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Abstract: Accidents involving electric bicycles, a popular means of transportation in China during
peak traffic periods, have increased. However, studies have seldom attempted to detect the unique
crash consequences during this period. This study aims to explore the factors influencing injury
severity in electric bicyclists during peak traffic periods and provide recommendations to help devise
specific management strategies. The random-parameters logit or mixed logit model is used to identify
the relationship between different factors and injury severity. The injury severity is divided into four
categories. The analysis uses automobile and electric bicycle crash data of Xi’an, China, between 2014
and 2019. During the peak traffic periods, the impact of low visibility significantly varies with factors
such as areas with traffic control or without streetlights. Furthermore, compared with traveling
in a straight line, three different turnings before the crash reduce the likelihood of severe injuries.
Roadside protection trees are the most crucial measure guaranteeing riders’ safety during peak traffic
periods. This study reveals the direction, magnitude, and randomness of factors that contribute to
electric bicycle crashes. The results can help safety authorities devise targeted transportation safety
management and planning strategies for peak traffic periods.

Keywords: mixed logit model; heterogeneity in means and variances; injury severity; electric bicycle
crashes; visibility

1. Introduction

Peak periods have the highest probability of road accidents worldwide. A high traffic
flow, riders’ eagerness to reach their destination, and the pressure of congestion contribute
to the likelihood of accidents during this period. Consequently, the number of crashes
occurring during peak hours is dramatically higher than in off-peak hours [1]. Existing
studies on peak periods tend to focus on automobile driver injury severity on highways [2]
and in rural areas [3–5]. Some studies also highlight other unique indicators related
to peak periods, such as driver distraction [6] and traveler choice [7]. Accordingly, the
traffic management must be trained and the relevant facilities upgraded with respect to the
characteristics and influencing factors of this period rather than those of the off-peak period.
To ensure the safety of commuters, the actual factors affecting the crash consequences and
passengers’/riders’ injury severity during the peak traffic periods must be considered.
However, most studies are focused on evaluating traffic safety at different hours of a day,
rather than in peak hours. Consequently, it has been difficult to recommend optimal safety
guidelines and facilities for peak traffic periods.

Electric bicyclists represent a sizable population of commuters [8–10]. By 2019, there
were 59 electric bicycles for every 100 households in China [11]. Bicyclists accounted for
26% of all deaths worldwide [12]. According to the China Traffic Management Bureau,
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China had 250 million electric bikes (e-bikes) in 2017. Meanwhile, from 2013 to 2017,
e-bike-related crashes resulted in approximately 56,200 injuries and 8431 fatalities in the
country. The traffic safety of e-bikes cannot be ignored [13]. Among the fatal crashes
involving electric bicycles, automobiles accounted for 71.01% [14], which indicates that
crashes involving electric bicycles and automobiles deserve more study.

This study aims to determine the factors affecting injury severity among electric bi-
cyclists during peak traffic hours. Based on the factors covered in previous works, this
study considered the characteristics of automobile drivers, electric bicyclists, roads, and
circumstances, as well as vehicle performance. It also considered vehicle maneuvers (trav-
eling straight, U-turns, and turning left and right) before crashes because these reflect the
motivation of riders to illustrate the cause of the crash from the perspective of automobile
drivers [15,16]. This study used mixed logit models with heterogeneity of means and
variances. The data for analysis were extracted from crash incidents involving electric
bicycles from 2014 to 2019 in typical large- and medium-sized cities in China. To the best
of the authors’ knowledge, this study is the first to analyze injury severity among electric
bicyclists during peak traffic periods.

2. Literature Review
2.1. Traffic Safety during Peak Traffic Periods

In Table 1, ordered by year of publishing, studies that considered the peak traffic
period focused mainly on the crash risk or consequences produced per hour or over other
periods [4–7,17–20]. In a single-vehicle model, the injury severity among drivers meeting
with accidents on rural highways during the busy harvest periods was found likely to be
non-incapacitating [21]. However, no studies have examined the performance and injury
severity among electric bicyclists meeting with accidents during peak traffic periods.

2.2. Traffic Safety of Electric Bicycles

Table 2 summarizes the literature on electric bicyclists’ injury investigations. The table
uses labels to identify studies that considered or discovered heterogeneity of parameters
(affected by unobserved factors; the same indicator may produce different impacts on the
dependent variable). Previous studies have shown that electric bicyclists were more prone to
fatal injuries than traditional bicyclists [22–26]. In addition to using IMPACT, a finite element
analysis tool, to recreate accident scenes [9,22,27], researchers used statistical models to analyze
the factors affecting injury severity among electric bicyclists [10,14,24–26]. Characteristics
pertaining to humans, vehicles, roads, and circumstances influence the injury severity. As
observed in Table 2, studies have demonstrated the different effects of unique factors in
addition to sociodemographic characteristics. However, few have laid emphasis on collecting
data from a moving vehicle before the crash, and the specific road and visibility conditions at
the time of the incident. These factors cannot be dismissed during peak traffic periods, and
their relationships with peak-hour crashes warrant further investigation.

2.3. Heterogeneity of Crash Models

Despite the various performance metrics of a rider causing varying degrees of injury,
most data analyses on injury severity utilized conventional models to simulate severity.
Thus, the severity is often underestimated or overestimated [28]. For example, in a study
on motorcycle injury severity, researchers used a multinomial logit model to examine the
severity, as it was divided into different levels [29]. However, this model was prone to
violating the independence of the irrelevant alternative property. Subsequently, nested
and ordered logit models appeared to have solved this problem [30]. However, owing to
limited data availability, analysts could not obtain all the factors related to a victim’s injury
severity. Therefore, it is important to use an effective approach that can capture implicit
characteristics so that analysts can understand the crucial relationships among the known
indicators and their effects on the subjects (injury severity).
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Accordingly, a few studies have constructed models to elucidate the obscure hetero-
geneity of parameters in the analysis of electric bicycle crash data [31–35]. The mixed logit
model with heterogeneity in means (and variances) explains heterogeneity at the individual
level [15,16,34]. By relaxing the limitation of fixed parameters, this model performs better
than the traditional logit model and requires fewer crash data [36]. The Markov switching
model establishes heterogeneity due to the time span [37,38]. Latent-class models are used
to illustrate the heterogeneity at the group level [32,39,40]. Furthermore, classical models
with random parameters can explain the phenomenon of heterogeneity to a certain extent,
such as bivariate or multivariate models with random parameters [41,42], generalized
ordered probability models with random parameters of heterogeneity in means and vari-
ances [43], ordered probit models with random parameters of heterogeneity in means and
variances [33], and random thresholds random parameters hierarchical ordered probit
models [44,45].

