
 

 
 

 

 
Int. J. Environ. Res. Public Health 2021, 18, 11355. https://doi.org/10.3390/ijerph182111355 www.mdpi.com/journal/ijerph 

Article 

In Silico Core Proteomics and Molecular Docking Approaches 

for the Identification of Novel Inhibitors against  

Streptococcus pyogenes 

Abdur Rehman 1,†, Xiukang Wang 2,†, Sajjad Ahmad 3,†, Farah Shahid 1, Sidra Aslam 1,*, Usman Ali Ashfaq 1,*,  

Faris Alrumaihi 4, Muhammad Qasim 1, Abeer Hashem 5, Amal A. Al-Hazzani 5 and Elsayed Fathi Abd_Allah 6 

1 Department of Bioinformatics and Biotechnology, Government College University,  

Faisalabad 38000, Pakistan; abdurrehman93@gcuf.edu.pk (A.R.); farahshahid24@gcuf.edu.pk (F.S.);  

qasemawan@gmail.com (M.Q.) 
2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 

wangxiukang@yau.edu.cn 
3 Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;  

sajjad.ahmad@abasyn.edu.pk 
4 Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University,  

Buraydah 51452, Saudi Arabia; f_alrumaihi@qu.edu.sa 
5 Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460,  

Riyadh 11451, Saudi Arabia; habeer@ksu.edu.sa (A.H.); alhazzani@ksu.edu.sa (A.A.A.-H.) 
6 Plant Production Department, College Food and Agricultural Sciences, King Saud University,  

P.O. Box 2460, Riyadh 11451, Saudi Arabia; eabdallah@ksu.edu.sa 

* Correspondence: sidraaslam23@gcuf.edu.pk (S.A.); ashfaqua@gcuf.edu.pk (U.A.A.) 

† These authors contributed equally to this study. 

Abstract: Streptococcus pyogenes is a significant pathogen that causes skin and upper respiratory 

tract infections and non-suppurative complications, such as acute rheumatic fever and post-strep 

glomerulonephritis. Multidrug resistance has emerged in S. pyogenes strains, making them more 

dangerous and pathogenic. Hence, it is necessary to identify and develop therapeutic methods that 

would present novel approaches to S. pyogenes infections. In the current study, a subtractive pro-

teomics approach was employed to core proteomes of four strains of S. pyogenes using several 

bioinformatic software tools and servers. The core proteome consists of 1324 proteins, and 302 

essential proteins were predicted from them. These essential proteins were analyzed using 

BLASTp against human proteome, and the number of potential targets was reduced to 145. Based 

on subcellular localization prediction, 46 proteins with cytoplasmic localization were chosen for 

metabolic pathway analysis. Only two cytoplasmic proteins, i.e., chromosomal replication initiator 

protein DnaA and two-component response regulator (TCR), were discovered to have the poten-

tial to be novel drug target candidates. Three-dimensional (3D) structure prediction of target pro-

teins was carried out via the Swiss Model server. Molecular docking approach was employed to 

screen the library of 1000 phytochemicals against the interacting residues of the target proteins 

through the MOE software. Further, the docking studies were validated by running molecular 

dynamics simulation and highly popular binding free energy approaches of MM-GBSA and 

MM-PBSA. The findings revealed a promising candidate as a novel target against S. pyogenes in-

fections. 
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1. Introduction 

S. pyogenes is a catalase-negative, β-hemolytic, oxidase-negative, and Gram-positive 

streptococcus. It is also called group A streptococcus (GAS). On blood agar plates, it 

forms pinpoint colonies at 5 to 10% CO2 [1]. S. pyogenes cells are non-motile and generally 

grow in the form of pairs or chains [2]. S. pyogenes infections are extremely contagious. 

Airborne droplets, bacterially contaminated surfaces or objects, hand contact with nasal 

discharge, skin contact with contaminated lesions, or contaminated food sources are all 

possible modes of transmission. The frequency of S. pyogenes infections varies depending 

on the clinical manifestations of the infection in different parts of the world [3]. 

S. pyogenes is accountable for a variety of diseases, such as pharyngitis, scarlet fever, 

erysipelas, necrotizing fasciitis, septicemia, cellulitis, acute glomerulonephritis, rheu-

matic fever, and toxic shock syndrome [4]. S. pyogenes infections in humans have a sig-

nificant economic impact, but no potential drug exists to prevent them [5]. 

Intramuscular benzathine or oral penicillin for 10 days is the preferred treatment for 

bacterial pharyngitis. This is a low-cost treatment with a limited range of activities. 

Clindamycin or vancomycin can be used to treat severe invasive S. pyogenes infections 

[6,7]. The macrolides are now considered a third-line treatment for streptococcal throat 

infections because few strains of S. pyogenes have become resistant to them [8]. The 

emergence of antibiotic-resistant Streptococci strains has shifted the focus of medical re-

search toward the progress of new vaccines and novel antibiotics [9]. 

Hence, finding new targets in S. pyogenes is important. Various genomic disciplines 

can be combined to discover new pharmacological targets for inhibitor development. The 

likelihood of identifying relevant targets by computational approaches and the integra-

tion of “omics” data, such as metabolomics, genomics, and proteomics, has steadily in-

creased in the present postgenomic era. Proteomic techniques, i.e., comparative and 

subtractive proteomics, are increasingly commonly used for identifying and predicting 

potential drug targets for various pathogenic bacteria [10]. In comparison with tradi-

tional methods, these methods save time, are faster, and are more cost-effective in the 

drug design process [11]. Using the subtractive proteomics approach, potential targets 

and vaccine candidates for various pathogenic bacteria have been identified over the last 

several years [12,13].  

