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Abstract: Accidents involving electric bicycles, a popular means of transportation in China during 

peak traffic periods, have increased. However, studies have seldom attempted to detect the unique 

crash consequences during this period. This study aims to explore the factors influencing injury 

severity in electric bicyclists during peak traffic periods and provide recommendations to help de-

vise specific management strategies. The random-parameters logit or mixed logit model is used to 

identify the relationship between different factors and injury severity. The injury severity is di-

vided into four categories. The analysis uses automobile and electric bicycle crash data of Xi’an, 

China, between 2014 and 2019. During the peak traffic periods, the impact of low visibility signif-

icantly varies with factors such as areas with traffic control or without streetlights. Furthermore, 

compared with traveling in a straight line, three different turnings before the crash reduce the 

likelihood of severe injuries. Roadside protection trees are the most crucial measure guaranteeing 

riders’ safety during peak traffic periods. This study reveals the direction, magnitude, and ran-

domness of factors that contribute to electric bicycle crashes. The results can help safety authorities 

devise targeted transportation safety management and planning strategies for peak traffic periods. 

Keywords: mixed logit model; heterogeneity in means and variances; injury severity; electric  

bicycle crashes; visibility 

 

1. Introduction 

Peak periods have the highest probability of road accidents worldwide. A high 

traffic flow, riders’ eagerness to reach their destination, and the pressure of congestion 

contribute to the likelihood of accidents during this period. Consequently, the number of 

crashes occurring during peak hours is dramatically higher than in off-peak hours [1]. 

Existing studies on peak periods tend to focus on automobile driver injury severity on 

highways [2] and in rural areas [3–5]. Some studies also highlight other unique indicators 

related to peak periods, such as driver distraction [6] and traveler choice [7]. Accordingly, 

the traffic management must be trained and the relevant facilities upgraded with respect 

to the characteristics and influencing factors of this period rather than those of the 

off-peak period. To ensure the safety of commuters, the actual factors affecting the crash 

consequences and passengers’/riders’ injury severity during the peak traffic periods 

must be considered. However, most studies are focused on evaluating traffic safety at 

different hours of a day, rather than in peak hours. Consequently, it has been difficult to 

recommend optimal safety guidelines and facilities for peak traffic periods. 

Electric bicyclists represent a sizable population of commuters [8–10]. By 2019, 

there were 59 electric bicycles for every 100 households in China [11]. Bicyclists ac-
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counted for 26% of all deaths worldwide [12]. According to the China Traffic Manage-

ment Bureau, China had 250 million electric bikes (e-bikes) in 2017. Meanwhile, from 

2013 to 2017, e-bike-related crashes resulted in approximately 56,200 injuries and 8431 

fatalities in the country. The traffic safety of e-bikes cannot be ignored [13]. Among the 

fatal crashes involving electric bicycles, automobiles accounted for 71.01% [14], which 

indicates that crashes involving electric bicycles and automobiles deserve more study. 

This study aims to determine the factors affecting injury severity among electric bi-

cyclists during peak traffic hours. Based on the factors covered in previous works, this 

study considered the characteristics of automobile drivers, electric bicyclists, roads, and 

circumstances, as well as vehicle performance. It also considered vehicle maneuvers 

(traveling straight, U-turns, and turning left and right) before crashes because these re-

flect the motivation of riders to illustrate the cause of the crash from the perspective of 

automobile drivers [15,16]. This study used mixed logit models with heterogeneity of 

means and variances. The data for analysis were extracted from crash incidents involving 

electric bicycles from 2014 to 2019 in typical large- and medium-sized cities in China. To 

the best of the authors’ knowledge, this study is the first to analyze injury severity among 

electric bicyclists during peak traffic periods. 

2. Literature Review 

2.1. Traffic Safety during Peak Traffic Periods 

In Table 1, ordered by year of publishing, studies that considered the peak traffic 

period focused mainly on the crash risk or consequences produced per hour or over 

other periods [4–7,17–20]. In a single-vehicle model, the injury severity among drivers 

meeting with accidents on rural highways during the busy harvest periods was found 

likely to be non-incapacitating [21]. However, no studies have examined the perfor-

mance and injury severity among electric bicyclists meeting with accidents during peak 

traffic periods. 

Table 1. Summary of studies considering accidents in peak traffic periods. 

Study Methodology 
Object of 

Study 

Heteroge-

neity 
Key Finding 

[17] Review / / 

The study proposed to cope with the “excess” peak-hour demand for road space 

by constructing sufficient public transit facilities and shifting all the “excess” 

peak-hour demand there. 

[18] Multinomial logit model Injury severity / 
In urban areas, crashes happened between 5 a.m. and 8 a.m. Application of the 

model can reduce the possibility of drivers suffering severe or fatal injuries. 

[21] Mixed logit model Injury severity / 
In a single-vehicle model, accidents on rural highways during the busy harvest 

period may cause non-incapacitating injuries. 

[3] Mixed logit model Injury severity / 
Different periods have different contributing factors to each degree of injury 

severity. 

[7] 
Mixed panel multinomial 

logit model 

Traveler 

choices 
√ 

Socioeconomic factors, work attributes, and trip characteristics (degree of flexi-

bility) affect the traveler’s response during the peak traffic period. 

[19] Structural equation model 
Vehicle 

movement 
/ 

Weekday travel influences peak-hour travel more than weekend, and the choice 

of road and car types have different effects on peak-hour travels. 

[6] Mixed logit model Injury severity √ Different periods have different impacts on different degrees of injury severity. 

[20] 

Negative binomial regression 

and zero-inflated negative 

binomial regression 

Crash fre-

quency 
/ 

Pedestrians are more likely to be hit by a vehicle if they cross signalized traffic 

light intersections during peak traffic hours. 

During the peak period, road segments with more bus stops are more likely to 

cause collisions between vehicles and pedestrians. 

[5] Mixed logit model Injury severity √ 

Crashes occurring during the morning peak hours were found to increase the 

probability of major injuries in sunny weather, whereas crashes occurring dur-

ing the evening peak hours were found to increase the probability of major 

injury in snowy weather. 

/ indicates the study does not consider the indicator’s heterogeneity; √ indicates the study considers the indicator’s het-

erogeneity. 
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2.2. Traffic Safety of Electric Bicycles 

Table 2 summarizes the literature on electric bicyclists’ injury investigations. The 

table uses labels to identify studies that considered or discovered heterogeneity of pa-

rameters (affected by unobserved factors; the same indicator may produce different im-

pacts on the dependent variable). Previous studies have shown that electric bicyclists 

were more prone to fatal injuries than traditional bicyclists [22–26]. In addition to using 

IMPACT, a finite element analysis tool, to recreate accident scenes [9,22,27], researchers 

used statistical models to analyze the factors affecting injury severity among electric bi-

cyclists [10,14,24–26]. Characteristics pertaining to humans, vehicles, roads, and circum-

stances influence the injury severity. As observed in Table 2, studies have demonstrated 

the different effects of unique factors in addition to sociodemographic characteristics. 

