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Abstract: Soil erosion is a serious ecological problem in the fragile ecological environment of the
Tibetan Plateau (TP). Rainfall erosivity is one of the most important factors controlling soil erosion and
is associated with the EI Nifio southern oscillation (ENSO). However, there is a lack of studies related
to the spatial distribution and temporal trends of rainfall erosivity on the TP as a whole. Additionally,
the understanding of the general influence of ENSO on rainfall erosivity across the TP remains to
be developed. In this study, long-term (1971-2020) daily precipitation data from 91 meteorological
stations were selected to calculate rainfall erosivity. The analysis combines co-kriging interpolation,
Sen’s slope estimator, and the Mann-Kendall trend test to investigate the spatiotemporal patten
of rainfall erosivity across the TP. The Oceanic Nifio Index (ONI) and multivariate ENSO Index
(MEI) were chosen as ENSO phenomenon characterization indices, and the relationship between
ENSO and rainfall erosivity was explored by employing a continuous wavelet transform. The results
showed that an increasing trend in annual rainfall erosivity was detected on the TP from 1971 to
2020. The seasonal and monthly rainfall erosivity was highly uneven, with the summer erosivity
accounting for 60.36%. The heterogeneous spatial distribution of rainfall erosivity was observed
with an increasing trend from southeast to northwest. At the regional level, rainfall erosivity in
the southeastern TP was mainly featured by a slow increase, while in the northwest was more
destabilizing and mostly showed no significant trend. The rainfall erosivity on the whole TP was
relatively high during non-ENSO periods and relatively low during El Nifio/La Nifia periods. It is
worth noting that rainfall erosivity in the northwest TP appears to be more serious during the La Nifia
event. Furthermore, there were obvious resonance cycles between the rainfall erosivity and ENSO in
different regions of the plateau, but the cycles had pronounced discrepancies in the occurrence time,
direction of action and intensity. These findings contribute to providing references for soil erosion
control on the TP and the formulation of future soil conservation strategies.

Keywords: rainfall erosivity; soil erosion; spatiotemporal variation; ENSO; Tibetan Plateau

1. Introduction

Soil erosion has already emerged as one of the most serious ecological and environ-
mental problems globally, which not only threatens terrestrial ecosystems, but also severely
restricts the security of human existence and the sustainable development of economy and
society [1,2]. Soil erosion not only contributes to land degradation, but even interferes
with the ability of the soil carbon cycle to mitigate the greenhouse effect [3,4]. Soil erosion
by water is considered to be one of the most detrimental types of soil erosion, causing a
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loss of soil nutrients, which reduces crop yields, pollutes water quality, contributes to the
sedimentation of rivers, and raises flooding [5-9]. Therefore, the accurate prediction of
water erosion is of great significance for the comprehensive management of soil erosion
and effective soil protection.

The causes of water erosion are related to a series of natural factors involving rainfall,
soil, topography, vegetation, and other human factors such as land use and crop cultivation
management [10,11]. In particular, rainfall is the principal climatic factor responsible for
water erosion, which influences water erosion through the duration, amount, and intensity
of rainfall events [12]. The principal predictive tools for water erosion are the Universal Soil
Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE), which have
been applied worldwide, and rainfall erosivity (R-factor), one of the key input parameters
in the model, is the potential capacity of rainfall to induce water erosion [12,13]. The
R-factor is defined as the product of the rainfall energy and the maximum rainfall intensity
in a 30 min period (EI30), and the calculation requires the use of consecutive rainfall data
series with a temporal resolution of at least 15 min, which is however, hardly available
in many countries and regions. Even if an adequate rain gauge data can be accessed, the
complicated calculation process is time-consuming and laborious, which dramatically
restricts model promotion and implementation [14].

In this context, as alternative algorithms based on the relationship between R-factor
and available rainfall data were developed, including the calculation of rainfall erosivity
based on annual [15,16], monthly [17,18], and daily [19,20] rainfall data from meteorological
stations or satellite radar [21,22]. Among these, daily rainfall data are widely used due to
their relative accessibility, which provides more characteristic information of rainfall and
facilitates the precision and reliability of R-factor estimation [23]. In the daily rainfall data
model, the rainfall erosivity algorithm was divided into linear exponential, logarithmic,
and power functions to fit the relationship between rainfall and rainfall erosivity, and
the models are mostly combined experimental and empirical based [24-26]. In general,
these models perform an important role in the quantitative evaluation of rainfall erosivity,
and provide scientific reference for the forming mechanism of water erosion, evolutionary
process and even the mechanics of climate change.