In the current study, the core proteome of four strains of S. pyogenes was analyzed to 

employ various subtractive proteomics approaches. The essential proteins required for 

bacterial survival were identified using a variety of computational software tools. To 

prevent potential drug cross-reactivity with host and bacterial proteins, we analyzed 

both metabolic and host non-homology pathways, as well as bacterial protein involve-

ment in several host metabolic processes. The study was expanded to model the 3D 

structures of the likely drug targets using the SWISS-MODEL to identify a selective and 

potent inhibitor using docking studies. The findings of this study could help in the de-

velopment of effective drug targets for S. pyogenes. 

2. Materials and Methods 

2.1. Core Proteome Retrieval 

Complete proteomes of four S. pyogenes strains were downloaded from UniProt 

(European Bioinformatics Institute (EMBL-EBI), Hinxton, UK) [14]. UniProt is a com-

prehensive database of protein sequences and functional annotations. Proteomes were 

subjected to OrthoFinder program (University of Oxford, Oxford, UK) without altering 

the default parameters [15]. As the name OrthoFinder program indicates, this program 

performs calculations based on BLAST searches. Therefore, internal scripts were devel-

oped for the identification of core genes and the description of genes expressed in all 

strains being studied. 

  

https://www.ebi.ac.uk/
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2.2. Identification of Drug Targets 

The key cellular function of microbes is performed by essential proteins. Essential 

proteins are thought to be critical for cell survival [16]. Essential proteins were obtained 

through Geptop 2.0 server (University of Electronic Science and Technology of China, 

Chengdu, China) at cutoff score of 0.24 [17]. A BLASTp analysis of essential proteins was 

performed against the human proteome to identify functional similarities. The query 

coverage of >70% and identity of ≤30% were used to define non-homologous proteins. 

Predicting protein subcellular localization is important for genome annotations and ge-

nome analyses in bacteria because these proteins can be used as targets or candidates for 

vaccines. The BUSCA server (Bologna Biocomputing Group, Bologna, Italy) was em-

ployed for prediction of subcellular localization of proteins. Bacterial metabolic pathway 

enzymes that are both essential and common were also analyzed to identify drug targets 

[18]. The KEGG database was used to compare metabolic pathways in H. sapiens and S. 

pyogenes [19]. The metabolic pathways that are unique to S. pyogenes and not present in 

humans were chosen. Hence, proteins with unique metabolic pathways were chosen for 

further research. 

2.3. Structure Prediction 

After complete analysis and retrieval of target proteins sequence, those proteins 

were subjected for structure prediction. SWISS-MODEL tool was used for the structure 

prediction [20]. SWISS-MODEL is a complete functional protein structure homology 

modeling server that was accessed by Expasy web server. 

2.4. Structure Evaluation 

Accurate evaluation of the 3D model is considered as one of the core elements of 

computational structure prediction [21]. Scientists are making groundbreaking discov-

eries in computational structural biology as a result of new sequencing technologies that 

have emerged in recent years. The emergence of rapidly endorsed and highly efficient 

approaches for structure evaluation has paved new ways to qualitatively estimate the 

protein structures. In this work, refined drug targets were further qualitatively estimated 

using 4 independent programs: PROCHECK (Molecular Biology Institute and the 

DOE-MBI Institute, University of California, Los Angeles) [22], Verify 3D (Molecular Bi-

ology Institute and the DOE-MBI Institute, University of California, Los Angeles) [23], 

ERRAT [24], and ProsA-web (University of Salzburg, Salzburg, Austria) [25].  

2.5. Preparation of Target Proteins 

The Molecular Operating Environment software, version 2018.01, was used for en-

ergy minimization by picking the MMFF94x force-field [26]. The resulting structure was 

refined utilizing the Protonate3D program to add partial charges at a temperature of 

310 K and pH value of 7. The Site Finder tool present in the MOE software detected the 

active sites in the target proteins. 

2.6. Library Preparation 

Using in silico methods, a thousand known phytochemicals were picked from var-

ious databases, such as PubChem, MPD3 [27], and Zinc, to screen their possible inhibi-

tory impact on DNaA and TCR proteins. According to the literature survey, the 

plant-based phytochemicals were chosen based on their pharmacological effects [28]. The 

phytochemicals chosen were mostly alkaloids and sterols. The MOE software was uti-

lized to create a ready-to-dock library of the selected phytochemicals [26]. ChemDraw 

was used to draw the two-dimensional (2D) chemical structure of the selected ligands. 

Before using the MOE ligand database, the ligands were refined using Protonate3D and 

the energy was decreased. 

http://www.mbi.ucla.edu/
http://www.doe-mbi.ucla.edu/
http://www.mbi.ucla.edu/
http://www.mbi.ucla.edu/
http://www.doe-mbi.ucla.edu/
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2.7. Molecular Docking Analysis 

The active pocket on the receptor protein molecule was identified using MOE. The 

MOE software was used for the molecular docking approach to screen the library of 1000 

phytochemicals against the interacting residues of DNaA and TCR proteins. The MOE 

software verified the proper ligand conformation to build a minimum energy structure 

using the “Triangular Matcher” algorithm, which was then used as the default ligand 

insertion strategy [26]. Rescoring of simulated poses was performed using the London 

dG scoring function in MOE. After docking, phytochemicals with the top and best con-

formation were identified based on RMSD values and S-score binding affinity. The MOE 

LigX tool was used to visualize the best-docked complexes and interpret the 2D plots of 

ligand–receptor interactions. MOE was also used to provide three-dimensional images of 

protein–inhibitor complexes. 

2.8. Evaluation of Inhibitors’ Druglikeness  

The examination of a drug candidate’s druglikeness properties is an important 

phase in the drug discovery process. Several physical and chemical parameters, such as 

molecular weight, hydrogen bond acceptors, octanol–water partition coefficient log P 

(miLogP), and hydrogen bond donors, were analyzed. The top-docked ligands’ drugga-

bility was assessed using the Molinspiration online tool (https://www.molinspiration.com 

(accessed on 8 May 2021)) [29]. 