However, few have laid emphasis on collecting data from a moving vehicle before the 

crash, and the specific road and visibility conditions at the time of the incident. These 

factors cannot be dismissed during peak traffic periods, and their relationships with 

peak-hour crashes warrant further investigation. 

Table 2. Summary of the literature about the traffic safety of electric bicycles (bicyclists). 

Study Methodology Unique Factors 
Hetero-

geneity 
Key Findings 

[22] 
Accident reconstruc-

tion simulation 

Head impact speed, time of head im-

pact, and impact angle of bicyclists 

with vehicle impact speed, 

wrap-around distance, and throw-out 

distance 

/ 

Wrap-around distance, head impact speed, time of head impact, 

head impact angle, and throw-out distance of bicyclists have a 

strong relationship with the vehicle impact speed. A higher vehi-

cle impact speed puts the electric bicyclist at a higher risk of 

injury. 

[23] 
Historic prospective 

study 

Population group, hospital resource 

utilization, discharge disposition, and 

injured body region 

/ 

Arab children (aged 0–15) and young adults (aged 16–29) are at 

higher risk of e-bike accidents. E-bikers are at a greater risk of 

head and lower-extremity injuries. Consequently, they will re-

quire surgery, longer hospital stays, and visits to the rehabilita-

tion center. 

[24] 

Simple chi-square 

statistics analysis and 

logit regression mod-

el 

Gender, distance cycled/week, bicycle 

type, participants’ reported cause of 

accidents 

/ 

Females are more prone to accidents on electric bikes than con-

ventional ones, whereas males are equally prone to accidents on 

both bikes. 

[10] Retrospective study 

Ethnicity, motorized device, 

nonmotorized device and type of im-

pact 

/ 
Electric bikes always cause mild injuries, which are mainly su-

perficial wounds and upper- and lower-limb injuries. 

[26] 
Retrospective cohort 

study 

Region, oral, and maxillofacial injuries, 

and hospital resource utilization 
/ 

Electric bikers suffer mainly oral and maxillofacial injuries and 

pedestrians involved in electric bike crashes, who are mostly 

children and older people, suffer oral and maxillofacial injuries. 

[25] 

Multiple-factor con-

ditional logistic re-

gression 

Marital status, electric bike type, and 

electric bikers’ behavior 
/ 

Multiple-factor conditional logistic regression analysis of 

e-bike-related traffic crashes identified running red lights, 

drinking and riding, carrying adults while riding, turning with-

out signaling, riding in the motor vehicle lane, prior crash histo-

ry, and type of e-bike as possible risk factors for e-bike traffic 

crashes. 

[14] Main factor analysis 

Collision objects, speed, driving direc-

tion, sight obstacle, and riders’ viola-

tion 

/ 

Two-wheel electric vehicles are most prone to accidents when 

turning left. The most common collision object for two-wheel 

electric-vehicle riders are automobiles. 

[27] 

In-depth accident 

reconstruction and 

validated finite ele-

ment model 

Stress–strain performance, material of 

helmet outer shell, landing condition, 

and velocity of three parts of the hu-

man body before head impact 

/ 
Electric bicyclist helmets not offering adequate protection in-

crease the risk of injury. 

[9] Finite element model 

Geometric and mass parameters of 

bicycle and electric two-wheeler and 

moving velocities of all parties and 

their initial relative position 

/ 

The risk of head injury to electric bicyclists increases with the 

oncoming vehicle velocity. Riders with a larger stature have a 

higher chance of escaping head impact on the vehicle. In collision 

with a sedan or an SUV will cause electric bicyclists’ lower head 

injuries. 

/ indicates that the study does not consider the indicator’s heterogeneity; SUV— sport utility vehicled.  
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2.3. Heterogeneity of Crash Models 

Despite the various performance metrics of a rider causing varying degrees of inju-

ry, most data analyses on injury severity utilized conventional models to simulate sever-

ity. Thus, the severity is often underestimated or overestimated [28]. For example, in a 

study on motorcycle injury severity, researchers used a multinomial logit model to ex-

amine the severity, as it was divided into different levels [29]. However, this model was 

prone to violating the independence of the irrelevant alternative property. Subsequently, 

nested and ordered logit models appeared to have solved this problem [30]. However, 

owing to limited data availability, analysts could not obtain all the factors related to a 

victim’s injury severity. Therefore, it is important to use an effective approach that can 

capture implicit characteristics so that analysts can understand the crucial relationships 

among the known indicators and their effects on the subjects (injury severity). 

Accordingly, a few studies have constructed models to elucidate the obscure heter-

ogeneity of parameters in the analysis of electric bicycle crash data [31–35]. The mixed 

logit model with heterogeneity in means (and variances) explains heterogeneity at the 

individual level [15,16,34]. By relaxing the limitation of fixed parameters, this model 

performs better than the traditional logit model and requires fewer crash data [36]. The 

Markov switching model establishes heterogeneity due to the time span [37,38]. La-

tent-class models are used to illustrate the heterogeneity at the group level [32,39,40]. 

Furthermore, classical models with random parameters can explain the phenomenon of 

heterogeneity to a certain extent, such as bivariate or multivariate models with random 

parameters [41,42], generalized ordered probability models with random parameters of 

heterogeneity in means and variances [43], ordered probit models with random param-

eters of heterogeneity in means and variances [33], and random thresholds random pa-

rameters hierarchical ordered probit models [44,45]. 

These studies indicate that peak traffic periods have a significant impact on injury 

severity. Furthermore, electric bicyclists are facing increasingly challenging traffic sce-

narios and traffic conflicts. To improve traffic safety, Fyhri evaluated traffic safety of 

electric bicyclists [24]. However, the study did not focus on the peak traffic periods; it 

aimed to evaluate the behavioral patterns of electric bicyclists through three models: a 

mixed logit model, a model with heterogeneity in means, and one with heterogeneity in 

means and variances. Thus, it overcame the limitation of implicit heterogeneity in the 

crash data by capturing the heterogeneity in the means and variances of random param-

eters [28,46]. 