It has become an indisputable fact that the global climate is changing remarkably,
with extreme weather events growing stronger, more frequent, and lasting longer [27]. El
Nifio southern oscillation (ENSO) is the most intense sea-air interaction event affecting
the global climate, and although it usually occurs in the eastern equatorial Pacific region,
it can be responsible for rainfall anomalies spreading globally [28]. The ENSO cycle has
a pronounced periodic character as a result of the interaction between the ocean and the
atmosphere, with El Nifio (warm phase) and La Nifia (cold phase) as the two extreme
phases of the ENSO cycle. Considerable work has been conducted on the relationship
between ENSO and precipitation events, anomalous temperature, wet and dry variability,
and atmospheric circulation [29-32]. The studies also pointed out that El Nifio and La
Nifia showed diverse rainfall patterns, for example, compared with the La Nifia period,
northern China is more arid during El Nifio in the northern hemisphere, while rainfall in
the southeast of China appears to increase substantially, while the contrary phenomenon
is present in the southern hemisphere [33,34]. Although these studies have enhanced our
comprehension of atmospheric tele-correlation model (ENSO) effects on rainfall, currently
the effect of ENSO on rainfall erosivity is still only shown in a few studies [35-39]. A sig-
nificant dependence between rainfall erosivity and the ENSO indices has been observed
in eastern China [35,37], northeastern Spain [40], and the southwestern United States [41],
while studies on how ENSO affects rainfall erosivity on the TP are still unknown.

The Tibetan Plateau (TP) is the largest and highest geographical unit in the world, with
an average altitude of over 4000 m, and is called the Earth’s “third pole”. It is of extreme
importance to regional economic development and ecological security, as well as global
climate, water resources, and ecosystem functioning [42]. Since the 21st century, however,
drastic environmental changes have been remarkably observed on the TP [43]. These
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changes have become key drivers of increased soil erosion risk. Studies have demonstrated
that grassland ecosystems on the TP are suffering from severe degradation due to the
combined effects of climate change and human activities. This in turn has triggered a
decline in biomass, biodiversity, and landscape complexity, fragmentation or complete loss
of services such as soil and water conservation, and an increase in rainfall erosivity and
sandstorms [44-47]. Permafrost degradation can reduce the stability of soil aggregates and
the water content in the surface soil is abnormally high during the thawing stage, thus
shortening the time of runoff generation and exacerbating erosion caused by rainfall [48,49].
The glaciers’ retreat and the rise of the snow line in cold areas at high altitudes have
changed the surface albedo and atmospheric heat circulation and thus have affected the
local rainfall intensity, and the form of erosion caused by glacial meltwater and snowmelt
runoff generated is one of the main reasons for increased erosion [50,51]. Additionally,
according to observations and climatological models, the TP has suffered a faster rate of
warming since the 1960s, which is three times the global average [52]. Notable changes in
the plateau climate system, such as short periods of intense rainfall triggered by extreme
precipitation events, may have led to an increasing trend in the rainfall erosivity on the
TP [51]. Some studies have analyzed the variation in rainfall erosivity in the catchment
and local scales of the TP, indicating an increasing trend of rainfall erosivity [53-55]. These
studies provided useful information on the variation in rainfall erosivity, but a further
analysis is necessary for the TP as a whole.

Soil erosion is serious on the TP, with 70% of the area suffering from varying degrees
of soil erosion [56]. In both sides of the Yarlung Tsangpo River and the South Qiangtang
area, gully erosion is widely distributed, while in the interior of the plateau scale erosion
becomes the main type of erosion in grasslands [57]. Soil erosion on the TP has caused
irreparable soil degradation and land area reduction, and is leading to the sedimentation
of downstream rivers, landslides, mudslides and other disasters, posing a threat to trans-
portation, agriculture, and animal husbandry. Moreover, soil conservation is particularly
important in the TP due to its harsh physical environment, widespread permafrost and
fragile alpine ecosystems making it the most sensitive and fragile region [58]. Once erosion
happens, its rehabilitation process is prolonged and difficult.

Detection of long-term trends in rainfall erosivity can provide information regarding
the potential impact of rainfall changes on soil erosion. It is particularly useful for the
TP region, which is more sensitive to water erosion and climate change because of the
fragile biophysical conditions [59]. However, these unique geographical features and
complicated terrain have restricted soil erosion studies due to the scarce observational data
on precipitation and soil erosion. Previous studies have focused on local watersheds or
small areas of the TP, while the spatial and temporal characteristics of how rainfall erosivity
vary over the entire TP have not been adequately studied [60,61]. Moreover, periodic
factors lead to ‘poverty years” and ‘abundant years’ of precipitation in the highlands in
different years. The interannual variation in precipitation erosivity on the TP may be the
result of ENSO action, but the general effect of ENSO on rainfall erosivity in the TP is not
clear at present, and it is necessary to expand the related understanding.

In view of this, the TP as a whole was chosen as the study area, and daily rainfall
data from 91 meteorological stations were selected to calculate the rainfall erosivity and
to explore its relationship with ENSO. The objectives of the study are as follows: (1) to
characterize the temporal trends of rainfall erosivity during 1971-2020 across the entire TP;
(2) to present the spatial distribution of rainfall erosivity on the TP; (3) and to investigate
the impacts of ENSO on rainfall erosivity in different regions of the TP.