Table 1. Summary of studies considering accidents in peak traffic periods.

Study Methodology Object of Study Heterogeneity Key Finding

[17] Review / /

The study proposed to cope with the “excess”
peak-hour demand for road space by

constructing sufficient public transit facilities
and shifting all the “excess” peak-hour

demand there.

[18] Multinomial logit model Injury severity /

In urban areas, crashes happened between 5
a.m. and 8 a.m. Application of the model can

reduce the possibility of drivers suffering
severe or fatal injuries.

[21] Mixed logit model Injury severity /
In a single-vehicle model, accidents on rural

highways during the busy harvest period may
cause non-incapacitating injuries.

[3] Mixed logit model Injury severity / Different periods have different contributing
factors to each degree of injury severity.

[7] Mixed panel multinomial
logit model Traveler choices

√
Socioeconomic factors, work attributes, and trip
characteristics (degree of flexibility) affect the

traveler’s response during the peak
traffic period.

[19] Structural equation model Vehicle movement /

Weekday travel influences peak-hour travel
more than weekend, and the choice of road and

car types have different effects on
peak-hour travels.

[6] Mixed logit model Injury severity
√ Different periods have different impacts on

different degrees of injury severity.

[20]

Negative binomial
regression and

zero-inflated negative
binomial regression

Crash frequency /

Pedestrians are more likely to be hit by a
vehicle if they cross signalized traffic light

intersections during peak traffic hours.
During the peak period, road segments with

more bus stops are more likely to cause
collisions between vehicles and pedestrians.

[5] Mixed logit model Injury severity
√

Crashes occurring during the morning peak
hours were found to increase the probability of

major injuries in sunny weather, whereas
crashes occurring during the evening peak

hours were found to increase the probability of
major injury in snowy weather.

/ indicates the study does not consider the indicator’s heterogeneity;
√

indicates the study considers the indicator’s heterogeneity.
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Table 2. Summary of the literature about the traffic safety of electric bicycles (bicyclists).

Study Methodology Unique Factors Heterogeneity Key Findings

[22] Accident reconstruction
simulation

Head impact speed,
time of head impact,
and impact angle of

bicyclists with vehicle
impact speed,

wrap-around distance,
and throw-out distance

/

Wrap-around distance, head impact speed,
time of head impact, head impact angle, and
throw-out distance of bicyclists have a strong
relationship with the vehicle impact speed. A
higher vehicle impact speed puts the electric

bicyclist at a higher risk of injury.

[23] Historic prospective study

Population group,
hospital resource

utilization, discharge
disposition, and injured

body region

/

Arab children (aged 0–15) and young adults
(aged 16–29) are at higher risk of e-bike

accidents. E-bikers are at a greater risk of
head and lower-extremity injuries.

Consequently, they will require surgery,
longer hospital stays, and visits to the

rehabilitation center.

[24]
Simple chi-square statistics

analysis and logit
regression model

Gender, distance
cycled/week, bicycle

type, participants’
reported cause

of accidents

/

Females are more prone to accidents on
electric bikes than conventional ones, whereas

males are equally prone to accidents on
both bikes.

[10] Retrospective study

Ethnicity, motorized
device, nonmotorized

device and type
of impact

/
Electric bikes always cause mild injuries,

which are mainly superficial wounds and
upper- and lower-limb injuries.

[26] Retrospective cohort study

Region, oral, and
maxillofacial injuries,

and hospital
resource utilization

/

Electric bikers suffer mainly oral and
maxillofacial injuries and pedestrians

involved in electric bike crashes, who are
mostly children and older people, suffer oral

and maxillofacial injuries.

[25] Multiple-factor conditional
logistic regression

Marital status, electric
bike type, and electric

bikers’ behavior
/

Multiple-factor conditional logistic regression
analysis of e-bike-related traffic crashes

identified running red lights, drinking and
riding, carrying adults while riding, turning

without signaling, riding in the motor vehicle
lane, prior crash history, and type of e-bike as
possible risk factors for e-bike traffic crashes.

[14] Main factor analysis

Collision objects, speed,
driving direction, sight

obstacle, and
riders’ violation

/

Two-wheel electric vehicles are most prone to
accidents when turning left. The most
common collision object for two-wheel
electric-vehicle riders are automobiles.

[27]

In-depth accident
reconstruction and

validated finite
element model

Stress–strain
performance, material
of helmet outer shell,

landing condition, and
velocity of three parts

of the human body
before head impact

/ Electric bicyclist helmets not offering
adequate protection increase the risk of injury.

[9] Finite element model

Geometric and mass
parameters of bicycle

and electric
two-wheeler and

moving velocities of all
parties and their initial

relative position

/

The risk of head injury to electric bicyclists
increases with the oncoming vehicle velocity.

Riders with a larger stature have a higher
chance of escaping head impact on the vehicle.
In collision with a sedan or an SUV will cause

electric bicyclists’ lower head injuries.

/ indicates that the study does not consider the indicator’s heterogeneity; SUV— sport utility vehicled.
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These studies indicate that peak traffic periods have a significant impact on injury
severity. Furthermore, electric bicyclists are facing increasingly challenging traffic scenarios
and traffic conflicts. To improve traffic safety, Fyhri evaluated traffic safety of electric
bicyclists [24]. However, the study did not focus on the peak traffic periods; it aimed to
evaluate the behavioral patterns of electric bicyclists through three models: a mixed logit
model, a model with heterogeneity in means, and one with heterogeneity in means and
variances. Thus, it overcame the limitation of implicit heterogeneity in the crash data by
capturing the heterogeneity in the means and variances of random parameters [28,46].