3. Data Description 

We collected automobile and electric bicycle crash data of a typical city in China 

from 2014 to 2019. According to Downs (2005), peak-hour or rush-hour congestion occurs 

between 6 a.m. and 9 a.m. and again between 4 p.m. and 7 p.m. Based on congestion data 

crawling and a common work routine, we found that a typical city’s commuter conges-

tion (red area in real-time traffic flow conditions) was in accordance with Downs’s study 

[17]. Thus, we divided the crash time of day into different segments and then extracted 

the crashes that occurred between 6 a.m. and 9 a.m. and 4 p.m. and 7 p.m. For data in-

tegrity and availability, the study extracted the single-automobile—single-electric bicycle 

crashes that occurred in the morning and evening hours (2025). Of those crashes, only 

998 resulted in property damage as the most severe outcome (hereinafter referred to as 

no-injury), 596 crashes resulted in minor injury, 324 in severe injury, and 107 in fatal 

crashes. Each observation of the dataset contained the electric bicycle injury severity and 

driver and rider characteristics, vehicle characteristics, and road characteristics that in-

fluenced the crashes. Table 3 lists the results of the descriptive statistical analysis of the 

peak traffic model. However, this database does not include all the factors that may con-

tribute to electric bicycle crashes. As an important indicator, visibility is the maximum 

distance up to which a rider can see under natural obstacles like haze and heavy fog ra-
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ther than the visual distance affected by surrounding vehicles or buildings. This indica-

tor was considered because crashes during haze or fog are common in many provinces 

in China, including Xi’an. Its influence on accidents during peak hours shall be further 

discussed. In Xi’an, the local traffic police officers use measurement instruments under 

haze and heavy fog, or visually record visibility under pleasant weather conditions with 

no haze or heavy fog, and upload the data to a centralized database. It is noted that spe-

cific speed data was important in the previous studies but excluded in this study, be-

cause the data was estimated manually by the local policemen. The subjective estimation 

is unreliable which may bias the model results. As a result, the speed variable was ex-

cluded in this study. However, to address the speed indicator, the study considered the 

rider’s maneuver of braking before crash. These data were collected from the riders, and 

policemen, who judged the pedals’ final status. 

Table 3. Descriptive statistics of key indicator variables (1 if variable is true; 0 otherwise). 

Variable Mean Standard Deviation (SD) Variable Mean SD 

Driver and Bicyclist Characteristics Roadway and Environmental Characteristics 

Male Vehicle Driver 0.91 0.29 Time of accident is a weekday 0.73 0.44 

Male Electric Bicyclist 0.71 0.45 Roadway location is under traffic control 0.18 0.39 

Electric Bicyclist Age Group < 18 years 0.36 0.48 Roadside protection is not provided 0.60 0.49 

Electric Bicyclist Age Group 18–30 

years 
0.33 0.47 Roadside protections are trees 0.14 0.35 

Electric Bicyclist Age Group 31–40 

years 
0.24 0.43 Roadside protections are green belts 0.13 0.34 

Electric Bicyclist Age Group 41–50 

years 
0.07 0.25 Roadside protections are fences 0.07 0.26 

Electric Bicyclist Age Group > 50 years 0.01 0.11 Roadside protections are truck escape ramps 0.05 0.22 

Vehicle Driver Age Group 18–30 years 0.18 0.39 Roadside protections are protective piers 0.11 0.19 

Vehicle Driver Age Group 31–40 years 0.20 0.40 Roadside protections are buffers 0.38 0.14 

Vehicle Driver Age Group 41–50 years 0.24 0.42 Road surface condition is rough 0.99 0.11 

Vehicle Driver Age Group > 50 years 0.36 0.48 Road surface is dry 0.89 0.31 

Vehicle Driving Experience 1–5 years 0.22 0.41 Pavement structure is bituminous 0.92 0.27 

Vehicle Driving Experience 6–10 years 0.26 0.44 Crash occurred in road segments 0.79 0.40 

Vehicle Driving Experience 11–15 years 0.41 0.49 Road alignment is flat and straight 0.90 0.30 

Vehicle Driving Experience > 15 years 0.11 0.32 Road type is general urban road 0.58 0.49 

Intoxicated 0.16 0.64 Road type is graded highway 0.28 0.45 

Vehicle Characteristics 
Road type is urban expressway or another urban 

road 
0.14 0.34 

Vehicle Insured 0.99 0.10 Weather is sunny 0.78 0.41 

Sedan 0.74 0.44 Weather is foggy 0.65 0.14 

Passenger Car 0.06 0.24 Weather is cloudy 0.13 0.34 

Truck 0.18 0.38 Weather is rainy 0.07 0.26 

Motorcycle 0.02 0.15 Weather is snowy or covered with hail 0.01 0.11 

* Abnormal 0.99 0.11 Visibility is more than 200 m 0.49 0.50 

Overloaded 0.02 0.13 Visibility is 100–200 m 0.23 0.42 

Pre-crash Vehicle Movement Characteristics Visibility is 50–100 m 0.20 0.40 

Go Straight 0.76 0.42 Visibility is less than 50 m 0.09 0.28 

U-turn 0.02 0.16 Landform is plain 0.97 0.17 

Turning Left 0.10 0.30 Lighting condition is daytime 0.71 0.46 

Turning Right 0.11 0.32 Lighting condition is ‘streetlight at night’ 0.20 0.40 

No Braking 0.23 0.14 Lighting condition is ‘no streetlight at night’ 0.07 0.26 

Partial Braking 0.06 0.22 Lighting condition is natural light of dawn or dusk 0.02 0.15 

Entire Braking 0.18 0.66 Location of accident is downtown 0.45 0.50 

Throttle Loose 0.05 0.24 Construction area 0.09 0.21 

Vehicles with poor braking/braking failure/steering issues/illuminance issues/other mechanical issues; * represents the 

baseline of the category. 

Figure 1 presents the trend of crashes over ten years. A significant rise in peak traf-

fic crashes can be observed between 2014 and 2018. It is a record of all crashes that in-

curred a property loss of more than CNY 5000 or minor, severe, or fatal injuries to the 

electric bicyclist. The x-axis represents the crash frequency each year, while the y-axis 
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represents time. The number of crashes in 2018 surged by approximately 26% in com-

parison to 2014, probably due to the drastic increase in the demand for electric bicycles. 

The crash frequency showed a minor increasing trend from 2014 to 2018, and then the 

frequency declined moderately. 

 

Figure 1. Crash frequency vs. time. 

4. Methodology 

To investigate the implicit heterogeneity in electric bicycle and automobile crash 

data, the study adopted the method of Seraneeprakarn [28], which is based on an inves-

tigation of the random parameters approach with heterogeneity in means and variances. 

The method relaxes the restriction on assuming the random parameter means and vari-

ances for all observations to track the different effects of the studied indicators on varying 

observations. 