2. Materials and Methods

This study was based on a single case study of the TP. In this section, the basic
information about the study area, the required data handling process and the methods
related to rainfall erosivity were described in detail.
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2.1. Study Area

The Tibetan Plateau is located in the southwestern part of China, with an area of
2.74 x 10° km? and an average altitude of over 4000 m. It is known as the “roof of the
world” [62]. It is included in the Tibet Autonomous Region and Qinghai Province, and
the southern part of the Xinjiang Uygur Autonomous Region, the western part of Gansu
Province, the western part of Sichuan Province and the northern part of Yunnan Province.
The main mountain ranges are the Kunlun Mountains, Qilian Mountains, Karakorum
Mountains, Himalayas, and Hengduan Mountains. The climate ranges from a humid
monsoon climate in the southeast to an alpine arid plateau climate in the northwest,
controlled by the Pacific monsoon, Indian monsoon, and prevailing westerly winds, and is
influenced by the mountain terrain [63]. Diverse climate types form subtropical rainforests,
shrubs, alpine meadows, alpine grasslands, and alpine desert vegetation types are present.
TP precipitation exhibits a distinct gradient, gradually decreasing from more than 1000 mm
in the southeast to less than 50 mm in the northwest [64]. The region has experienced soil
erosion, desertification and landslide hazard [51,65]. Referring to [66], the criteria for the
physical geographic zoning of the TP divided the plateau into Region I (arid zone) and
Region II (humid zone) (Figure 1).
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Figure 1. Study area of Tibetan Plateau (TP) and the distribution of meteorological stations.

2.2. Database
2.2.1. Daily Rainfall Data

The observed daily precipitation data used in this study was obtained from the Cli-
matic Data Center, National Meteorological Information Center of the China Meteorological
Administration (CMA) (http://data.cma.cn (accessed on 10 October 2021)). The data in-
cluded a total of 91 meteorological stations (Figure 1), with complete data series, covering
the time period 1971 to 2020 (Table S1). Moreover, considering the continuity of spatial
interpolation and the stations spreading over the entire TP as much as possible, 27 meteo-
rological stations around the study area were selected with the criterion that the shortest
linear distance from a meteorological station to the TP boundary is not greater than 100 km.
The observation records of all surrounding stations were recorded at the same time as the


http://data.cma.cn

Int. J. Environ. Res. Public Health 2021, 18, 11054 5o0f 24

study period. In order to ensure data reliability and continuity, each meteorological data
record was evaluated by the National Meteorological Center [67].

2.2.2. ENSO Indices

ENSO is a phenomenon of irregular periodic changes in sea surface temperature and
wind occurring in the equatorial eastern Pacific Ocean, one of the strongest natural signals
of interannual climate change worldwide. The typical characteristics of ENSO events are
commonly known to be anomalous SSTs (£0.5 °C) in the eastern Pacific Ocean for more
than 5 months, where warm episodes are El Nifio events and cold episodes are La Nifia
events [68,69]. The multivariate ENSO Index (MEI) was obtained as the first non-rotating
principal component (PC) of the six variables (sea-level pressure, zonal and meridional
components of the surface wind, sea surface temperature, surface air temperature, total
cloudiness fraction of the sky) over the tropical Pacific [70,71]. it is considered as a better
index for detecting the ENSO phenomena with respect to other indices because it takes
into account more information and fewer data failures [37]. Therefore, in this study, the
occurrence and duration of the El Nifio event and La Nifia event were determined based
on the Oceanic Nifio Index (ONI), and MEI was selected as the ENSO proxy to probe the
relationship between rainfall erosivity and ENSO during the time period of 1971-2020.
These indexes are obtained from the National Oceanic and Atmospheric Administration
(NOAA). Specifically, ONI was acquired from NOAA Climate Prediction Center [72], and
MEI was acquired from NOAA Earth System Research Laboratory.

2.3. Methods
2.3.1. Technical Route

The study was divided into four steps (Figure 2):

Selection of
meteorological

stations (€100 km)

Filtering for erosive

rainfall (212 mm)

Multivariate ENSO |:

Index

Daily rainfall

Oceanic Nino Index
erosivity model
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Continuous wavelet

transform analysis

: cv Seasonal
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Trend analysis and spatial Pattern Identification and Relationship between

distribution of rainfall HE analysis of rainfall ! rainfall erosivity and
erosivity ¢ 1| erosivity at each station o ENSO

Figure 2. Technical route. Note: MK-test refers to Mann-Kendall test, CV refers to the coefficient
of variation.
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Step 1: Estimation of rainfall erosivity at different time scales. Based on the daily
rainfall data of 91 stations, the annual, seasonal, and monthly average rainfall erosivity of
TP from 1971 to 2020 were calculated using the daily rainfall erosivity model.