3. Data Description

We collected automobile and electric bicycle crash data of a typical city in China
from 2014 to 2019. According to Downs (2005), peak-hour or rush-hour congestion occurs
between 6 a.m. and 9 a.m. and again between 4 p.m. and 7 p.m. Based on congestion data
crawling and a common work routine, we found that a typical city’s commuter congestion
(red area in real-time traffic flow conditions) was in accordance with Downs’s study [17].
Thus, we divided the crash time of day into different segments and then extracted the
crashes that occurred between 6 a.m. and 9 a.m. and 4 p.m. and 7 p.m. For data integrity
and availability, the study extracted the single-automobile—single-electric bicycle crashes
that occurred in the morning and evening hours (2025). Of those crashes, only 998 resulted
in property damage as the most severe outcome (hereinafter referred to as no-injury),
596 crashes resulted in minor injury, 324 in severe injury, and 107 in fatal crashes. Each
observation of the dataset contained the electric bicycle injury severity and driver and
rider characteristics, vehicle characteristics, and road characteristics that influenced the
crashes. Table 3 lists the results of the descriptive statistical analysis of the peak traffic
model. However, this database does not include all the factors that may contribute to
electric bicycle crashes. As an important indicator, visibility is the maximum distance up to
which a rider can see under natural obstacles like haze and heavy fog rather than the visual
distance affected by surrounding vehicles or buildings. This indicator was considered
because crashes during haze or fog are common in many provinces in China, including
Xi’an. Its influence on accidents during peak hours shall be further discussed. In Xi’an,
the local traffic police officers use measurement instruments under haze and heavy fog, or
visually record visibility under pleasant weather conditions with no haze or heavy fog, and
upload the data to a centralized database. It is noted that specific speed data was important
in the previous studies but excluded in this study, because the data was estimated manually
by the local policemen. The subjective estimation is unreliable which may bias the model
results. As a result, the speed variable was excluded in this study. However, to address the
speed indicator, the study considered the rider’s maneuver of braking before crash. These
data were collected from the riders, and policemen, who judged the pedals’ final status.

Figure 1 presents the trend of crashes over ten years. A significant rise in peak traffic
crashes can be observed between 2014 and 2018. It is a record of all crashes that incurred
a property loss of more than CNY 5000 or minor, severe, or fatal injuries to the electric
bicyclist. The x-axis represents the crash frequency each year, while the y-axis represents
time. The number of crashes in 2018 surged by approximately 26% in comparison to
2014, probably due to the drastic increase in the demand for electric bicycles. The crash
frequency showed a minor increasing trend from 2014 to 2018, and then the frequency
declined moderately.
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Table 3. Descriptive statistics of key indicator variables (1 if variable is true; 0 otherwise).

Variable Mean
Standard
Deviation

(SD)
Variable Mean SD

Driver and Bicyclist Characteristics Roadway and Environmental Characteristics
Male Vehicle Driver 0.91 0.29 Time of accident is a weekday 0.73 0.44

Male Electric Bicyclist 0.71 0.45 Roadway location is under traffic control 0.18 0.39
Electric Bicyclist Age Group < 18 years 0.36 0.48 Roadside protection is not provided 0.60 0.49

Electric Bicyclist Age Group 18–30 years 0.33 0.47 Roadside protections are trees 0.14 0.35
Electric Bicyclist Age Group 31–40 years 0.24 0.43 Roadside protections are green belts 0.13 0.34
Electric Bicyclist Age Group 41–50 years 0.07 0.25 Roadside protections are fences 0.07 0.26
Electric Bicyclist Age Group > 50 years 0.01 0.11 Roadside protections are truck escape ramps 0.05 0.22
Vehicle Driver Age Group 18–30 years 0.18 0.39 Roadside protections are protective piers 0.11 0.19
Vehicle Driver Age Group 31–40 years 0.20 0.40 Roadside protections are buffers 0.38 0.14
Vehicle Driver Age Group 41–50 years 0.24 0.42 Road surface condition is rough 0.99 0.11
Vehicle Driver Age Group > 50 years 0.36 0.48 Road surface is dry 0.89 0.31
Vehicle Driving Experience 1–5 years 0.22 0.41 Pavement structure is bituminous 0.92 0.27
Vehicle Driving Experience 6–10 years 0.26 0.44 Crash occurred in road segments 0.79 0.40

Vehicle Driving Experience 11–15 years 0.41 0.49 Road alignment is flat and straight 0.90 0.30
Vehicle Driving Experience > 15 years 0.11 0.32 Road type is general urban road 0.58 0.49

Intoxicated 0.16 0.64 Road type is graded highway 0.28 0.45

Vehicle Characteristics Road type is urban expressway or another
urban road 0.14 0.34

Vehicle Insured 0.99 0.10 Weather is sunny 0.78 0.41
Sedan 0.74 0.44 Weather is foggy 0.65 0.14

Passenger Car 0.06 0.24 Weather is cloudy 0.13 0.34
Truck 0.18 0.38 Weather is rainy 0.07 0.26

Motorcycle 0.02 0.15 Weather is snowy or covered with hail 0.01 0.11
* Abnormal 0.99 0.11 Visibility is more than 200 m 0.49 0.50
Overloaded 0.02 0.13 Visibility is 100–200 m 0.23 0.42
Pre-crash Vehicle Movement Characteristics Visibility is 50–100 m 0.20 0.40

Go Straight 0.76 0.42 Visibility is less than 50 m 0.09 0.28
U-turn 0.02 0.16 Landform is plain 0.97 0.17

Turning Left 0.10 0.30 Lighting condition is daytime 0.71 0.46
Turning Right 0.11 0.32 Lighting condition is ‘streetlight at night’ 0.20 0.40

No Braking 0.23 0.14 Lighting condition is ‘no streetlight at night’ 0.07 0.26

Partial Braking 0.06 0.22 Lighting condition is natural light of dawn or
dusk 0.02 0.15

Entire Braking 0.18 0.66 Location of accident is downtown 0.45 0.50
Throttle Loose 0.05 0.24 Construction area 0.09 0.21

Vehicles with poor braking/braking failure/steering issues/illuminance issues/other mechanical issues; * represents the baseline of
the category.

Int. J. Environ. Res. Public Health 2021, 18, 11131 6 of 20 
 

 

represents time. The number of crashes in 2018 surged by approximately 26% in com-
parison to 2014, probably due to the drastic increase in the demand for electric bicycles. 
The crash frequency showed a minor increasing trend from 2014 to 2018, and then the 
frequency declined moderately. 

 
Figure 1. Crash frequency vs. time. 

4. Methodology 
To investigate the implicit heterogeneity in electric bicycle and automobile crash 

data, the study adopted the method of Seraneeprakarn [28], which is based on an inves-
tigation of the random parameters approach with heterogeneity in means and variances. 
The method relaxes the restriction on assuming the random parameter means and vari-
ances for all observations to track the different effects of the studied indicators on varying 
observations. 