First, the injury severity was divided into four categories: no injury (only property 

loss), minor injury (visible but non-incapacitating injury), severe injury (incapacitating 

injury), and fatal injury (injury leading to death). No injury was selected as the baseline 

because it occupied the largest proportion among the four severity scales. This ensured 

the model produced stable estimations [47]. We defined an injury severity determination 

function as follows: 

𝐹𝑖𝑘 = 𝛽𝑖𝑘𝑋𝑖𝑘 + 𝜀𝑖𝑘 (1) 

where 𝐹𝑖𝑘 represents the injury severity level 𝑖 (𝑖 = 1—no injury: baseline; 2—minor 

injury; 3—severe injury; and 4—fatal injury) of an electric bicyclist 𝑘, 𝑋𝑖𝑘 is the studied 

indicator related to the severity, and 𝛽𝑖 is the effect estimator. The error term 𝜀𝑖𝑘 cap-

tures the implicit effects or characteristics assumed to have a generalized extreme-value 

distribution. 

Based on the study of Behnood and Mannering [16], 𝛽𝑖 is the key parameter to 

capture the heterogeneity in the mean and variance of random parameters, which is ex-

pressed as follows: 

𝛽𝑖𝑘 = 𝛽 + 𝜃𝑖𝑘𝑍𝑖𝑘 + 𝜎𝑖𝑘𝐸𝑋𝑃(𝜔𝑖𝑘𝑊𝑖𝑘)𝛾𝑖𝑘 (2) 

where 𝛽 is the mean parameter estimator across all crashes, and 𝑍𝑖𝑘 and 𝑊𝑖𝑘 are vec-

tors that track the heterogeneity in mean and standard deviation (SD) 𝜎𝑖𝑘. 𝜔𝑖𝑘 is the 
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corresponding parameter vector. 𝜃𝑖𝑘 is a vector corresponding to the estimated param-

eter 𝑋𝑖𝑘, and 𝛾𝑖𝑘 is the disturbance term. 

To estimate the probability of an electric bicyclist suffering an injury of one of the 

severity levels, with 𝜀𝑖𝑘  having a generalized extreme value distribution, the choice 

probability was extended to the multinomial logit model with heterogeneity observation 

(mixed logit model) formula [47]: 

𝑃𝑛(𝑖|𝜙) = ∫
𝐸𝑋𝑃[𝛽𝑖𝑘𝑋𝑖𝑘]

∑ 𝐸𝑋𝑃[𝛽𝑖𝑘𝑋𝑖𝑘]𝑖𝜖𝐼
𝑓(𝛽𝑖𝑘|𝜙)𝑑𝛽𝑖𝑘 (3) 

where 𝑃𝑛(𝑖|𝜙) is the probability of an electric bicyclist suffering an injury severity level 𝑖 

on 𝑓(𝛽𝑖𝑘|𝜙), 𝑓(𝛽𝑖𝑘|𝜙) is the density function of 𝛽𝑖𝑘 required to determine 𝛽𝑖𝑘, which 

can be used to observe the heterogeneity [2]. 𝜙 is the vector of a usual and known den-

sity function. In the study, the maximum likelihood estimation with Halton draws was 

used for the mixed logit model [48]. 

Two tests were conducted to validate the peak traffic period model. The first one 

was the log-likelihood test between the overall model and the peak traffic period model 

[49], which is as given as follows: 

𝐿𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = −2[𝐿𝐿(𝛽𝑜𝑣𝑒𝑟𝑎𝑙𝑙) − 𝐿𝐿(𝛽𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑝𝑒𝑎𝑘) − 𝐿𝐿(𝛽𝑜𝑓𝑓−𝑝𝑒𝑎𝑘)] (4) 

where 𝐿𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙, 𝐿𝐿(𝛽
𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑝𝑒𝑎𝑘), and 𝐿𝐿(𝛽𝑜𝑓𝑓−𝑝𝑒𝑎𝑘) are the log-likelihoods at the con-

vergences of the models estimated with data from both peak traffic and off-peak periods, 

peak traffic period, and non-peak traffic period, respectively. In the first test, the three 

models (overall model, peak traffic period model, and off-peak model) had the same 

variables. 𝐿𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is the chi-square (𝜒2) distributed with degrees of freedom equal to 

the summation of the number of estimated parameters in the peak traffic and off-peak 

models minus the number of estimated parameters in the overall model. 

Based on the results of the first test, a second test, called the parameter transferabil-

ity test [49], was conducted to determine whether the peak traffic period was to be mod-

eled separately: 

𝐿𝑅𝑎𝑏 = −2[𝐿𝐿(𝛽𝑎𝑏) − 𝐿𝐿(𝛽𝑎)] (5) 

where 𝐿𝐿(𝛽𝑎𝑏) and 𝐿𝐿(𝛽𝑎) are the log-likelihoods at the convergences of the models 

maintaining converged parameters from the peak traffic period model with the data of 

the non-peak traffic period and peak traffic period data, respectively. Similarly, 𝐿𝑅𝑎𝑏 is 

𝜒2 distributed with degrees of freedom equal to the number of estimated parameters in 

𝛽𝑎𝑏. The simulation procedure required Halton draws [50]. 

5. Model Estimation Results 

To determine if the models need to be developed separately, this study used the 

econometric analysis software NLOGIT 5.0 (Econometric Software, Inc.: Plainview, NY, 

USA). The log-likelihood ratio test illustrated a test statistic of 128.77 with 32 degrees of 

freedom (p < 0.001), which implies that the peak traffic period must be modeled sepa-

rately with a confidence interval of more than 99%. According to the model separation 

test, each test statistic and the corresponding degrees of freedom suggest that the peak 

period must be modeled separately among electric bike-involved crashes with more than 

99% confidence (𝐿𝑅𝑝𝑒𝑎𝑘𝑜𝑓𝑓−𝑝𝑒𝑎𝑘 = 365.2, df = 40;𝐿𝑅𝑜𝑓𝑓−𝑝𝑒𝑎𝑘𝑜𝑝𝑒𝑎𝑘 = 493.4, df = 43). Halton 

draws are more effective than random draws in ensuring better convergence with shorter 

drawing times. In this study, we narrowed the number of Halton draws to 200 for greater 

fitness and accurate parameter estimation of data. Moreover, in the model estimation, a 

normal distribution proved to be the best statistical fit for the functional form of the pa-

rameter density function, which conforms with previous studies [44,46]. 

During the model development, the indicators were considered significant if their 

t-statistics corresponded to the 90% confidence level or higher on a two-tailed t-test. 
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Then, random indicators are addressed by determining their standard deviations to 

have the t-statistics corresponding to the 90% confidence level or higher [7]. To identify 

the heterogeneity of the means of random parameters and ensure the t-statistics corre-

sponded to the 90% confidence level or higher, we estimated the parameters and the SDs 

of random parameters influenced by other non-random parameters. Moreover, identi-

fying the heterogeneity of the means and variances of random parameters involves an 

additional test of significance of the heteroscedasticity of random parameters under the 

influences of other non-random parameters. This step requires the heteroscedasticity of 

random parameters to have t-statistics corresponding to a confidence interval of 90% or 

higher. 