Step 2: Trend analysis and spatial distribution of rainfall erosivity in TP. Firstly, the
temporal changes trend of rainfall erosivity was evaluated by using Sen’s slope estimation
and the MK trend test, and then the co-kriging method was used for the spatial mapping
of rainfall erosivity for the period of 1971-2020.

Step 3: Pattern identification and analysis of rainfall erosivity change at each meteoro-
logical station. Firstly, the change trend of rainfall erosivity at each station was classified
by integrating multiple indicators. Then, the coefficient of variation (CV) and the seasonal
spatial distribution of rainfall erosivity of each site was analyzed.

Step 4: Relationship between rainfall erosivity and ENSO. Based on ONI, the variation
in monthly mean rainfall erosivity during El Nifio and La Nifia events from 1971 to 2020
was analyzed; based on the MEI index, a continuous wavelet transform analysis method
was used to examine the influence of ENSO on rainfall erosivity, and to clarify the response
of the resonance period in different regions of the TP.

2.3.2. Calculation of Rainfall Erosivity

The half-monthly rainfall erosivity was estimated for each of the 91 meteorological
stations from 1971 to 2020 using the daily rainfall erosivity model. The agent model
was originally built from Richardson’s equation [73], and later improved by Zhang [20].
Previous studies have demonstrated that this method is reliable and has been widely used
on the national and regional scales in China [36,74-76]. This method is based on daily
rainfall data to obtain monthly, seasonal, and annual rainfall erosivity. The calculation
procedures are as follows:

k
Ri =K Zj:1 (P])‘B (1)
a = 21.586p7 711 ©)
B — 08363 4 18144 | 24455 3)

@2y Pu)

where R; is the rainfall erosivity in the i-th half-month period (MJ mm ha=' h™1), k is the
number of days in the half-month period, and P; is the daily erosive rainfall amount (mm)
on the j-th day during the half-month period. The half-month interval method is as follows:
with the fifteenth day of each month as the dividing point, the whole year is divided into
24 half months. The half-month period as a basic statistical unit is used to calculate the
corresponding half-month rainfall erosivity.

According to the national rainfall and runoff analysis, >12 mm is defined as erosive
rainfall [77]. Therefore, the daily rainfall >12 mm is applied to Formula (1), otherwise, it is
regarded as value of 0 in the calculations.

The terms a and § are two parameters to be determined in the model. P4;5) is the
average daily erosive rainfall amount (mm) and P, 1) is the average annual erosive rainfall
amount (mm). In this study, Formulas (1)—(3) are used to calculate the half-month rainfall
erosivity of each meteorological station. The annual and seasonal rainfall erosivity of is the
cumulative value of rainfall erosivity in every half-month period.

2.3.3. Sen’s Slope Estimator and Mann-Kendall Test

In this study, the trends magnitude of annual rainfall erosivity was estimated with
the non-parametric Sen’s method. The trends and significance of annual and seasonal
(monthly) rainfall erosivity were detected with the non-parametric Mann—Kendall test.

Sen’s slope estimation is a non-parametric method of slope calculation, which is
commonly used in the trend analysis due to its high robustness and computational effi-
ciency [78]. The determination for the slope of annual rainfall erosivity is as follows: first,
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the values of Q; calculated by the Formula (4) are ranked in order of magnitude, and then
determines the overall estimator (SLOPE,,,;) as the median of these Q; by Formula (5).
The slope in the N pairs of samples is calculated as follows:

Xj— X .

Q; = — (i=1,...,N) )

where x; and x; are values of the rainfall erosivity corresponding to periods j and k,
respectively (j > k). SLOPE,,,; is calculated according to the following formula:

Q[M] <0 if N is odd
SLOPEeq = Q[Ni1]+Q[N+1] ) ) ®)
~——=— if Niseven
where SLOPE,.; > 0 indicates an upward trend, and vice versa. Its value indicates the
magnitude of the trend change.

The non-parametric Mann-Kendall test is a widely used technique for to assess the
significance of trends in long time series [79,80]. It is distribution free and not affected
by missing values and outliers, and is highly recommended by the World Meteorological
Organization [81]. This method is primarily based on two parameters, S and Z, to determine
whether a time series has a significant trend. The intermediate variable S is computed as:

n—1 n

s=Y ) sgn (xj — xx) (6)

k=1 j=k+1

where 7 is the length of the time series, x; and xj are values of the rainfall erosivity
corresponding to periods j and k, respectively (j > k). S is the summation of sgn (x; — xx),
which takes the value of —1, 0, or 1 when (xj — xk) is less than, equal to, or greater than 0,
respectively. The variance of S can be acquired as follows:

n(n—1)(2n+5)

var(S) = 13 ?)
Then the normalized statistical value Z is denoted as follows:
S—1
var(S) Zf 5>0
z={0 ifS=0 ®)

\/var(S)

where a positive (negative) value of Z indicates an upward (downward) trend. In bilateral
trend detection, a time series with a significant trend is indicated if 1Z1> Z;_,,, at a
certain significance level x, where Z,_, /, is obtained from the standard normal cumulative
distribution tables. The trend is statistically significant at the 0.1, 0.05, and 0.01 significance
level when [Z| > 1.645, 1.96 and 2.576, respectively. Besides, the Mann—Kendall test
can also be used to detect the abrupt points. The abrupt points and the approximate
time of occurrence can be located according to the intersection of the progressive and
retrograde sequences within the sequence. More details of the abrupt points calculation on
the Mann-Kendall Test are available from the network resources.