2.9. ADMET Profiling 

Top phytochemicals pharmacokinetic properties were further evaluated by the 

SwissADME and admetSAR tools (http://www.swissadme.ch/) (accessed on 9 May 2021) 

[30,31]. Pharmacokinetic properties include toxicity, metabolism, absorption, and dis-

tribution in the human body.  

2.10. Molecular Dynamics Simulation Protocol 

For dynamics understanding, MD simulations of the top two hits for both targets 

DNaA and TCR were performed. The AMBER20 software was used to conduct the sim-

ulation studies [32]. The antechamber program was used in the preprocessing of DNaA 

and TCR. For both targets, the GAFF force field was used, while for the enzyme, the 

ff14SB force field was used [33]. LEaP was used to record the topology of enzymes and 

inhibitors, counterions were introduced to bring electrostatic neutrality to the systems. 

The systems were housed in a water-molecule-filled TIP3P box [34]. The steepest descent 

approach was used for 1500 steps. The conjugate gradient method was then used for 1000 

steps to get the lowest energy possible for the systems. A cutoff of 8 was set for 

non-bonding interactions. For ten minutes, the systems were heated to a constant tem-

perature of 300 K and kept at a constant volume. The systems were then equilibrated for 

100 s using a Langevin thermostat and periodic boundary conditions at constant pres-

sure. To describe long-range electrostatic effects, the particle mesh Ewald technique 

(PME) and periodic boundary conditions (PBC) were used, with a weak coupling algo-

rithm used to control the temperature from an external bath. The SHAKE algorithm was 

used to restrain the lengths of hydrogen bonding [35]. The Langevin coupling integration 

algorithm was used to keep the temperature constant. To solve Newton’s equations, a 

time step of 2 fs was chosen, and the trajectory data were gathered every 1 ps for the 

subsequent investigation. All MD trajectory studies were performed using the CPPTRAJ 

module in AmberTools20, and visual examination was carried out using Visual Molecu-

lar Dynamics software [36]. 

2.11. MMPB/GBSA Analysis 

Compounds binding free energy towards receptor was measured in order to con-

firm the compounds’ binding stability. The molecular mechanics generalized Poisson 

http://www.swissadme.ch/
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Boltzmann surface area (MMPBSA) approach was used to achieve this. This approach is a 

widely used, dependable, and strong analytical technique [37–40]. The Amber tool 20 

MMPBSA script (py) was used to assess binding free energy of selected MD snapshots.  

In short, the binding free energy was computed using the equation below: 

ΔGbinding = ΔEMolecularMechanics + ΔGsolvation − TΔGΔGbinding = 

ΔEMolecularMechanics + ΔGsolvation − TΔS(entropy) 
(1) 

3. Results 

3.1. Core Proteome Retrieval 

Complete proteome of four strains of Streptococcus pyogenes—S. pyogenes serotype 

M1 (strain ATCC 700294/SF370, accession no: UP000000750), S. pyogenes M1 476 (acces-

sion no: UP000005248), S. pyogenes A20 (accession no: UP000001267), and Streptococcus 

pyogenes serotype M3 (strain ATCC BAA-595/MGAS315; accession no: 

UP000000564)—were downloaded in the FASTA format from UniProt. These proteomes 

were subjected to OrthoFinder for core proteome retrieval. OrthoFinder server predicted 

1324 core proteins. 

3.2. Identification of Drug Targets 

Essential proteins are involved in the synthesis of antibacterial compounds; hence, 

they are promising targets for drug development [41]. The Geptop 2.0 server predicted 

302 essential proteins out of the 1324 core proteins. Proteins involved in multiple com-

mon cellular processes in H. sapiens and bacteria evolved as homologs over time. To be 

considered as an effective drug target, the proteins must be important for the pathogen’s 

survival within the host’s body, while also being non-homologous to host proteins. This 

requirement is necessary to avoid drug–host protein cross-binding, which would in-

crease the likelihood of pharmacological side effects [42,43]. As a result, BLASTp was run 

against H. sapiens for all 302 essential proteins. The results revealed 145 non-homologous 

protein sequences with less than 30% identity. Protein function can be assessed quickly 

and inexpensively by predicting its subcellular localization. It was also discovered that 

proteins can be found in a variety of locations, making localization an important consid-

eration when designing any therapeutic agent. As drug targets, cytoplasmic proteins are 

preferred because membrane proteins are more challenging to analyze and purify [43,44]. 

According to the results of the BUSCA server, 46 proteins were classified as cytoplasmic 

proteins. 

The metabolic pathways where these 46 cytoplasmic proteins play a role were ana-

lyzed, and it was discovered that they were engaged in 19 pathways. A comparison of the 

metabolic pathways of S. pyogenes and H. sapiens was carried out to choose drug candi-

dates engaged in pathogen-specific pathways. When the pathways of S. pyogenes and H. 

sapiens were compared, 6 were determined to be pathogen-specific, while the other 13 

were shown to be shared by host and the pathogen. These 6 unique pathways were dis-

covered to involve a total of 10 S. pyogenes cytoplasmic proteins. The KEGG database was 

used to further analyze these 10 proteins. Two of the ten proteins were discovered to be 

involved in unique pathways, whereas the other eight were found to be related with 

pathways that were found in the pathogen and the host and were thus ruled out of fur-

ther investigation (Table 1). 

  

https://www.uniprot.org/proteomes/UP000000750
https://www.uniprot.org/proteomes/UP000005248
https://www.uniprot.org/proteomes/UP000001267
https://www.uniprot.org/proteomes/UP000000564
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Table 1. Ten cytoplasmic proteins presented in unique metabolic pathways. 