To investigate the heterogeneity in the means and variances of parameters, this 

study maintained three models based on a mixed logit model with or without consider-

ation of heterogeneity. Tables 4 and 5 list the estimations of the models and the marginal 

effects, respectively. No injury is the baseline of the severity outcome. Its severity func-

tion is constrained to zero without loss of generality. This study focuses on the injury 

severity of electric bicyclists rather than automobile drivers because bicyclists are more 

likely to sustain serious injury. 

Table 4. Different mixed logit models (with/without heterogeneity) results. 

Variable 

Mixed Logit 

No Mean–Variance Heterogeneity Mean Heterogeneity Mean–Variance Heterogeneity 

Coefficient 

(t-Statistic) 

Coefficient 

(t-Statistic) 

Coefficient 

(t-Statistic) 

Constant [I] 5.428 ***(8.57) 5.428 *** (8.57) 5.473 *** (9.12) 

Constant [I+] −3.957 *** (−8.62) −3.957 *** (−7.95) −3.716 *** (−7.57) 

Constant [I++] −2.854 *** (−18.47) −2.854 *** (−18.47) −2.811 *** (−19.04) 

Driver and Bicyclist Characteristics 

Female Electric Bicyclist [I] −1.228 *** (3.12) −1.228 *** (3.12) −1.237 *** (3.04) 

Vehicle Characteristics    

Passenger Car [I+] 0.653 ** (2.46) 0.653 ** (2.46) 0.701 ** (2.56) 

Passenger Car [I++] 1.122 *** (6.08) 1.125 *** (6.05) 1.408 *** (4.79) 

Truck [I+] 1.125 *** (6.58) 1.196 *** (6.46) 1.187 *** (6.34) 

Truck [I++] 1.756 *** (11.78) 1.833 *** (11.56) 1.825 *** (10.89) 

Motorcycle [I] −1.288 *** (−3.56) −1.455 *** (−4.05) −1.455 *** (−3.88) 

Pre-crash Vehicle Movement Characteristics 

U-turn [I+] −1.857 *** (−3.07) −1.946 *** (−4.05) −2.105 *** (−3.94) 

U-turn [I++] −1.887 ** (−2.22) −1.889 ** (−2.44) −1.890 ** (−2.42) 

Turning Left [I+] −2.055 *** (−5.02) −2.277 *** (−4.89) −2.028 *** (−4.88) 

Turning Left [I++] −1.588 *** (−4.02) −1.276 *** (−3.48) −1.426 *** (−4.02) 

Turning Right [I+] −1.725 *** (−5.20) −1.701 *** (−5.16) −1.770 *** (−6.42) 

Turning Right [I++] −0.653 ** (−2.12) −0.653 ** (−2.12) −0.652 ** (−2.08) 

Roadway and Environmental Characteristics 

Traffic Control [I+] −0.725 *** (−3.22) −0.728 *** (−3.37) −0.806 *** (−3.91) 
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Roadside Protection Trees [I+] −0.988 *** (−4.29) −0.993 *** (−3.43) −1.021 *** (−3.84) 

Roadside Protection Fences [I+] −1.428 *** (−4.01) −1.458 *** (−4.15) −1.559 *** (−4.15) 

Road Segments [I+] 2.048 *** (4.26) 2.125 *** (4.12) 2.218 *** (4.86) 

Flat and Straight Road Alignment [I+] −1.701 *** (3.04) −1.628 *** (3.22) −1.112 *** (4.07) 

Graded Highway [I+] 0.480 ** (2.41) 0.491 ** (2.41) 0.485 ** (1.95) 

Graded Highway [I++] 0.855 *** (4.94) 0.877 *** (4.85) 0.827 *** (4.88) 

Urban Expressway or another  

Urban Road [I+] 
0.852 *** (3.97) 0.565 *** (3.48) 0.786 *** (4.05) 

Visibility < 50 m [I] −0.528 ** (−2.42) −0.701 ** (−2.39) −0.897 ** (−2.37) 

Streetlights at Night [I+] 0.398 ** (2.17) 0.527 ** (2.11) 0.242 ** (2.19) 

No Lights at Night [I+] 0.958 ** (2.13) 0.727 ** (2.34) 0.672 ** (2.48) 

Downtown Driving [I+] 1.424 *** (6.12) 1.486 *** (5.78) 1.271 *** (6.01) 

Random Parameters (Normal Distribution) 

Visibility 50–100 m [I+] −2.181 ** (−2.25) −2.117 ** (−2.14) −2.331 ** (−2.21) 

SD for random parameter 2.348 ** (2.32) 2.294 ** (2.14) 2.581 ** (2.49) 

Visibility 100–200 m [I+] −1.797 ** (−2.36) −3.275 ** (−2.32) −3.127 ** (−2.45) 

SD for random parameter 2.023 ** (2.24) 3.946 ** (2.70) 4.037 ** (3.15) 

Heterogeneity in Means of the Random Parameters 

Visibility 100–200 m: Traffic Control [I+]  1.626 ** (1.95) 1.418 ** (2.13) 

Visibility 100–200 m: No Lights at Night [I+]   3.067 ** (2.05) 

Visibility 50–100 m: Road Segments [I+]  −1.347 ** (−2.21)  

Heterogeneity in Variances of the Random Parameters 

Visibility 100–200 m: Traffic Control [I+]   0.568 ** (2.01) 

Visibility 100–200 m: No Lights at Night [I+]   0.732 * (1.20) 

(Parameter defined for: [I] minor injury, [I+] severe injury and [I++] fatal injury). No injury is the severity outcome base-

line; its severity function is constrained to zero. Injury includes minor injury, severe injury, and fatality. Each variable is 

set as a dichotomous variable. 1 indicates the variable is true, and 0 otherwise. Significance codes: * p < 0.1, ** p < 0.05, *** p 

< 0.01. 

Table 5. Marginal effects for different mixed logit models (with/without heterogeneity consideration). 