2.3.4. Spatial and Statistical Analysis

The mean annual rainfall erosivity at each of the 91 stations was calculated by a
long-term (1971-2020) average value of annual rainfall erosivity. Based on these station’s
values, the co-kriging interpolation method was used to interpolate the spatial distribution
of the average annual erosivity of the TP, using the geostatistical analysis tool ArcGIS 10.4.

Different from the inverse distance weighting IDW) method which only considered
one assumption: nearby points should be closer to the value of the interpolation position



Int. J. Environ. Res. Public Health 2021, 18, 11054 8 of 24

than distant points, the co-kriging interpolation method allowed the addition of covariates
to improve the accuracy of estimation or prediction [74,82]. Considering the complex terrain
of the TP, the elevation factor was defined as a co-variable in the co-kriging interpolation
method [36]. The elevation data of each meteorological station was provided by the
China Meteorological Administration (CMA). Based on the values of rainfall erosivity for
91 meteorological stations on the TP, the co-kriging interpolation method was performed
and generated the spatial distribution map of rainfall erosivity for the period of 1971-2020.

In this study, the rainfall erosivity anomalies of the TP is expressed as the difference
between the annual erosivity value of the observation year and the 50-year average value.
The 5-year moving average anomaly can smooth fluctuations and reduce potential errors,
and was used to analyze the temporal changes of the rainfall erosivity across the TP. The
seasonal (monthly) average rainfall erosivity of the TP was calculated by averaging the
seasonal (monthly) erosivity of 91 meteorological stations during the same time span,
from 1971 to 2020. The annual variation from the meteorological site is represented by the
coefficient of variation (CV), which is expressed as a percentage of the standard deviation
of the annual erosivity to the average of the observation year. The map of seasonal spatial
distribution of rainfall erosivity is expressed as a percentage of the seasonal rainfall erosivity
in the annual total erosivity at each weather station.

2.3.5. Identification of Rainfall Erosivity Trend Patterns

With reference to the time series trend identification method of Ray [83], rainfall
erosivity change patterns were identified for each meteorological station from 1971 to 2020.
Multiple indicators were integrated: the Z values calculated by Mann-Kendall, SLOPE%
and RST-

The SLOPE% value represents as a percentage of SLOPE for the average rainfall
erosivity for each meteorological station during 1971-2020. The calculation formula is

as follows:
SLOPE

(Xiy xi)/n
where SLOPE is the Sen’s slope value of rainfall erosivity changes, x; is the value of the
rainfall erosivity corresponding to period i, and 7 is the length of the time series. The
Rgr is defined as the ratio of the average rainfall erosivity for the last 3 years to the
maximum 3 year moving average. This is used to identify whether the increasing trend of
annual rainfall erosivity is interrupted, shifting to a decline at later stages. The equation is
expressed below:

SLOPE% = x 100 ©)

ave<xn72/ Xp—1, xn)

R =
ST max(AVE(xy, x2,x3), AVE(xo, x3,%4), ... AVE(Xy—2, X1, X1))

(10)

where x; is the value of the rainfall erosivity corresponding to period i, and # is the length
of the time series.

The trend of rainfall erosivity was classified by the above-mentioned three indicators
into four patterns of decreasing, stagnant, increasing-stagnant and increasing (Table 1),
abbreviated as DE, ST, IN-ST and IN, respectively. The Z value indicates whether there
is a significant trend of rainfall erosivity (1 Z| > 1.96 at the 0.05 significance level), a non-
significant change trend (0.675 < 1Z1 < 1.96 at the 0.05-0.5 significance level), and no
change trend (1 Z| < 0.675 at the below 0.5 significance level); SLOPE% indicates whether
the magnitude of the rainfall erosivity trend change is significant. References [84,85] used
0.25% as a criterion, i.e., a change greater than 0.25% is assumed to be significant. Rgt is
used to determine whether the annual rainfall erosivity growth trend is interrupted, or
turns down and mitigates at a later stage.
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Table 1. Definition and indicators of rainfall erosivity trend patten.