Name Common Pathways Unique Pathways 

Glucose-6-phosphate isomerase 

Metabolic pathways 

Glycolysis 

Carbon metabolism 

Pentose phosphate pathway 

Amino sugar and nucleotide sugar metabolism 

Starch and sucrose metabolism 

Biosynthesis of secondary metabolites 

Microbial metabolism in diverse 

environments 

UDP-N-acetylenolpyruvoylglucosamine reductase 
Metabolic pathways 

Amino sugar and nucleotide sugar metabolism 
Peptidoglycan biosynthesis 

Riboflavin biosynthesis protein 

Biosynthesis of cofactors 

Metabolic pathways 

Riboflavin metabolism 

Biosynthesis of secondary metabolites 

Alanine racemase Metabolic pathways 
D-Alanine metabolism 

Vancomycin resistance 

Chromosomal replication initiator protein DnaA  Two-component system 

Two-component response regulator  Two-component system 

Phosphate acyltransferase 
Glycerolipid metabolism 

Metabolic pathways 
Biosynthesis of secondary metabolites  

Fructose-bisphosphate aldolase 

Metabolic pathways 

Glycolysis 

Carbon metabolism 

Biosynthesis of amino acids 

Fructose and mannose metabolism 

Pentose phosphate pathway 

Methane metabolism 

Biosynthesis of secondary metabolites 

Microbial metabolism in diverse 

environments 

UDP-N-acetylmuramoyl-tripeptide—D-alanyl- 

D-alanine ligase 
Metabolic pathways 

Vancomycin resistance 

Peptidoglycan biosynthesis 

Acetyl-coenzyme A carboxylase carboxyl 

transferase subunit alpha 
Metabolic pathways Biosynthesis of secondary metabolites,  

Two proteins, i.e., chromosomal replication initiator protein DnaA and 

two-component response regulator (TCR), were identified as novel drug targets. These 

two proteins were linked to a single metabolic pathway, i.e., a two-component system. 

Proteins present in unique metabolic pathways can be considered pathogen-specific and 

could be used as vaccine and drug targets [45]. 

3.3. Structure Prediction 

The best Predicted 3D crystal structure for both proteins were chosen from Swiss 

Model on the basis of QMEAN and GMQE values as shown in Figure 1.  
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Figure 1. 3D structures of the target proteins DNaA (A) and TCR (B). 

A model’s confidence level is determined by GMQE (global model quality estima-

tion), which needs to take into account the template, coverage, and organization of the 

target. For calculating quality, it integrates target–template alignment properties with 

template search. The better the model’s quality, the higher the GMQE score. It is typically 

estimated between 0 to 1. The GMQE was 0.73 for DNaA and 0.48 for TCR, while the Q 

mean was −0.90 for DNaA and −2.80 for TCR, depicting the high quality of the structures. 

3.4. Model Evaluation 

Refined drug targets were further evaluated to predict the quality of the protein 

structures. Multiple methods were employed for validation of the 3D models. Firstly, 

PROCHECK server was used for the structural quality assessment of the modeled 

structure. Predicted model evaluation of the DNaA protein showed that 88.4% of resi-

dues were in favored regions, while TCR protein showed 89.6% of residues in favored 

regions. Conclusively, evaluation of the 3D protein models demonstrated that nearly 90% 

of residues were in the favored and allowed regions, thus confirming that both predicted 

models are of high-quality. VERIFY 3D predicted that in the DNaA model, 74.71% of the 

residues had averaged 3D–1D score  0.2, while in the case of the TCR model, 85.47% of 

the residues had averaged 3D–1D score  0.2, thereby verifying the model in the context 

of structure–sequence compatibility. ERRAT, a so-called quality factor, predicted the 

quality score of the DNaA model as 90.0602, while for the TCR model, the predicted 

quality factor was 92.4779. The higher the score, the more significant the quality of the 3D 

model. These findings demonstrate that the refined model is of high quality. The Pro-

SA-web server was employed to double-check the quality of the 3D models. The 

Z-scores, a parametric quantity representing the overall quality of the model, were −8.48 

and −7.86 for DNaA and TCR proteins, respectively. Table 2 summarizes the findings of 

these four programs, indicating the high quality of the models.  
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Table 2. Evaluation of 3D model using PROCHECK, VERIFY3D, ERRAT, and ProSA-Web servers. 

Target Proteins 
Ramachandran plot statistics (%) Verify 3D ERRAT ProSA 

Core Allowed General Disallowed Compatibility Score (%) Quality Factor z-Score 

Chromosomal replication initiator 

protein DnaA 
88.4% 10.0% 1.6% 0.0% 74.71% 

90.0602 

 
−8.48 

Two-component response regulator 89.6% 9.5% 0.5% 0.5% 85.47% 92.4779 −7.86 

3.5. Molecular Docking Analysis 

Lys115, Tyr116, Asn120, Phe121, Ile122, Glu126, Asn127, Gly153, Lys291, Asn290, 

Lys2, Asp47, Leu161, Arg118, and His72 are the important residues and the active bind-

ing regions of the DNaA and TCR proteins that were predominantly engaged in ligand–

protein interactions. All those binding pockets were selected by the site finder tool pre-

sent in the molecular operating environment. Top 10 inhibitors, sophorastilbene A, 

daphnodorin B, oenin, flavumone A, daphnodorin A, aloin B, chlorogenic acid, 

triterpenoids, veratrine and 

1,6-dihydroxy-3-methyl-8-[(2S,5S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyanth

racene-9,10-dione, were screened out of 1000 showing good docking score along with 

RMSD values for both target proteins, as shown in Figure 2.  

 

Figure 2. 2d structures of the top drug candidates. First five compounds, sophorastilbene A, daphnodorin B, oenin, fla-

vumone A and daphnodorin A, are considered as drug target against DNaA protein, while the remaining compounds, 

aloin B, chlorogenic acid, triterpenoids, veratrine, and 

1,6-dihydroxy-3-methyl-8-[(2S,5S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyanthracene-9,10-dione, were con-

sidered as drug candidates for TCR protein. 