Variable 

Mixed Logit 

No Mean–Variance Het-

erogeneity 
Mean Heterogeneity 

Mean–Variance Hetero-

geneity 

Driver and Bicyclist Characteristics 

Female Electric Bicyclist [I] −0.0137 −0.0134 −0.0255 

Vehicle Characteristics    

Passenger Car [I+] 0.2711 0.2715 0.1533 

Passenger Car [I++] 0.0238 0.0233 0.0114 

Truck [I+] 0.0347 0.0355 0.0589 
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Truck [I++] 0.0433 0.0412 0.0407 

Motorcycle [I] −0.0291 −0.0344 −0.0308 

Pre-crash Vehicle Movement Characteristics 

U-turn [I+] −0.0472 −0.0564 −0.0566 

U-turn [I++] −0.0085 −0.0085 −0.0074 

Turning Left [I+] −0.0587 −0.0592 −0.0688 

Turning Left [I++] −0.0472 −0.0470 −0.0481 

Turning Right [I+] −0.0905 −0.1028 −0.1033 

Turning Right [I++] −0.0522 −0.0623 −0.0688 

Roadway and Environmental Characteristics 

Traffic Control [I+] −0.0804 −0.0910 −0.0912 

Roadside Protection Trees [I+] −0.1228 −0.1220 −0.1181 

Roadside Protection Fences [I+] −0.0523 −0.0412 −0.0404 

Road Segments [I+] 0.0805 0.0927 0.0933 

Flat and Straight Road Alignment [I+] −0.0711 −0.0659 −0.0783 

Classified Highway [I+] 0.0023 0.0021 0.0133 

Classified Highway [I++] 0.0112 0.0110 0.0129 

Urban Expressway or another Urban Road [I+] 0.0291 0.0284 0.0199 

Visibility < 50 m [I] −0.0672 −0.0665 −0.0638 

Streetlights at Night [I+] 0.1862 0.1877 0.1928 

No Lights at Night [I+] 0.3486 0.3522 0.3697 

Downtown Driving [I+] 0.0632 0.0703 0.0710 

Random Parameters (Normal Distribution) 

Visibility 50–100 m [I+] −0.1824 −0.1810 −0.1776 

Visibility 100–200 m [I+] −0.1791 −0.1774 −0.1739 

Parameter defined for: [I] minor injury, [I+] severe injury and [I++] fatal injury). Each variable is set as a dichotomous 

variable. 1 represents the variable is true and 0 represents otherwise. All the marginal effects in the no injury function are 

implicit and have not been reported due to space constraints. Marginal effects are presented as decimals. 

To identify the best-fit model in this study, Table 6 lists the log-likelihoods at con-

vergence for the constant-only, multinomial logit, mixed logit, and mixed logit with het-

erogeneity in means and variances models. McFadden ρ2 (conditional logarithmic analy-

sis value of qualitative selection behavior) and BIC (Bayesian Information Criterion) de-

termine the goodness of fit of the model. Specifically, the model contains better fitness 

with higher McFadden ρ2 and lower BIC. 

The likelihood ratio tests demonstrated the statistical robustness of the mixed logit 

model with heterogeneity in means and variances, i.e., according to the null hypothesis, 

this model equals the other models being rejected with more than 99% confidence. The 

lowest BIC value of the mixed logit model with heterogeneity in means and variances 

reveals that it is important to capture the sources of heterogeneity in means and vari-

ances, thus it was selected as the final model. 
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Table 6. Model comparison. 

Indicators 
No Mean–Variance Heteroge-

neity 
Mean Heterogeneity 

Mean–Variance Heteroge-

neity 

Number of Observations 2141 2141 2141 

Log Likelihood with Constants 

Only 
−1947.61 −1947.61 −1947.61 

Log Likelihood at Convergence −1625.30 −1611.70 −1602.48 

Adjusted McFadden—ρ2 0.564 0.640 0.642 

Akaike Information Criterion 3300.7 3299.3 3153.8 

Bayesian Information Criterion 3288.5 3397.3 3530.7 

The significant parameters and related findings are discussed in the subsequent 

paragraphs. The parameters that produced arbitrary degrees of injury severity are dis-

cussed. To detect the factors associated with the performance of the random parameters, 

the heterogeneity findings originating from those random parameters are outlined. Ob-

servations of other statistically significant parameters grouped by category are also 

summarized. Finally, the marginal coefficients are separately discussed after estimating 

their parameters, which directly influence electric bicyclist injury severity. All the varia-

bles kept in the models are statistically significant at a 0.10 significance level. 

5.1. Random Parameters and Heterogeneity Observations 

Two explanatory variables were found to be randomly distributed in the mixed logit 

model: 50–100 m visibility—severe injury and 100–200-m visibility—severe injury (Table 

4). The two random parameters only passed the normal distribution test with 95% con-

fidence in the common crash data distribution tests, including normal, uniform, and tri-

angular distributions. The predicted possibilities of each random indicator can be ob-

served visually (Figures 2–6). To be specific, the x-axis represents the estimation of the 

indicator, while the y-axis represents the corresponding possibility. 
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Figure 2. Parameter distribution of 50–100 m visibility indicator for severe injury. 
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Figure 3. Parameter distribution of 50–100-m visibility indicator for different road types. 
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Figure 4. Parameter distribution of the 100–200-m visibility indicator for severe injury. 
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(a)                                                            (b) 

Figure 5. Parameter distribution of 100–200-m visibility indicator under traffic control. (a) Mean heterogeneity; (b) 

Mean-variance heterogeneity. 
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Figure 6. Parameter distribution of 100–200-m visibility indicator without night lighting. 

For the 50–100 m visibility indicator, with a mean of −2.181 and an SD of 2.348, there 

were approximately 72.96% of crashes with natural visibility of 50–100 m leading to less 

severe injuries (Figure 2). Poor visibility during peak hours may reduce riders’ line of 

sight, increasing their cautiousness. Therefore, most riders steadily depressed the brake 

pedal and decelerated. However, in the other 27.04% of crashes, riders preferred to apply 

a brake lag or less effective avoidance maneuvers amid haze. Consequently, bicyclists 

were prone to fall or collide, suffering severe injuries. What is more, heterogeneity in 

means of this random parameter was observed. Compared with driving at an intersec-

tion, driving on road segments with 50–100 m visibility decreased the mean of the 50–100 

m visibility range, reducing the probability of severe injury. At intersections (i.e., the 
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reference category) amid visibility of 50–100 m in peak hours, the estimated mean pa-

rameter was −2.117. On road segments, the mean parameter was −3.464 (−2.117 − 1.347 = 

−3.464), as illustrated in Figure 3. Therefore, the probability of severe injury amid 50–100 

m visibility decreased during peak hours. Driving on road segments under low visibility 

motivated electric bicyclists to drive cautiously. Consequently, their cautions will pre-

vent the riders into a serious or severe injury. This is demonstrated by the negative mean 

further away from zero, which resulted in more riders suffering mild injuries during a 

crash. 