Trend Patten Definition Identification Indicators
DE Rainfall erosivity decreased significantly Z < —1.96,0r1.96 < Z < —0.675 and
during the study period SLOPE% < —0.25%
ST Rainfall erosivity showed no significant |Z1 <0.675,0r0.675 < 1Z| <1.96 and
change during the study period ISLOPE% | < 0.25%

Rainfall erosivity showed an increasing 0.675 < 7 < 1.96 and SLOPE% > 0.25%
B S . (] . (3

IN-ST trend in the early stage, but showed a
stable trend in the later stage and R <1,0rZ 2 196 and Rsr <1
IN Rainfall erosivity showed a gradual 0.675 < Z < 1.96 and SLOPE% > 0.25% and
increase trend during the study period Rsy=1,0orZ>196and Rgr =1

Note: The Z value indicates the MK trend detection value, the SLOPE% is the trend change rate percentage, and
the Rgr refers to the ratio of the rainfall erosivity in the past 3 years to the maximum 3-year moving average. DE:
decreasing, ST: stagnating, IN-ST: increasing-stagnating, IN: increasing.

2.3.6. Continuous Wavelet Transform Analysis

The continuous wavelet transform (CWT) is a method to decompose a time series into a
two-dimensional phase plane of the time-frequency simultaneously. It is commonly applied
to the analysis of various hydrological and meteorological processes with high variability
to detect non-stationary trends, periodicities, and durations as it better characterizes
oscillatory behaviors of signals than discrete wavelet transforms [86-88]. Specifically,
two CWTs, cross wavelet transform (XWT), and wavelet transform coherence (WTC),
were constructed to investigate whether there is any periodicities or correlations between
rainfall erosivity and ENSO. The XWT reveals regions of high common power in the time-
frequency spectrum, and calculates the phase relationships between signals. The WTC
identifies two time series variation correlations in both time and frequency space, even
in the absence of high-power regions. In this study, the wavelet power spectrum of CWT
was employed to analyze the relationship and the possible periodicity between rainfall
erosivity in different regions and changing patterns of MEL. XWT revealed high common
power regions and phase relationships between the two variables, and WTC was used to
determine the correlation position of the two variables at local scales. The CWT toolbox
package for MATLAB was used to perform all wavelet analyses. For further details about
CWT, refer to [89].

3. Results

In the following section, the results are represented according to the technical approach
mentioned in Section 2. This section analyzed the variability characteristics of rainfall
erosivity at different time scales and the spatial distribution pattern of rainfall erosivity at
each station, while identifying the relationship between rainfall erosivity and ENSO on
the TP.

3.1. Variation Characteristics of Annual Rainfall Erosivity

Sen’s slope estimation analysis showed an increasing trend of rainfall erosivity on the
Tibetan Plateau from 1971 to 2020, with a Sen’s slope value of 2.69 for annual rainfall erosiv-
ity (Figure 3). The average annual erosivity range from 713.50 to 1495.41 MJ-mm-ha—!-h~1,
with a multi-year average erosivity of 1071.42 MJ-mm-ha~!-h~!. An anomaly analysis
indicated obvious inter-annual fluctuation in rainfall erosivity. The magnitude of rainfall
erosivity undulation was relatively small until 1996 and increased significantly after 1996,
with longer fluctuation periods. For the entire study period, the annual rainfall erosivity
was above the mean for the same duration as the periods below the mean, with the highest
value of 1495.41 MJ-mm-ha—!'-h~! in 2020; the lowest value of 713.50 MJ-mm-ha—'-h~ ! in
2009; the extreme value ratio was 2.1 (Figure S1). Meanwhile, the Mann-Kendall trend
analysis had a Z value of 1.67, indicating that this trend passed the significance test at the
90% confidence level, with the mutation point occurring in approximately 2017 (Figure S2).
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Figure 3. Annual variation in rainfall erosivity on the TP from 1971 to 2020, the red dotted line
represents Sen’s estimate.

3.2. Changes in Seasonal and Monthly Rainfall Erosivity

The seasonal mean rainfall erosivity showed significant discrepancies at 91 meteorologi-
cal stations on the TP. The rainfall erosivity in order was summer > autumn > spring > winter,
with a range of 89.33-662.58 MJ-mm-ha~!-h~!. In particular, the average rainfall erosivity
in summer was the highest, accounting for 60.36%, while winter was the lowest, accounting
for only 8.14% of the total annual erosivity (Figure 4). This phenomenon was mainly influ-
enced by the heterogeneity of the seasonal distribution of precipitation. With the transport
of water vapor from the North Indian and Western Pacific monsoons, the summer monsoon
brought 58.5% of the year’s rainfall, while late spring and early autumn accounted for 90%
of the year’s rainfall [90]. As shown in Figure S3, the summer rainfall erosivity showed a
non-significant increasing trend, with the MK statistical value of 1.54. In contrast, there
was a decreasing trend in spring, autumn, and winter rainfall erosion; the spring and
autumn MK statistic passed the significance test (p = 0.05), which were —2.19 and —2.09,

respectively.
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Figure 4. Statistics of seasonal and monthly average rainfall erosivity and its percentage.