With DNaA as a target, sophorastilbene A inhibitor showed best binding score. The 

aloin B inhibitor with the TCR protein as a target showed top docking score with well 

https://pubchem.ncbi.nlm.nih.gov/compound/11216065
https://pubchem.ncbi.nlm.nih.gov/compound/12096478
https://pubchem.ncbi.nlm.nih.gov/compound/11216065
https://pubchem.ncbi.nlm.nih.gov/compound/12096478
https://pubchem.ncbi.nlm.nih.gov/compound/12096478
https://pubchem.ncbi.nlm.nih.gov/compound/11216065
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interacting residues Arg118 and His72. The same approach was employed to carry out 

the docking analysis of the remaining inhibitors after the docking process was confirmed. 

For both target proteins, the docking score and the interactions between active sites and 

the ligands bound are given in the Table 3. 

Table 3. The top 10 bioactive phytochemicals interactions along with the docking analysis results. 

Target Proteins Compound ID’s Compounds Name Docking Score (kcal/mol) RMSD Interacting Residues 

DNaA Protein 

11216065 Sophorastilbene A −21.31 3.61 

Phe121 

Lys115 

Lys291 

Asn290 

72427 Daphnodorin B −20.77 1.70 
Lys115 

Lys291 

443652 Oenin −20.18 1.96 Lys115 

12096478 Flavumone A −20.06 2.32 
Lys115 

Lys291 

72426 Daphnodorin A −16.00 3.26 
Lys115 

Lys291 

TCR protein 

14989 Aloin B −18.02 1.55 
Arg118 

His72 

1794427 Chlorogenic acid −17.47 1.23 

Lys2 

Arg118 

Phe150 

Leu161 

71597391 
Triterpenoids 

 
−17.47 1.42 

Lys2 

Arg118 

5380394 Veratrine −16.96 2.22 
Arg118 

Phe150 

118855584 

1,6-Dihydroxy-3-methyl-8-[(2S,5S)-3,

4,5-trihydroxy-6-(hydroxymethyl)ox

an-2-yl]oxyanthracene-9,10-dione 

−16.84 1.51 
Asp47 

Lys2 

RMSD: Root Mean Square Deviation; Bold Interacting Residues indicate that all the compounds 

are hitting the common targets. 

It involved a variety of amino acid residues and interactions for phytochemicals to 

bind to the active pocket of the target proteins. Lys291, Lys115, Arg118, Lys2, and Phe150 

in hydrogen bonding and pi-stacking interactions were the primary residues involved in 

building the contacts between the top hit ligand conformations and the binding pocket of 

the target proteins, as shown in Figure 3A,B.  

https://pubchem.ncbi.nlm.nih.gov/compound/11216065
https://pubchem.ncbi.nlm.nih.gov/compound/12096478
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Figure 3. Docked complexes indicating, in detail, the interacting residues of the DNaA (A) and TCR (B) target proteins. 

Those interactions were predicted using the LigX tool as shown in the Supplemen-

tary Figures S1–S10. 

3.6. Druglikeness Prediction 

Computational scanning of the physicochemical properties of the best-docked lig-

ands for both targets was performed using the Lipinski’s rule of five (RO5) to evaluate 

their drug-like features. According to this rule, the molecular weight is less than or equal 

to 500 g/mol, number of hydrogen bond donors less than or equal to 5, number of hy-

drogen bond acceptors less than or equal to 10, and miLog p value less than equal to five. 

A drug candidate with one rule violation is acceptable. The top hit phytochemicals and 

the reference compound’s projected druglikeness properties are shown in Table 4. All the 

reported ligands had excellent druglike characteristics. 

Table 4. Druglike characteristics of top hits. 

Target 

Proteins 
Compounds 

Molecular Weight 

(g/mol) 

Number of HBA 

(nON) 

Number of HBD 

(nOHNH) 
mi-LogP 

DNaA 

11216065 673.65 9 3 4.36 

72427 539.47 10 4 2.24 

443652 491.43 12 5 −2.39 

12096478 538.46 10 5 2.29 

72426 524.48 9 4 3.25 

TCR 

14989 416.38 9 5 −3.04 

1794427 352.30 9 4 −3.24 

71597391 470.65 5 2 1.70 

5380394 590.73 10 5 −0.54 
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118855584 430.37 10 4 −1.82 

HBD: Hydrogen Bond Donors; HBA: Hydrogen Bond Acceptor. 

3.7. ADMET Profiling 

The Swiss ADME (UNIL University of Lausanne, Lausanne, Switzerland) and ad-

metSAR (East China University of Science and Technology, Shanghai, China) tools were 

used to predict different types of pharmacokinetic properties. Pharmacokinetic factors 

can be used to forecast the top drug candidate molecules’ absorption, distribution, me-

tabolism, elimination (ADME), and toxicity. For both targets, the ADMET characteristics 

of derived phytochemicals are shown in Table 5. Drug development of many drugs does 

not include this process because of poor pharmacokinetic properties and toxicity [46]. 

Identification of active lead compounds depends upon the high-performance and fast 

ADMET profiling assays in early drug discovery [47,48]. The ADMET profiling showed 

that there was no side effect of absorption of all the candidate compounds. The associated 

ADMET properties of potential compounds for different models, such as P-glycoprotein 

substrates, BBB penetration, and gastrointestinal absorption, showed positive results that 

strongly support the compounds’ suitability as drug candidates. 

Table 5. Pharmacokinetic properties of the top predicted drug candidates for the DNaA and TCR proteins. 