The 100–200 m low-visibility parameter also randomly affected electric bicyclist in-

juries [7]. Similarly, 73.38% of riders involved in crashes under visibility of 100–200 m did 

not suffer severe injuries, based on the normal distribution with a mean of −1.797 and an 

SD of 2.023 (Figure 4). However, the marginal effect of this indicator shows its increasing 

contribution to less severe injuries among electric bicyclists (Table 5). Similarly, when the 

visibility was only 100–200 m, riders still preferred to focus and decelerate. However, 

compared with visibility of 50–100 m, when the range was 200 m, riders were less likely 

to sustain severe injuries in a collision or fall because they could perform careful ma-

neuvers despite the road conditions. Accounting for heterogeneity in means only, com-

pared with driving in areas without traffic control, driving in areas with traffic control 

increased the mean of the 100–200 m visibility range, increasing the probability of severe 

injury. On the one hand, in areas with traffic control, the mean parameter for the 100–200 

m visibility range is −1.649 (−3.275 + 1.626 = −1.649). On the other hand, in areas with no 

traffic control (i.e., the reference category), the estimated mean parameter for the same 

visibility range—severe injury is −3.275 (Figure 5a). 

Accounting for heterogeneity in means and variances, the 100–200 m visibility 

range—severe injury, was found to produce random parameters with heterogeneity in 

means and variances. Compared with ‘no traffic control area’ driving, ‘traffic control ar-

ea’ driving increased the mean of this range to −1.799 (−3.127 + 1.418 = −1.799), increasing 

the probability of severe injury. However, the mean of visibility in the no-traffic-control 

scenario was −3.127 (Figure 5b). More importantly, the variance of the 100–200 m visibil-

ity indicator increased (4.0372 + 0.568 = 16.865 > 4.0372). 

Road illumination during the evening peak period also influenced the mean and 

variance of the 100–200 m visibility range. The study demonstrates that the estimated 

mean parameter for 100–200 m visibility—severe injury, when driving in well-lit areas 

(daytime, i.e., the reference category) was −3.217. For areas with no nightlights, this pa-

rameter became −0.150 (−3.275 + 3.067 = −0.150) (Figure 6). The results suggest that the 

100–200 m visibility range decreased the probability of severe injury to electric bicyclists, 

but the reduction was markedly weakened when driving in areas with no nightlights. 

This indicates that 100–200 m visibility decreases the possibility of severe injury to the 

electric bicyclists, albeit at a significantly lower rate in areas with no nightlights. This also 

means that the lack of sunlight due to haze during the afternoon peak periods reduces 

drivability and increases the risk of grave accidents. Furthermore, night driving without 

streetlights increases the variance (4.0372 + 0.732 = 17.029 > 4.0372) in severe injury (Figure 

6). That is, the presence of streetlights during the evening peak hours adversely affects 

electric bicyclists’ driving performance, which leads to severe injury rates fluctuating 

more. 

The marginal effects show that driving amid visibility of 50–100 m and 100–200 m 

significantly decreased the likelihood of electric bicyclists suffering severe injury by 

0.1824 and 0.1791 (Table 5), respectively. The results indicate that poor visibility is 

markedly sensitive to heterogeneity in means and variances in terms of grave injury to 

electric bicyclists (Table 4). 

5.2. Driver and Bicyclist Characteristics 

In terms of human characteristics, ‘female electric bicyclist’ is the only indicator that 

significantly affected injury severity. The marginal effects showed that female electric 
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bicyclists increased the possibility of injury by 0.0137 (Table 5), which conforms with the 

findings of previous research on bicyclists’ sex [15,16,31]. 

5.3. Vehicle Characteristics 

Among the various types of automobiles, accidents involving passenger cars and 

trucks contribute to the increasing number of incidents causing severe injuries (Table 4), 

which conforms with previous studies [4,5,18,21]. However, if a crash occurs between a 

motorcycle and an electric bicycle, the rider of the latter is more likely to suffer only 

property damage. The marginal effects indicate an overstatement of the heterogeneity in 

means and variances in the analysis (0.2711 > 0.1533). 

5.4. Pre-Crash Vehicle Movement Characteristics 

Vehicular movement before a crash influences the injury severity of electric bicy-

clists. Contrary to popular belief, all maneuvers (U-turn, left turn, and right turn) reduce 

the possibility of electric bicyclists sustaining severe and fatal injuries compared with 

traveling in a straight line (Table 4). Specifically, compared with turning left, turning 

right is the leading cause of death of electric bicyclists (−0.1033, see Table 5). In contrast, a 

U-turn is less likely to cause the occurrence of fatal injury (−0.0566). Specifically, the most 

efficient movement to prevent serious injury or fatal is turning right. Conversely, U-turn 

is proven to be the least efficient movement to prevent serious injury and fatal. 

5.5. Roadway and Environmental Characteristics 

The road conditions and environment also influence the injury severity. In terms of 

road infrastructure and conditions, despite the presence of traffic signals, border trees, 

and fences in accident zones, other indicators pose greater risks of serious injury to bicy-

clists, and include driving on road segments (relative to intersections), graded highways 

and urban roads, and driving in urban areas. 

According to the marginal effects of indicators, the implementation of traffic control 

measures and the erection of border trees and protective fences reduces the injury sever-

ity. Besides, it is noted that driving in areas with traffic controls with low visibility will 

provide more safety (see Section 5.1), compared with normal visibility (>200 m).  

We also conclude that driving on road segments, rather than at intersections, would 

cause severe injuries in the case of an accident. According to Uddin and Huynh [7], 

crashes occurring on road segments are more serious than those at intersections, which 

conforms with the conclusion of this study. It is noted that driving on road segments with 

low visibility will also provide more safety (see Section 5.1), compared with normal visi-

bility (>200 m). The driving environment also determines the injury severity. If the line of 

sight of the riders is only 50 m, according to the findings of this study, bicyclists generally 

do not sustain injuries. Night driving increases the probability of electric bicyclists’ se-

vere injury, irrespective of the presence of streetlights. However, the presence of hetero-

geneity leads to underestimation, which means that night driving may lead to severe 

injuries, and streetlights cannot entirely compensate for the lack of sunlight at night. 

Thus, for better safety, this study suggests that headlights of electric bicycles should be 

required to be on during afternoon peak periods to provide more road illumination. 

Additionally, downtown riding increases the risk of severe injuries to electric bicycle 

riders (Tables 4 and 5). 