Although the monthly average rainfall erosivity was highly variable, there was a
clear temporal consistency with the seasonal rainfall erosivity. June, July, and August,
corresponding to summer, were the three months with the highest percentage of rainfall
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erosivity for the year. The monthly rainfall erosivity was 168.73 MJ-mm-ha~!-h~1, 264.75,
and 229.10 MJ-mm-ha~!-h ™1, respectively. Rainfall erosivity was highest on the Tibetan
Plateau in July, the proportion of erosivity reached 24.19% for the year. November was
the lowest with 1.12%, but a higher variability was found in this period, with a high
extreme ratio of 18.71 (Figure 4). The trends in the monthly average rainfall erosivity from
1971 to 2020 were further examined, showing an increasing trend in eight months and a
decreasing trend in four months. Specifically, the greatest increasing trend in mean rainfall
erosivity was in August, but the increasing trend was insignificant in all months. Three
months showed a significant decreasing trend, including March and April at 90% and 95%
confidence levels, respectively, and the most significant decreasing trend was in November,
which passed 99% confidence level (Figure S3).

3.3. Spatial Patten of Rainfall Erosivity in the Tibetan Plateau

In order to reduce the boundary effect on the annual rainfall erosivity spatial pattern,
91 meteorological stations were selected for the interpolation better to reveal the spatial
variation in rainfall erosivity. In general, the rainfall erosivity on the TP from 1971 to 2020
had obvious spatial differences, roughly exhibiting a spatial pattern of decreasing distribu-
tion from southeast to northwest (Figure 5). The high value zone of rainfall erosivity was
approximately in the southeastern part of the TP, mainly distributed in the lower altitude
regions such as the Hengduan Mountains and the Yarlung Tsangpo Valley. There were
three stations with an average annual rainfall erosivity greater than 6000 MJ-mm-ha~!-h~1,
of which the highest value occurs at Dujiangyan station in Sichuan Province, with an
average annual rainfall erosivity of 6605.21 MJ-mm-ha~!-h~!. The other two stations are
Gongshan station and Huaping station in Yunnan Province, with an average annual rainfall
erosivity of 6152.44 MJ-mm-ha—!-h~! and 6193.75 MJ-mm-ha—!-h~!, respectively. The
zones with low average annual rainfall erosivity were mainly found in the northern and
western parts of the TP, including concentrations in the Qiangtang Plateau and the Qaidam
Basin. For example, the lowest value was at Shiquanhe station in the Tibet Autonomous
Region, where the annual rainfall erosivity was only 103.46 M]-mm-ha~!-h~!. In summary,
the average annual rainfall erosivity was less than 500 MJ-mm-ha~!-h~! which accounted
for 48.35% of all stations, 500-1000 MJ-mm-ha~'-h~! for 24.16% and that of more than
1000 MJ-mm-ha~1-h~! accounted for 27.47%.
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Figure 5. Spatial distribution of rainfall erosivity on the TP during the period from 1971 to 2020.
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The long time series trend analysis of each meteorological station on the TP from
1971 to 2020 showed that the annual rainfall erosivity exhibited an increasing trend at
49 meteorological stations, accounting for 54% of all stations. Thereby this demonstrated
the reason for the increasing rainfall erosivity across the entire TP since 1971 (Figure 54). Of
these, 13 meteorological stations increased consistently, mainly in the eastern Hengduan
Mountains of the TP, accounting for 27% of the total increases. The meteorological stations
that showed a pattern of rainfall erosivity increased first and then gradually stabilized were
mainly located in the Hehuang valley in the northeastern part of the Tibetan Plateau and the
southern Tibetan valley in the southeast, accounting for 27% of the total increase in stations.
The annual rainfall erosivity showed a long-term stable (no significant trend) pattern at
37 meteorological stations, accounting for 41% of all meteorological stations. Only five
stations showed a gradual decrease in annual rainfall erosivity, accounting for 5% of all
meteorological stations, but both patterns of change were not significant. In addition, as
shown in Table S2, further analysis based on the statistics results of the multiple indicators
at each station revealed that the types of trends at each site differ significantly in terms
of significance levels and magnitude of change. Of all the increasing pattern stations,
the significant increases were seen at Min station (p = 0.05) and Derong station (p = 0.01).
The largest and smallest increases were at Min station and Pishan station, respectively.
Of all the increasing-stagnating pattern stations, there are five meteorological stations at
more than 95% confidence level, namely Zekog station (p = 0.01), Gerze station (p = 0.01),
Dulan station (p = 0.01), Wuwei station (p = 0.01), and Guinan station (p = 0.05). Of all the
decreasing pattern stations, the largest and smallest increases were at Gongshan station
and Artux station, respectively.

