a factor that hinders physical activity. Therefore, environmental barriers 

in a built environment should be identified and addressed. However, current practices 

such as surveys and inspections by experts are usually time-consuming and labor-inten-

sive. Moreover, they are typically not continuous. To address these issues, the feasibility 

of information entropy using data obtained via wearable sensors was investigated to de-

tect environmental barriers. In this respect, it was hypothesized that there is a relationship 

between information entropy and environmental barriers. To test this hypothesis, 36 par-

ticipants were recruited, and the participants participated in an experiment that involved 

the attachment of a smartphone to their body. After data collection, the probability distri-

bution of the gait data for each grid cell was obtained and the information entropy was 

calculated. The environmental barriers and information entropy obtained at the 1 km site 

showed a high correlation. The findings indicate that information entropy can be an effec-

tive metric for the identification of environmental barriers. 

The main contribution of this paper is the confirmation of the correlation between 

the existence of an environmental barrier and the associated information entropy value 

owing to the response of a pedestrian. In particular, an environmental barrier acts as ex-

ternal stimuli that can hinder a pedestrian’s normal gait. Moreover, the wearable-sensor-

based approach utilized in this study facilitates continuous and facile monitoring of the 

walking environment. This approach can be extended to serve as the basis of people-cen-

tric sensing and participatory sensing for the improved monitoring of a built environment. 
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