Standard Parameters 

Target 

DNaA TCR 

11216065 72427 443652 12096478 72426 14989 1794427 71597391 5380394 118855584 

Absorption 

Aqueous solubility 

(LogS) 
−3.3170 −3.2562 −2.7564 −3.0485 −2.9143 −2.3269 −2.5951 −3.9108 −2.4829 −2.8081 

Human Intestinal 

Absorption 
0.9727 + 0.9394 −0.9165 +0.9300 +0.8623 +0.7201 −0.8658 +0.7320 −0.7652 −0.8845 

Blood Brain Barrier +0.8635 +0.7154 −0.8897 +0.6248 +0.7183 +0.5432 +0.5612 +0.7302 −0.8131 −0.6852 

Caco-2 permeability −0.6888 −0.8292 −0.4982 −0.0172 0.6303 0.2248 −0.5040 1.1647 0.2244 −0.4438 

Distribution 

P-gp Substrate 
Non-Substr

ate 

Non-Substr

ate 
Substrate Substrate Substrate Substrate Substrate Substrate Substrate Substrate 

P-gp Inhibitor 
Non-Inhibit

or 

Non-Inhibit

or 

Non-Inhibit

or 
Non-Inhibitor 

Non-Inhib

itor 

Non-Inhibi

tor 

Non-Inhi

bitor 
Non-Inhibitor Inhibitor Non-Inhibitor 

Metabolism 

CYP450 2D6 Substrate x x x X x x x x x x 

CYP450 3A4 Substrate x x √ X x x x √ √ x 

CYP450 1A2 Inhibitor √ √ X √ √ x x x x x 

CYP450 2C9 Inhibitor √ √ X √ √ x x x x x 

CYP450 2D6 Inhibitor x x X X x x x x x x 

CYP450 2C19 Inhibitor √ √ X X √ x x x x x 

CYP450 3A4 Inhibitor x √ X X √ x x x x x 

Toxicity 

Salmonella typhimurium 

reverse mutation assay 

AMES Test 

Non-AMES 

Toxic 

Non-AMES 

Toxic 

Non-AMES 

Toxic 

Non-AMES 

Toxic 

Non-AME

S Toxic 

AMES 

Toxic 

Non-AM

ES Toxic 

Non-AMES 

Toxic 

Non-AM

ES Toxic 

AMES 

Toxic 

Human 

Ether-à-go-go-Related 

Gene (hERG) 

Inhibition 

Weak in-

hibitors 

Weak in-

hibitors 

Weak in-

hibitors 

Weak inhibi-

tors 

Weak 

inhibitors 

Weak in-

hibitor 

Weak 

inhibitor 

Weak inhibi-

tor 

Weak 

inhibitor 
Weak inhibitor 

Carcinogens 
Non-Carcin

ogens 

Non-Carcin

ogens 

Non-Carcin

ogens 

Non-Carcinoge

ns 

Non-Carci

nogens 

Non-Carci

nogens 

Non-Carc

inogens 

Non-Carcinog

ens 

Non-Car

cinogens 

Non-Carcinoge

ns 

Rat Acute Toxicity 

(LD50, mol/kg) 
2.4083 2.5846 −2.7564 2.5248 3.0847 2.5732 2.6020 2.8611 3.3693 2.9432 

HIA: human intestinal absorption (%), Caco-2: colorectal carcinoma; BBB: blood-brain barrier; CYP450: cytochrome P450; 

P-gp: P-glycoprotein; hERG: human ether-à-go-go related gene channel inhibition. Solubility level: insoluble, less than 

−10; poorly, between −10 and −6; moderately, between −6 and −4; soluble, between −4 and −2; very, between−2 and 0; 



Int. J. Environ. Res. Public Health 2021, 18, 11355 12 of 20 
 

 

highly, more than 0. HIA level: 0–20%, poorly absorbed; 20–70% moderately absorbed; 70–100%, well absorbed. BBB level 

(concentration in brain and concentration in blood): absorption to central nervous system less than 0.1, low; between 0.1 

and 2.0, moderate; more than 2.0, high. 

3.8. MD Simulation 

Molecular dynamic simulation for 100 ns was performed to understand dynamics of 

both targets in the presence of screened hits. Statistical parameters RMSD, RMSF, and 

RoG were studied for docked complexes to confirm their structural stability. The root 

mean square deviations (RMSD) were investigated first based on carbon alpha atoms. 

Deviation in the RMSD plot is an indication of structural variations relative to the initial 

docked complex inter-molecular conformation [49]. Uniform RMSD plot implies struc-

ture equilibrium of the system and more inter-molecular strength as the simulation time 

proceeds. The DNaA–72427 complex remained stable during the first 50 ns of simulation 

time; after that, it showed lower RMSD deviation of 0.25 Å and got more stability until 

the simulation end. The second complex of DNaA (with 11216065) showed stability up to 

20 ns; after that, it showed deviations, though minor (of 1 Å), and achieved stability to-

wards the end, as shown in Figure 4A. The TCR–14989 complex showed stability 

throughout the time frame up to 100 ns, and RMSD reached the maximum of 1 Å. The 

second complex (with 1794427) showed steady RMSD with deviation at 60 ns, and after 

that, it showed stability, as indicated in Figure 5A. From the RMSD interpretation, it can 

be easily concluded that DNaA–72427 is showing more intermolecular stability in term of 

chemical interactions and conformation thus 72427 can be regarded as high affinity drug 

molecule for DNaA. On the other side, 14989-TCR complex is more stable in term of 

binding affinity compared to 1794427-TCR complex. The same trend was noticed for both 

proteins in remaining simulation analysis.  