First, the injury severity was divided into four categories: no injury (only property 
loss), minor injury (visible but non-incapacitating injury), severe injury (incapacitating 
injury), and fatal injury (injury leading to death). No injury was selected as the baseline 
because it occupied the largest proportion among the four severity scales. This ensured 
the model produced stable estimations [47]. We defined an injury severity determination 
function as follows: 𝐹௜௞ = 𝛽௜௞𝑋௜௞ ൅ 𝜀௜௞ (1)

where 𝐹௜௞ represents the injury severity level 𝑖 (𝑖 = 1—no injury: baseline; 2—minor 
injury; 3—severe injury; and 4—fatal injury) of an electric bicyclist 𝑘, 𝑋௜௞ is the studied 
indicator related to the severity, and 𝛽௜ is the effect estimator. The error term 𝜀௜௞ cap-
tures the implicit effects or characteristics assumed to have a generalized extreme-value 
distribution. 

Based on the study of Behnood and Mannering [16], 𝛽௜ is the key parameter to 
capture the heterogeneity in the mean and variance of random parameters, which is ex-
pressed as follows: 𝛽௜௞ = 𝛽 ൅ 𝜃௜௞𝑍௜௞ ൅ 𝜎௜௞𝐸𝑋𝑃ሺ𝜔௜௞𝑊௜௞ሻఊ೔ೖ (2) 

where 𝛽 is the mean parameter estimator across all crashes, and 𝑍௜௞ and 𝑊௜௞ are vec-
tors that track the heterogeneity in mean and standard deviation (SD) 𝜎௜௞. 𝜔௜௞ is the 

Figure 1. Crash frequency vs. time.



Int. J. Environ. Res. Public Health 2021, 18, 11131 7 of 19

4. Methodology

To investigate the implicit heterogeneity in electric bicycle and automobile crash data,
the study adopted the method of Seraneeprakarn [28], which is based on an investigation of
the random parameters approach with heterogeneity in means and variances. The method
relaxes the restriction on assuming the random parameter means and variances for all
observations to track the different effects of the studied indicators on varying observations.

First, the injury severity was divided into four categories: no injury (only property
loss), minor injury (visible but non-incapacitating injury), severe injury (incapacitating
injury), and fatal injury (injury leading to death). No injury was selected as the baseline
because it occupied the largest proportion among the four severity scales. This ensured
the model produced stable estimations [47]. We defined an injury severity determination
function as follows:

Fik = βikXik + εik (1)

where Fik represents the injury severity level i (i = 1—no injury: baseline; 2—minor injury;
3—severe injury; and 4—fatal injury) of an electric bicyclist k, Xik is the studied indicator
related to the severity, and βi is the effect estimator. The error term εik captures the implicit
effects or characteristics assumed to have a generalized extreme-value distribution.

Based on the study of Behnood and Mannering [16], βi is the key parameter to capture
the heterogeneity in the mean and variance of random parameters, which is expressed
as follows:

βik = β + θikZik + σikEXP(ωikWik)γik
(2)

where β is the mean parameter estimator across all crashes, and Zik and Wik are vectors that
track the heterogeneity in mean and standard deviation (SD) σik. ωik is the corresponding
parameter vector. θik is a vector corresponding to the estimated parameter Xik, and γik is
the disturbance term.

To estimate the probability of an electric bicyclist suffering an injury of one of the
severity levels, with εik having a generalized extreme value distribution, the choice proba-
bility was extended to the multinomial logit model with heterogeneity observation (mixed
logit model) formula [47]:

Pn(i|φ) =
∫ EXP[βikXik]

∑iεI EXP[βikXik]
f (βik|φ)dβik (3)

where Pn(i|φ) is the probability of an electric bicyclist suffering an injury severity level i
on f (βik|φ), f (βik|φ) is the density function of βik required to determine βik, which can
be used to observe the heterogeneity [2]. φ is the vector of a usual and known density
function. In the study, the maximum likelihood estimation with Halton draws was used
for the mixed logit model [48].

Two tests were conducted to validate the peak traffic period model. The first one was
the log-likelihood test between the overall model and the peak traffic period model [49],
which is as given as follows:

LRoverall = −2
[

LL
(

βoverall
)
− LL

(
βtra f f ic peak

)
− LL

(
βo f f−peak

)]
(4)

where LRoverall , LL
(

βtra f f ic peak
)

, and LL
(

βo f f−peak
)

are the log-likelihoods at the conver-
gences of the models estimated with data from both peak traffic and off-peak periods, peak
traffic period, and non-peak traffic period, respectively. In the first test, the three models
(overall model, peak traffic period model, and off-peak model) had the same variables.
LRoverall is the chi-square (χ2) distributed with degrees of freedom equal to the summation
of the number of estimated parameters in the peak traffic and off-peak models minus the
number of estimated parameters in the overall model.
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Based on the results of the first test, a second test, called the parameter transfer-
ability test [49], was conducted to determine whether the peak traffic period was to be
modeled separately:

LRab = −2
[
LL
(

βab

)
− LL(βa)

]
(5)

where LL
(

βab

)
and LL(βa) are the log-likelihoods at the convergences of the models

maintaining converged parameters from the peak traffic period model with the data of
the non-peak traffic period and peak traffic period data, respectively. Similarly, LRab is χ2

distributed with degrees of freedom equal to the number of estimated parameters in βab .
The simulation procedure required Halton draws [50].

5. Model Estimation Results

To determine if the models need to be developed separately, this study used the econo-
metric analysis software NLOGIT 5.0 (Econometric Software, Inc.: Plainview, NY, USA).
The log-likelihood ratio test illustrated a test statistic of 128.77 with 32 degrees of freedom
(p < 0.001), which implies that the peak traffic period must be modeled separately with a
confidence interval of more than 99%. According to the model separation test, each test
statistic and the corresponding degrees of freedom suggest that the peak period must be
modeled separately among electric bike-involved crashes with more than 99% confidence
(LRpeako f f−peak

= 365.2, df = 40; LRo f f−peakopeak
= 493.4, df = 43). Halton draws are more effec-

tive than random draws in ensuring better convergence with shorter drawing times. In this
study, we narrowed the number of Halton draws to 200 for greater fitness and accurate
parameter estimation of data. Moreover, in the model estimation, a normal distribution
proved to be the best statistical fit for the functional form of the parameter density function,
which conforms with previous studies [44,46].