6. Discussion 

Firstly, consider the heterogeneity observations of poor visibility as a factor influ-

encing the injury severity. Driving on road segments instead of at intersections amid low 

visibility motivates electric bicyclists to drive cautiously, and thus prevent accidents that 

lead to severe injuries. This is a result of the segment having a relatively simple traffic 

organization and few accident-prone zones. Additionally, drivers tend to decelerate for 
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effective braking during dangerous circumstances [13,51,52]. However, this opposes the 

findings of previous studies, which showed that segment driving was riskier than inter-

section driving [7,53]. This contradiction may indicate that poor visibility during the peak 

period influences the sensitivity of drivers to different road types with different levels of 

complexity, which warrants further research. On the other hand, driving in the traffic 

control area under poor visibility will reflect drivers’ diverse performances and then lead 

to different injury severities. The results suggest that traffic control approaches and fa-

cilities must consider this diversity. Consequently, separate approaches and facilities are 

required to handle traffic during peak periods under low visibility, including specialized 

signals that inform drivers of oncoming vehicles under haze or fog. Moreover, the results 

suggest that the 100–200 m visibility range decreases the probability of severe injury to 

electric bicyclists, but the reduction is markedly weakened when driving in areas with no 

nightlights. This indicates that 100–200 m visibility decreases the possibility of severe 

injury to electric bicyclists, albeit at a significantly lower rate in areas with no nightlights. 

This also means that a lack of sunlight due to haze during the afternoon peak periods 

reduces drivability and increases the risk of grave accidents. The presence of streetlights 

during the evening peak hours adversely affects the electric bicyclist’s driving perfor-

mance and leads to severe injury rates fluctuating more. Therefore, we recommend 

proper road illumination during the evening peak traffic periods, especially under poor 

visibility. However, the varying effects of low visibility on injury severity during peak 

hours cannot be dismissed. The effect of low visibility on injury severity necessitates 

further investigation because it exhibits more uncertainty and variation than normal 

visibility [51,54–56]. 

Among the various types of automobiles, accidents involving passenger cars and 

trucks contribute to the increasing number of incidents causing severe injuries. Thus, we 

recommend restricting the movement of trucks and passenger cars during peak traffic 

periods, especially in a mixed traffic flow. Then, vehicular movement before a crash in-

fluences the injury severity of electric bicyclists. This suggests that during peak periods, 

different movement lanes should be separated and controlled strictly, especially for 

right-turn lanes, U-turn lanes, and bicycle lanes. Moreover, it is noted that driving on 

road segments with low visibility will also provide more safety. Thus, in clear weather, 

road segments should be better managed and regulated during peak traffic periods. Fi-

nally, night driving may lead to severe injuries, and streetlights cannot entirely com-

pensate for the lack of sunlight at night. Thus, for better safety, this study suggests that 

headlights of electric bicycles should be required to be on during afternoon peak periods 

to provide more road illumination. A further novel finding is that although belonging 

into the green plant protection, the protective effects of green belt and trees are signifi-

cantly different. In line with previous study [57], the most effective roadside protection 

lied on the Roadside Protection Trees with the magnificent marginal effect values. Nev-

ertheless, the green belt has no significant impact on accident injuries during peak peri-

ods. Additionally, downtown riding will increase the risk of severe injuries to electric 

bicycle riders, which is intuitive. The reason for this may be the more complicated traffic 

scene in downtown areas [20]. With heterogeneity, this impact is emphasized, and new 

downtown traffic optimization concepts aimed at the peak hours should be proposed. 

There are several limitations that should be considered when interpreting the results 

of this study. First, this study does not differentiate between morning and evening peak 

periods due to data limitation. It is possible that the two peak periods show different 

crash patterns, which deserve more investigation. We suggest that the police enforce-

ment agency should include time period information when collecting crash data. Second, 

although we examined many sources of observed heterogeneity, some exogenous factors 

were ignored, such as the use of a reserved bus lane. Future work should check the im-

pacts of those variables when related data is available. Third, several road features spe-

cific to electric bicycles were excluded, such as the presence of separate bike lanes. Special 

road features/signs warning electric bicycle riders may produce various effects and de-
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serve more research, such as instrumented guardrails. Fourth, lighting and traffic acci-

dents maintain a complicated interrelationship and this should be further addressed in 

future work. Fourth, different lighting conditions may reflect different types of traffic 

accidents, and more detailed types of lightning conditions should be further addressed 

on the traffic safety assessment in future work. Finally, in addition to traditional econo-

metrics modeling, emerging approaches of machine learning such as fuzzy logic can be 

considered to address the heterogeneity of indicators and design new possibilities. Fu-

ture research can compare the insights from the two study approaches, which help us 

better understand the crash mechanisms between electric bikes and cars. 

7. Conclusions 

The peak traffic period possesses unique traffic characteristics but is often dismissed 

in traffic safety research due to the heterogeneity of parameters. Therefore, traffic safe-

ty-related factors and methods to optimize relevant facilities during the peak traffic 

hours must be determined. People in China have adopted electric bicycles for commuting 

during peak traffic hours owing to their maneuverability; however, traffic data indicates 

high crash incident rates among electric bicycles. This study identified the factors influ-

encing injury severity in electric bicyclists during rush hours. The characteristics of au-

tomobile drivers and bicyclists, vehicle maneuvers before the crash, and circumstances 

surrounding the accident were considered. Three mixed logit models considering the 

variations in parameter means and variances were constructed to provide insights into 

the potential sources of the heterogeneity. 

The findings can be summarized as follows: 

1. A vehicle taking a U-turn ahead of an electric bicycle is less likely to cause severe 

injuries to the rider. The vehicle turning right further decreases the possibility of 

electric bicyclists sustaining severe injuries than left-turning because the latter 

moves in the left lane. 

2. The heterogeneity observations of poor visibility as a factor influencing injury se-

verity disagree with those of previous studies. High visibility is not an absolute 

guarantee of less injury. Instead, it may present a potential risk of serious injury 

during peak periods. Therefore, to improve safety and lower the possibility of severe 

injuries, road segment control strategies must be modified to address the influence 

of high visibility during peak traffic hours. 

3. Amid poor visibility, driving at night without streetlights and driving in areas of 

traffic control pose a greater risk of electric bicyclist injury. 

4. There are significant differences between the protective effects of green belts and 

trees on two-wheelers during peak hours: the former have no significant impact on 

accident injuries while the latter is found to be the most effective roadside protec-

tion. 

We recommend creating clear partitions between lanes and controlling them effi-

ciently, especially right-turning and U-turn and bicycle lanes. Moreover, traffic control 

measures during peak traffic periods under low visibility must be reconsidered. For 

example, authorities could install specialized signals that inform the riders of oncoming 

vehicles amid haze. Importantly, roadside protection trees could be considered as the 

crucial roadside protective measure to reduce the risk of crashes. Specifically, apart from 

streetlights, headlights of electric bicycles must be required to be on during the evening 

peak traffic hours to prevent glare and excess brightness. 
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