Root mean square fluctuations (RMSF) were calculated next for the simulated com-

plexes. RMSF analysis aids in identifying flexible residues of the targeted proteins and 

understanding how these fluctuations are affecting complex stability [50]. Graphs of the 

DNaA target indicate that its complex with 72427 showed minor fluctuations, while its 

complex with 11216065 showed a deviation of 1.5 Å at one point, as shown in the Figure 

4B. The RoG plot trajectories of the DNaA target for the first complex (with 72427) 

showed a good stability, while the second complex (with 11216065) showed minor devi-

ations indicated in Figure 4C. However, the RMSF plot of the target TCR–14989 complex 

showed stability at 0.5 Å, while the TCR–1794427 complex showed stability between 1 Å 

and 1.5 Å, as shown in the Figure 5B. Radius of gyration (RoG) is a parameter reflecting 

the system’s compactness during simulation time. Lower RoG value refers to a highly 

compact system and is an indication of system stability. The RoG values for the target 

TCR showed a good stability for both complexes throughout the time period of 100 ns, as 

shown in the Figure 5C. All these analyses indicated the targeted proteins were in good 

dynamics stability in the presence of the virtually screened compounds. The complex 

intermolecular stability also demonstrated the best fitting between the proteins and the 

compounds, leading to strong association and, ultimately, stable formation of complexes.  
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Figure 4 Statistical analysis based on molecular dynamics simulations to assess the intermolecular 

stability and dynamics of the two complexes of the DNaA protein. (A) part is indicating the stabil-

ity of the compounds by Root Mean Square Deviation, (B) part is indicating the Root mean square 

fluctuation plots for top two hits and (C) part is indicating the Radius of Gyration values for the top 

hits over the time period of 100ns. 
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Figure 5. Statistical analysis based on molecular dynamics simulations to assess the intermolecular 

stability and dynamics of the two complexes of the TCR target proteins. (A) part is indicating Root 

Mean Saquare Deviation for both top compounds similarly; (B) part is indicating Root Mean 

Square Fluctuation; (C) part is indicating graph values for Radius of Gyration both hits can be 

presented in different colors as mention above. 
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3.9. Binding Free Energy Calculations 

The calculation of the binding free energy of docked complexes was carried out us-

ing the MMGBSA method, as represented in the Table 6. The data demonstrated that the 

molecular recognition was dominated by gas phase energy, in particular, by electrostatic 

energy and van der Waals energy. The polar solvation energy seemed to play a smaller 

role in molecules’ interactions with the targeted proteins. The non-polar energy had a 

marginally significant contribution in complex formation. The total binding energies of 

both complexes for target TCR were −21.14 kcal mol−1 and −21.18 kcal mol−1, and simi-

larly, for target DNaA, it was −16.24 kcal mol−1 and −21.83 kcal mol−1, respectively. 

Table 6. Binding energies of the target proteins. All values are given in kcal/mol. 

Energy Parameter 
TCR DNaA 

14989-Complex 1794427-Complex 72427-Complex 11216065-Complex 

MM-GBSA 

VDWAALS −22.23 −21.65 −18.16 −22.46 

EEL −10.11 −9.10 −11.21 −10.58 

EGB 13.20 12.11 16.58 15.21 

ESURF −2.00 −2.54 −3.39 −4.00 

Delta G gas −32.34 −30.75 −29.37 −33.04 

Delta G solv 11.20 9.57 13.13 11.21 

Delta Total −21.14 −21.18 −16.24 −21.83 

MM-PBSA 

VDWAALS −22.23 −21.65 −18.16 −22.46 

EEL −10.11 −9.10 −11.21 −10.58 

EPB 10.28 6.28 12.07 9.41 

ENPOLAR −5.00 −3.96 −2.98 −3.51 

Delta G gas −32.34 −30.75 −29.37 −33.04 

Delta G solv 5.28 2.32 9.09 5.9 

Delta Total −27.06 −28.43 −20.28 −27.14 

4. Discussion 

Streptococcus pyogenes is a common human pathogen that produces a spectrum of 

disorders, from minor issues, such as pharyngitis and impetigo, to more serious infec-

tions, such as necrotizing fasciitis, sepsis, and toxic shock syndrome [51]. To fight these 

life-threatening scenarios, medications against S. pyogenes must be developed as soon as 

possible. In silico core proteomics and molecular docking approaches were used to 

search for therapeutic candidates against S. pyogenes in our research work. These ap-

proaches are used to identify targets in pathogenic organisms based on the identification 

of essential proteins. In computer-based drug design techniques, identifying therapeutic 

targets is a vital step [52]. Recent breakthroughs in the fields of bioinformatics and 

computational biology have resulted in a number of approaches to drug design and in 

silico analysis, lowering the time and cost of drug development through trial and error 

[53].  

The core proteome of S. pyogenes strains, which contained 1324 proteins, was sub-

jected to the Geptop 2.0 server for essential proteins prediction. Essential proteins are 

required for bacterial survival. Bacteria cannot survive if these essential proteins are 

mutated or degraded. We can kill bacteria and cure disease by targeting these proteins. 

Essential proteins are the preferred targets for antibacterial drug and vaccine develop-

ment. Hence, 302 essential proteins were identified among the core proteins. This method 

was used by Sakharkar et al. to identify 306 essential genes in P. aeruginosa, Chong et al. 

to identify 312 essential proteins in Burkholderia pseudomallei, and Shiragannavar et al. to 

identify 807 essential proteins in Eubacterium nodatum [49]. These genes may be similar to 

those found in humans. As a result, targeting such genes may prove fatal and disrupt 
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human metabolism. Selection of non-homologous proteins not found in Homo sapiens can 

reduce the risk of adverse events and cross-reactivity [54]. We screened 145 

non-homologous proteins to avoid such unfavorable situations and toxicity. Targeting 

and developing inhibitors against non-homologous sequences for the development of 

new drugs may be the best strategy. 