During the model development, the indicators were considered significant if their
t-statistics corresponded to the 90% confidence level or higher on a two-tailed t-test. Then,
random indicators are addressed by determining their standard deviations to have the
t-statistics corresponding to the 90% confidence level or higher [7]. To identify the hetero-
geneity of the means of random parameters and ensure the t-statistics corresponded to
the 90% confidence level or higher, we estimated the parameters and the SDs of random
parameters influenced by other non-random parameters. Moreover, identifying the hetero-
geneity of the means and variances of random parameters involves an additional test of
significance of the heteroscedasticity of random parameters under the influences of other
non-random parameters. This step requires the heteroscedasticity of random parameters
to have t-statistics corresponding to a confidence interval of 90% or higher.

To investigate the heterogeneity in the means and variances of parameters, this study
maintained three models based on a mixed logit model with or without consideration of
heterogeneity. Tables 4 and 5 list the estimations of the models and the marginal effects,
respectively. No injury is the baseline of the severity outcome. Its severity function is
constrained to zero without loss of generality. This study focuses on the injury severity
of electric bicyclists rather than automobile drivers because bicyclists are more likely to
sustain serious injury.

To identify the best-fit model in this study, Table 6 lists the log-likelihoods at conver-
gence for the constant-only, multinomial logit, mixed logit, and mixed logit with hetero-
geneity in means and variances models. McFadden ρ2 (conditional logarithmic analysis
value of qualitative selection behavior) and BIC (Bayesian Information Criterion) determine
the goodness of fit of the model. Specifically, the model contains better fitness with higher
McFadden ρ2 and lower BIC.
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Table 4. Different mixed logit models (with/without heterogeneity) results.

Variable

Mixed Logit

No Mean–Variance Heterogeneity Mean Heterogeneity Mean–Variance Heterogeneity

Coefficient
(t-Statistic)

Coefficient
(t-Statistic)

Coefficient
(t-Statistic)

Constant [I] 5.428 ***(8.57) 5.428 *** (8.57) 5.473 *** (9.12)
Constant [I+] −3.957 *** (−8.62) −3.957 *** (−7.95) −3.716 *** (−7.57)

Constant [I++] −2.854 *** (−18.47) −2.854 *** (−18.47) −2.811 *** (−19.04)
Driver and Bicyclist Characteristics

Female Electric Bicyclist [I] −1.228 *** (3.12) −1.228 *** (3.12) −1.237 *** (3.04)
Vehicle Characteristics

Passenger Car [I+] 0.653 ** (2.46) 0.653 ** (2.46) 0.701 ** (2.56)
Passenger Car [I++] 1.122 *** (6.08) 1.125 *** (6.05) 1.408 *** (4.79)

Truck [I+] 1.125 *** (6.58) 1.196 *** (6.46) 1.187 *** (6.34)
Truck [I++] 1.756 *** (11.78) 1.833 *** (11.56) 1.825 *** (10.89)

Motorcycle [I] −1.288 *** (−3.56) −1.455 *** (−4.05) −1.455 *** (−3.88)
Pre-crash Vehicle Movement Characteristics

U-turn [I+] −1.857 *** (−3.07) −1.946 *** (−4.05) −2.105 *** (−3.94)
U-turn [I++] −1.887 ** (−2.22) −1.889 ** (−2.44) −1.890 ** (−2.42)

Turning Left [I+] −2.055 *** (−5.02) −2.277 *** (−4.89) −2.028 *** (−4.88)
Turning Left [I++] −1.588 *** (−4.02) −1.276 *** (−3.48) −1.426 *** (−4.02)
Turning Right [I+] −1.725 *** (−5.20) −1.701 *** (−5.16) −1.770 *** (−6.42)

Turning Right [I++] −0.653 ** (−2.12) −0.653 ** (−2.12) −0.652 ** (−2.08)
Roadway and Environmental Characteristics

Traffic Control [I+] −0.725 *** (−3.22) −0.728 *** (−3.37) −0.806 *** (−3.91)
Roadside Protection Trees [I+] −0.988 *** (−4.29) −0.993 *** (−3.43) −1.021 *** (−3.84)

Roadside Protection Fences [I+] −1.428 *** (−4.01) −1.458 *** (−4.15) −1.559 *** (−4.15)
Road Segments [I+] 2.048 *** (4.26) 2.125 *** (4.12) 2.218 *** (4.86)

Flat and Straight Road Alignment [I+] −1.701 *** (3.04) −1.628 *** (3.22) −1.112 *** (4.07)
Graded Highway [I+] 0.480 ** (2.41) 0.491 ** (2.41) 0.485 ** (1.95)

Graded Highway [I++] 0.855 *** (4.94) 0.877 *** (4.85) 0.827 *** (4.88)
Urban Expressway or another Urban Road

[I+] 0.852 *** (3.97) 0.565 *** (3.48) 0.786 *** (4.05)

Visibility < 50 m [I] −0.528 ** (−2.42) −0.701 ** (−2.39) −0.897 ** (−2.37)
Streetlights at Night [I+] 0.398 ** (2.17) 0.527 ** (2.11) 0.242 ** (2.19)
No Lights at Night [I+] 0.958 ** (2.13) 0.727 ** (2.34) 0.672 ** (2.48)
Downtown Driving [I+] 1.424 *** (6.12) 1.486 *** (5.78) 1.271 *** (6.01)

Random Parameters (Normal Distribution)
Visibility 50–100 m [I+] −2.181 ** (−2.25) −2.117 ** (−2.14) −2.331 ** (−2.21)
SD for random parameter 2.348 ** (2.32) 2.294 ** (2.14) 2.581 ** (2.49)
Visibility 100–200 m [I+] −1.797 ** (−2.36) −3.275 ** (−2.32) −3.127 ** (−2.45)
SD for random parameter 2.023 ** (2.24) 3.946 ** (2.70) 4.037 ** (3.15)

Heterogeneity in Means of the Random Parameters
Visibility 100–200 m: Traffic Control [I+] 1.626 ** (1.95) 1.418 ** (2.13)

Visibility 100–200 m: No Lights at Night [I+] 3.067 ** (2.05)
Visibility 50–100 m: Road Segments [I+] −1.347 ** (−2.21)

Heterogeneity in Variances of the Random Parameters
Visibility 100–200 m: Traffic Control [I+] 0.568 ** (2.01)

Visibility 100–200 m: No Lights at Night [I+] 0.732 * (1.20)

(Parameter defined for: [I] minor injury, [I+] severe injury and [I++] fatal injury). No injury is the severity outcome baseline; its severity
function is constrained to zero. Injury includes minor injury, severe injury, and fatality. Each variable is set as a dichotomous variable.
1 indicates the variable is true, and 0 otherwise. Significance codes: * p < 0.1, ** p < 0.05, *** p < 0.01.

The likelihood ratio tests demonstrated the statistical robustness of the mixed logit
model with heterogeneity in means and variances, i.e., according to the null hypothesis,
this model equals the other models being rejected with more than 99% confidence. The
lowest BIC value of the mixed logit model with heterogeneity in means and variances
reveals that it is important to capture the sources of heterogeneity in means and variances,
thus it was selected as the final model.

The significant parameters and related findings are discussed in the subsequent para-
graphs. The parameters that produced arbitrary degrees of injury severity are discussed.
To detect the factors associated with the performance of the random parameters, the hetero-
geneity findings originating from those random parameters are outlined. Observations of
other statistically significant parameters grouped by category are also summarized. Finally,
the marginal coefficients are separately discussed after estimating their parameters, which
directly influence electric bicyclist injury severity. All the variables kept in the models are
statistically significant at a 0.10 significance level.
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Table 5. Marginal effects for different mixed logit models (with/without heterogeneity consideration).

Variable Mixed Logit

No Mean–Variance Heterogeneity Mean Heterogeneity Mean–Variance Heterogeneity

Driver and Bicyclist Characteristics
Female Electric Bicyclist [I] −0.0137 −0.0134 −0.0255

Vehicle Characteristics
Passenger Car [I+] 0.2711 0.2715 0.1533

Passenger Car [I++] 0.0238 0.0233 0.0114
Truck [I+] 0.0347 0.0355 0.0589

Truck [I++] 0.0433 0.0412 0.0407
Motorcycle [I] −0.0291 −0.0344 −0.0308

Pre-crash Vehicle Movement Characteristics
U-turn [I+] −0.0472 −0.0564 −0.0566

U-turn [I++] −0.0085 −0.0085 −0.0074
Turning Left [I+] −0.0587 −0.0592 −0.0688

Turning Left [I++] −0.0472 −0.0470 −0.0481
Turning Right [I+] −0.0905 −0.1028 −0.1033

Turning Right [I++] −0.0522 −0.0623 −0.0688
Roadway and Environmental Characteristics

Traffic Control [I+] −0.0804 −0.0910 −0.0912
Roadside Protection Trees [I+] −0.1228 −0.1220 −0.1181

Roadside Protection Fences [I+] −0.0523 −0.0412 −0.0404
Road Segments [I+] 0.0805 0.0927 0.0933

Flat and Straight Road Alignment [I+] −0.0711 −0.0659 −0.0783
Classified Highway [I+] 0.0023 0.0021 0.0133

Classified Highway [I++] 0.0112 0.0110 0.0129
Urban Expressway or another Urban Road [I+] 0.0291 0.0284 0.0199

Visibility < 50 m [I] −0.0672 −0.0665 −0.0638
Streetlights at Night [I+] 0.1862 0.1877 0.1928
No Lights at Night [I+] 0.3486 0.3522 0.3697
Downtown Driving [I+] 0.0632 0.0703 0.0710

Random Parameters (Normal Distribution)
Visibility 50–100 m [I+] −0.1824 −0.1810 −0.1776

Visibility 100–200 m [I+] −0.1791 −0.1774 −0.1739

Parameter defined for: [I] minor injury, [I+] severe injury and [I++] fatal injury). Each variable is set as a dichotomous variable. 1 represents
the variable is true and 0 represents otherwise. All the marginal effects in the no injury function are implicit and have not been reported
due to space constraints. Marginal effects are presented as decimals.

Table 6. Model comparison.

Indicators No Mean–Variance
Heterogeneity Mean Heterogeneity Mean–Variance

Heterogeneity

Number of Observations 2141 2141 2141
Log Likelihood with Constants Only −1947.61 −1947.61 −1947.61

Log Likelihood at Convergence −1625.30 −1611.70 −1602.48
Adjusted McFadden—ρ2 0.564 0.640 0.642

Akaike Information Criterion 3300.7 3299.3 3153.8
Bayesian Information Criterion 3288.5 3397.3 3530.7

5.1. Random Parameters and Heterogeneity Observations

Two explanatory variables were found to be randomly distributed in the mixed logit
model: 50–100 m visibility—severe injury and 100–200-m visibility—severe injury (Table 4).
The two random parameters only passed the normal distribution test with 95% confidence
in the common crash data distribution tests, including normal, uniform, and triangular
distributions. The predicted possibilities of each random indicator can be observed visually
(Figures 2–6). To be specific, the x-axis represents the estimation of the indicator, while the
y-axis represents the corresponding possibility.