A comparison of human and pathogen metabolic pathways using the KEGG data-

base revealed that 6 pathways are unique to pathogens and 13 are shared by both path-

ogens and hosts. A total of 10 S. pyogenes essential proteins were involved in these 6 

pathways. The results of pathogen-specific pathway identification are consistent with 

those reported by Goyal et al., Amineni et al., and Shahid et al. for A. baumannii, L. inter-

rogans, and S. saprophyticus, respectively [13,55]. Eight out of the ten proteins were found 

to be involved in H. sapiens and S. pyogenes pathways. Two proteins, i.e., chromosomal 

replication initiator protein DnaA and two-component response regulator (TCR), were 

found to be involved in unique metabolic pathway, i.e., a two-component system, and 

identified as novel drug targets. Several other studies have also reported DnaA [56,57] as 

a drug target. 

Three-dimensional structures of the target proteins were modeled using the Swiss 

model. Prediction of the 3D structure is very useful in studying protein dynamics, func-

tions, ligand interactions, and other protein components, and it provides a lot of infor-

mation about the spatial structure of important protein components [58,59]. The Rama-

chandran plot analysis revealed that the majority of residues were in acceptable, favored 

areas, with very few residues in the disallowed region, and the model’s overall quality 

was satisfactory. Values of other evaluation tool indicated a high quality of our models. 

To select the compounds having the best residue interaction with the target protein, 

the molecular docking approach was used. Out of 1000 docked molecules, sophorastil-

bene A, daphnodorin B, oenin, flavumone A and daphnodorin A were chosen for their 

low RMSD 3 score and their large number of residues interacting with the target protein 

DNaA, and aloin B, chlorogenic acid, triterpenoids, veratrine and 

1,6-dihydroxy-3-methyl-8-[(2S,5S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyanth

racene-9,10-dione were chosen for the TCR protein. The lowest binding energies of these 

phytochemicals ranged from about −21.31 kcal/mol to −16.00 kcal/mol for the DNaA 

protein and −18.02 kcal/mol to −16.84 kcal/mol for the TCR protein. The chemical profile 

and drug likelihood of these 10 compounds were evaluated using the Lipinski’s rule of 

five. Afterwards, the compounds were examined for BBB penetration and HIA (human 

intestinal absorption) and subjected to the AMES monitoring. ADMET characteristics are 

a key predictor of a drug candidate’s behavior, toxicity, and fate in the human body. 

They indicate the candidate’s likelihood of intestinal absorption, metabolism, crossing 

the blood–brain barrier, subcellular localization, and, most critically, the level of harm it 

can cause in the body [60]. CYP2A6, CYP1A2, CYP2C9, CYP2D6, CYP2C19, CYP3A4, and 

CYP2E1 are the isoforms of the cytochrome P450 superfamily that are involved in drug 

metabolism and hepatic clearance [61]. As a result, blocking the cytochrome P450 

isoforms can produce a drug–drug interaction that prevents the metabolism of concom-

itant medications, leading to hazardous levels of accumulation [62].  

The ADMET profile of these chemicals reveals that they have no negative effects on 

absorption. Furthermore, when compared with the AMES test, none of the chemicals 

were hazardous or mutagenic. The 10 hit compounds produced following the virtual 

screening were subjected to several toxicity modules. No chemical was determined to be 

cytotoxic, hepatotoxic, or mutagenic in the course of the toxicity evaluation. Our research 

revealed 10 drug-leading inhibitors that, by successfully targeting and blocking apopto-

sis, could be therapeutic inhibitors of DnaA and TCR. 

Molecular dynamics (MD) simulations and free energy calculations were performed 

on the best docked complexes with two inhibitors per protein because these ligands 

demonstrated great binding affinity, as evidenced by a high dock score and a good mo-

lecular interaction network. 

https://pubchem.ncbi.nlm.nih.gov/compound/11216065
https://pubchem.ncbi.nlm.nih.gov/compound/11216065
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Previously, using in silico comparative studies, 18 enzymes were identified as drug 

targets against S. pyogenes. These enzymes showed major drug-target properties includ-

ing their involvement in pathogen metabolic pathways, non-homology to the human 

host, and appropriate size. Three enzymes (DNA polymerase III subunit beta, 

[acyl-carrier-protein] S-malonyltransferase, and dihydropteroate synthase) were report-

ed as novel drug targets against the pathogen [9]. However, in this study, only two drug 

targets were identified on the basis of unique metabolic pathway. Drug targets and 

drug-like compounds prioritized in this study could be useful in developing new strate-

gies to combat S. pyogenes drug resistance. 

5. Conclusions 

The rapid emergence of antimicrobial resistance among Gram-positive bacteria has 

prompted the need to investigate novel drug targets that could aid in the development of 

new antimicrobial agents. The current study identified two novel targets in S. pyogenes. 

Because both are involved in pathogen-specific metabolic pathways and have success-

fully been targeted in other microbes, the current study explored developing drugs 

against them. Thus, this study represents a significant advance in the design of new, po-

tent compounds against S. pyogenes. These targets should be tested experimentally in 

future studies to determine their role in S. pyogenes survival and virulence. 

Supplementary Materials: The following are available online at 

www.mdpi.com/1660-4601/18/21/11355/s1, Figures S1–S5: Two-dimensional interaction images of 

S1) flavumone A with DNaA target protein, S2) daphnodorin A with DNaA target protein, S3) oe-

nin with DNaA target protein, S4) sophorastilbene A with DNaA target protein, and S5) daph-

nodorin B with DNaA target protein. Figures S6–S10: Two-dimensional interaction images of S6) 

Aloin B  with TCR target protein target protein, S7) Chlorogenic acid with TCR target protein, S8) 

Triterpenoids  with TCR target protein, S9) Veratrine  with TCR target protein, S10) 

1,6-dihydroxy-3-methyl-8-[(2S,5S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyanthracene-9,

10-dione with TCR target protein. 
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