For the 50–100 m visibility indicator, with a mean of −2.181 and an SD of 2.348, there
were approximately 72.96% of crashes with natural visibility of 50–100 m leading to less
severe injuries (Figure 2). Poor visibility during peak hours may reduce riders’ line of
sight, increasing their cautiousness. Therefore, most riders steadily depressed the brake
pedal and decelerated. However, in the other 27.04% of crashes, riders preferred to apply
a brake lag or less effective avoidance maneuvers amid haze. Consequently, bicyclists
were prone to fall or collide, suffering severe injuries. What is more, heterogeneity in
means of this random parameter was observed. Compared with driving at an intersection,
driving on road segments with 50–100 m visibility decreased the mean of the 50–100 m
visibility range, reducing the probability of severe injury. At intersections (i.e., the reference
category) amid visibility of 50–100 m in peak hours, the estimated mean parameter was
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−2.117. On road segments, the mean parameter was −3.464 (−2.117 − 1.347 = −3.464), as
illustrated in Figure 3. Therefore, the probability of severe injury amid 50–100 m visibility
decreased during peak hours. Driving on road segments under low visibility motivated
electric bicyclists to drive cautiously. Consequently, their cautions will prevent the riders
into a serious or severe injury. This is demonstrated by the negative mean further away
from zero, which resulted in more riders suffering mild injuries during a crash.
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The 100–200 m low-visibility parameter also randomly affected electric bicyclist in-
juries [7]. Similarly, 73.38% of riders involved in crashes under visibility of 100–200 m did
not suffer severe injuries, based on the normal distribution with a mean of −1.797 and an
SD of 2.023 (Figure 4). However, the marginal effect of this indicator shows its increasing
contribution to less severe injuries among electric bicyclists (Table 5). Similarly, when
the visibility was only 100–200 m, riders still preferred to focus and decelerate. However,
compared with visibility of 50–100 m, when the range was 200 m, riders were less likely to
sustain severe injuries in a collision or fall because they could perform careful maneuvers
despite the road conditions. Accounting for heterogeneity in means only, compared with
driving in areas without traffic control, driving in areas with traffic control increased the
mean of the 100–200 m visibility range, increasing the probability of severe injury. On the
one hand, in areas with traffic control, the mean parameter for the 100–200 m visibility
range is −1.649 (−3.275 + 1.626 = −1.649). On the other hand, in areas with no traffic
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control (i.e., the reference category), the estimated mean parameter for the same visibility
range—severe injury is −3.275 (Figure 5a).
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Accounting for heterogeneity in means and variances, the 100–200 m visibility range—
severe injury, was found to produce random parameters with heterogeneity in means and
variances. Compared with ‘no traffic control area’ driving, ‘traffic control area’ driving
increased the mean of this range to −1.799 (−3.127 + 1.418 = −1.799), increasing the
probability of severe injury. However, the mean of visibility in the no-traffic-control
scenario was −3.127 (Figure 5b). More importantly, the variance of the 100–200 m visibility
indicator increased (4.0372 + 0.568 = 16.865 > 4.0372).

Road illumination during the evening peak period also influenced the mean and
variance of the 100–200 m visibility range. The study demonstrates that the estimated
mean parameter for 100–200 m visibility—severe injury, when driving in well-lit areas
(daytime, i.e., the reference category) was −3.217. For areas with no nightlights, this
parameter became −0.150 (−3.275 + 3.067 = −0.150) (Figure 6). The results suggest that the
100–200 m visibility range decreased the probability of severe injury to electric bicyclists,
but the reduction was markedly weakened when driving in areas with no nightlights. This
indicates that 100–200 m visibility decreases the possibility of severe injury to the electric
bicyclists, albeit at a significantly lower rate in areas with no nightlights. This also means
that the lack of sunlight due to haze during the afternoon peak periods reduces drivability
and increases the risk of grave accidents. Furthermore, night driving without streetlights
increases the variance (4.0372 + 0.732 = 17.029 > 4.0372) in severe injury (Figure 6). That
is, the presence of streetlights during the evening peak hours adversely affects electric
bicyclists’ driving performance, which leads to severe injury rates fluctuating more.

The marginal effects show that driving amid visibility of 50–100 m and 100–200 m
significantly decreased the likelihood of electric bicyclists suffering severe injury by 0.1824
and 0.1791 (Table 5), respectively. The results indicate that poor visibility is markedly
sensitive to heterogeneity in means and variances in terms of grave injury to electric
bicyclists (Table 4).
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5.2. Driver and Bicyclist Characteristics

In terms of human characteristics, ‘female electric bicyclist’ is the only indicator that
significantly affected injury severity. The marginal effects showed that female electric
bicyclists increased the possibility of injury by 0.0137 (Table 5), which conforms with the
findings of previous research on bicyclists’ sex [15,16,31].

5.3. Vehicle Characteristics

Among the various types of automobiles, accidents involving passenger cars and
trucks contribute to the increasing number of incidents causing severe injuries (Table 4),
which conforms with previous studies [4,5,18,21]. However, if a crash occurs between
a motorcycle and an electric bicycle, the rider of the latter is more likely to suffer only
property damage. The marginal effects indicate an overstatement of the heterogeneity in
means and variances in the analysis (0.2711 > 0.1533).

5.4. Pre-Crash Vehicle Movement Characteristics

Vehicular movement before a crash influences the injury severity of electric bicyclists.
Contrary to popular belief, all maneuvers (U-turn, left turn, and right turn) reduce the
possibility of electric bicyclists sustaining severe and fatal injuries compared with traveling
in a straight line (Table 4). Specifically, compared with turning left, turning right is the
leading cause of death of electric bicyclists (−0.1033, see Table 5). In contrast, a U-turn is
less likely to cause the occurrence of fatal injury (−0.0566). Specifically, the most efficient
movement to prevent serious injury or fatal is turning right. Conversely, U-turn is proven
to be the least efficient movement to prevent serious injury and fatal.

5.5. Roadway and Environmental Characteristics

The road conditions and environment also influence the injury severity. In terms of
road infrastructure and conditions, despite the presence of traffic signals, border trees, and
fences in accident zones, other indicators pose greater risks of serious injury to bicyclists,
and include driving on road segments (relative to intersections), graded highways and
urban roads, and driving in urban areas.

According to the marginal effects of indicators, the implementation of traffic control
measures and the erection of border trees and protective fences reduces the injury severity.
Besides, it is noted that driving in areas with traffic controls with low visibility will provide
more safety (see Section 5.1), compared with normal visibility (>200 m).

We also conclude that driving on road segments, rather than at intersections, would
cause severe injuries in the case of an accident. According to Uddin and Huynh [7], crashes
occurring on road segments are more serious than those at intersections, which conforms
with the conclusion of this study. It is noted that driving on road segments with low
visibility will also provide more safety (see Section 5.1), compared with normal visibility
(>200 m). The driving environment also determines the injury severity. If the line of sight
of the riders is only 50 m, according to the findings of this study, bicyclists generally do
not sustain injuries. Night driving increases the probability of electric bicyclists’ severe
injury, irrespective of the presence of streetlights. However, the presence of heterogeneity
leads to underestimation, which means that night driving may lead to severe injuries, and
streetlights cannot entirely compensate for the lack of sunlight at night. Thus, for better
safety, this study suggests that headlights of electric bicycles should be required to be on
during afternoon peak periods to provide more road illumination. Additionally, downtown
riding increases the risk of severe injuries to electric bicycle riders (Tables 4 and 5).

6. Discussion

Firstly, consider the heterogeneity observations of poor visibility as a factor influencing
the injury severity. Driving on road segments instead of at intersections amid low visibility
motivates electric bicyclists to drive cautiously, and thus prevent accidents that lead to
severe injuries. This is a result of the segment having a relatively simple traffic organization
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and few accident-prone zones. Additionally, drivers tend to decelerate for effective braking
during dangerous circumstances [13,51,52]. However, this opposes the findings of previous
studies, which showed that segment driving was riskier than intersection driving [7,53].
This contradiction may indicate that poor visibility during the peak period influences the
sensitivity of drivers to different road types with different levels of complexity, which
warrants further research. On the other hand, driving in the traffic control area under
poor visibility will reflect drivers’ diverse performances and then lead to different injury
severities. The results suggest that traffic control approaches and facilities must consider
this diversity. Consequently, separate approaches and facilities are required to handle
traffic during peak periods under low visibility, including specialized signals that inform
drivers of oncoming vehicles under haze or fog. Moreover, the results suggest that the
100–200 m visibility range decreases the probability of severe injury to electric bicyclists,
but the reduction is markedly weakened when driving in areas with no nightlights. This
indicates that 100–200 m visibility decreases the possibility of severe injury to electric
bicyclists, albeit at a significantly lower rate in areas with no nightlights. This also means
that a lack of sunlight due to haze during the afternoon peak periods reduces drivability
and increases the risk of grave accidents. The presence of streetlights during the evening
peak hours adversely affects the electric bicyclist’s driving performance and leads to severe
injury rates fluctuating more. Therefore, we recommend proper road illumination during
the evening peak traffic periods, especially under poor visibility. However, the varying
effects of low visibility on injury severity during peak hours cannot be dismissed. The effect
of low visibility on injury severity necessitates further investigation because it exhibits
more uncertainty and variation than normal visibility [51,54–56].

Among the various types of automobiles, accidents involving passenger cars and
trucks contribute to the increasing number of incidents causing severe injuries. Thus, we
recommend restricting the movement of trucks and passenger cars during peak traffic
periods, especially in a mixed traffic flow. Then, vehicular movement before a crash
influences the injury severity of electric bicyclists. This suggests that during peak periods,
different movement lanes should be separated and controlled strictly, especially for right-
turn lanes, U-turn lanes, and bicycle lanes. Moreover, it is noted that driving on road
segments with low visibility will also provide more safety. Thus, in clear weather, road
segments should be better managed and regulated during peak traffic periods. Finally,
night driving may lead to severe injuries, and streetlights cannot entirely compensate for
the lack of sunlight at night. Thus, for better safety, this study suggests that headlights
of electric bicycles should be required to be on during afternoon peak periods to provide
more road illumination. A further novel finding is that although belonging into the green
plant protection, the protective effects of green belt and trees are significantly different. In
line with previous study [57], the most effective roadside protection lied on the Roadside
Protection Trees with the magnificent marginal effect values. Nevertheless, the green
belt has no significant impact on accident injuries during peak periods. Additionally,
downtown riding will increase the risk of severe injuries to electric bicycle riders, which
is intuitive. The reason for this may be the more complicated traffic scene in downtown
areas [20]. With heterogeneity, this impact is emphasized, and new downtown traffic
optimization concepts aimed at the peak hours should be proposed.

There are several limitations that should be considered when interpreting the results
of this study. First, this study does not differentiate between morning and evening peak
periods due to data limitation. It is possible that the two peak periods show different crash
patterns, which deserve more investigation. We suggest that the police enforcement agency
should include time period information when collecting crash data. Second, although
we examined many sources of observed heterogeneity, some exogenous factors were
ignored, such as the use of a reserved bus lane. Future work should check the impacts
of those variables when related data is available. Third, several road features specific to
electric bicycles were excluded, such as the presence of separate bike lanes. Special road
features/signs warning electric bicycle riders may produce various effects and deserve
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more research, such as instrumented guardrails. Fourth, lighting and traffic accidents
maintain a complicated interrelationship and this should be further addressed in future
work. Fourth, different lighting conditions may reflect different types of traffic accidents,
and more detailed types of lightning conditions should be further addressed on the traffic
safety assessment in future work. Finally, in addition to traditional econometrics modeling,
emerging approaches of machine learning such as fuzzy logic can be considered to address
the heterogeneity of indicators and design new possibilities. Future research can compare
the insights from the two study approaches, which help us better understand the crash
mechanisms between electric bikes and cars.

7. Conclusions

The peak traffic period possesses unique traffic characteristics but is often dismissed
in traffic safety research due to the heterogeneity of parameters. Therefore, traffic safety-
related factors and methods to optimize relevant facilities during the peak traffic hours
must be determined. People in China have adopted electric bicycles for commuting during
peak traffic hours owing to their maneuverability; however, traffic data indicates high
crash incident rates among electric bicycles. This study identified the factors influencing
injury severity in electric bicyclists during rush hours. The characteristics of automobile
drivers and bicyclists, vehicle maneuvers before the crash, and circumstances surrounding
the accident were considered. Three mixed logit models considering the variations in
parameter means and variances were constructed to provide insights into the potential
sources of the heterogeneity.

The findings can be summarized as follows:

1. A vehicle taking a U-turn ahead of an electric bicycle is less likely to cause severe
injuries to the rider. The vehicle turning right further decreases the possibility of
electric bicyclists sustaining severe injuries than left-turning because the latter moves
in the left lane.

2. The heterogeneity observations of poor visibility as a factor influencing injury severity
disagree with those of previous studies. High visibility is not an absolute guarantee
of less injury. Instead, it may present a potential risk of serious injury during peak
periods. Therefore, to improve safety and lower the possibility of severe injuries, road
segment control strategies must be modified to address the influence of high visibility
during peak traffic hours.

3. Amid poor visibility, driving at night without streetlights and driving in areas of
traffic control pose a greater risk of electric bicyclist injury.

4. There are significant differences between the protective effects of green belts and
trees on two-wheelers during peak hours: the former have no significant impact on
accident injuries while the latter is found to be the most effective roadside protection.

We recommend creating clear partitions between lanes and controlling them efficiently,
especially right-turning and U-turn and bicycle lanes. Moreover, traffic control measures
during peak traffic periods under low visibility must be reconsidered. For example, au-
thorities could install specialized signals that inform the riders of oncoming vehicles amid
haze. Importantly, roadside protection trees could be considered as the crucial roadside
protective measure to reduce the risk of crashes. Specifically, apart from streetlights, head-
lights of electric bicycles must be required to be on during the evening peak traffic hours to
prevent glare and excess brightness.
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