As shown in Figure 6, the mean coefficient of variation (CV, the ratio of the standard
deviation to the mean) in the interannual rainfall erosivity for 91 stations since 1971 was
0.61, indicating moderately high rainfall erosivity variability across the plateau. The spatial
distribution pattern of CV had high consistency with annual rainfall erosivity. In other
words, the CV increased from south-east to north-west. Specifically, 11 meteorological sta-
tions were in regions of intense variation (CV > 1), mostly in the north-western flank of the
Kunlun Mountains on the TP, the Ali Mountains in the Tibet Autonomous Region, and the
northern Qilian Mountains in eastern Qinghai Province. while 54 meteorological stations
were in regions of lesser variation (CV < 0.5), accounting for 59% of the total meteorological
stations, mainly in the south-eastern part of the TP. Furthermore, the meteorological station
with the smallest CV in the interannual rainfall erosivity was Jiulong Station, located in
Sichuan Province in the southeastern part of the Tibetan Plateau, while the largest CV was
Pishan Station, located in Xinjiang Autonomous Region in the northwestern part of the
Tibetan Plateau. In summary, over the past half century, rainfall erosivity exhibited clear
spatial disparities on the TP, specifically, annual rainfall erosivity in the southeast were
mainly characterized by a slowly and steadily increase, while annual rainfall erosivity in
the northwestern part of the plateau showed greater fluctuations and instability, with no
significant trends.

The seasonal spatial distribution pattern of rainfall erosivity varied widely across the
TP (Figure 7). Five meteorological stations (5.5% of the total) with the highest percentage of
spring rainfall erosivity were concentrated in the Kunlun Mountains on the Tibetan Plateau
near the Pamir Plateau and in the Nu River basin in the Eastern Himalaya. In particular,
the erosivity of spring rainfall accounted for more than 50% of Pishan station, Kashgar
station, and Zayu station, and Pishan station was as high as 79%. (Figure 7a). Nearly 92%
of the meteorological stations (total 84) had the highest percentage of summer rainfall
erosivity. The largest was Shiquanhe station, which surprisingly had 94.28% of the annual
rainfall erosivity (Figure 7b). There was only one meteorological station with the highest
percentage of fall rainfall erosivity, with three stations accounting for more than 30%,
namely Nyalam, Burang, and Keriya station (Figure 7c). Winter was the season with the
lowest percentage of rainfall erosivity, all stations had less than 30% of rainfall erosivity
(Figure 7d). Summer and autumn were the most erosive seasons. It is worth noting that
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rainfall erosivity was generally higher across the plateau in summer, particularly in the
southeastern part of the Tibetan Plateau, whereas rainfall erosivity in autumn and winter
was still higher proportion in the south-western part of the plateau near the Himalayas.
Thus, extra caution will be needed to prevent aggravation of soil erosion in this region.

Yarjy, (o]
7 ng z
Gy R 21850 Rjye,. Lhasa N
o 0.24-041 ) ° Chengdu
@ 042 064 =
@ o065-1.01

@ n s
.1,86-2,87 —
0

(b) Yo

>z
e
>z

Y e.. ®
e e
L °o © ® [ ] @
°8 . ° 9
e (] e (] . @ ® °
e @
. cedy p ® ’. K ... ®
g Legend » ) [
Legend ° . .09 °
2 3 . A Percentage(%) \ (") @ 00 o
spring ® . [ o <40 ) ‘
. <10 0 ° ’ ° ° '. ® 40-50 . @ [ ] @ ®e ..
® 10-20 - . @eo " °o @ 50-60 . . .. o
@ 20-30 @0 /-0 @ 60-70 'Y )
@ 30-40 () . @ 70-%0 ‘o
“
@« e : @0 e e %o
c d
(©) 1oq N (d . N
A . A
. ®- o,
%
° 0
°e
D)
8000
° o3 ® N
o $ o ° .’.
°
° .C @ ..... @
. ® @
° ®+"%e
Legend ® ° ? Legend
Percentage(%) (N 4 ° .. Percentage(%) N
. <10 - .'... ;:5] PR
; ;siig .... “®° [ -lui—gu o
@:-w — e ® @2 b

Figure 7. Spatial pattern of rainfall erosivity from 1971 to 2020 in spring (a), summer (b), autumn (c), and winter (d). Note:

Percentage refers to the proportion of seasonal rainfall erosivity to total annual erosivity.



Int. J. Environ. Res. Public Health 2021, 18, 11054 14 of 24

3.4. Relationship between Rainfall Erosivity and ENSO
3.4.1. Influence of ENSO on Rainfall Erosivity in the Different Regions of TP

The El Nifio and La Nifia events are the ENSO cycles of the warm and cold periods,
respectively. Statistics on the rainfall erosivity in Region I (arid zone) and Region II (humid
zone) of the TP and whole plateau during the El Nifio (ENSO warm event) and La Nifia
(ENSO cold event) periods are presented in Table 2.The occurrence and duration of El Nifio

event and La Nifia event were determined based on ONI.

Table 2. Average monthly rainfall erosivity in different regions (Region I and Region II) and TP for El Nifio and La Nifia

events from 1971 to 2020. The bottom table provides a summary of the average monthly rainfall erosivity.

No. Time Internal Duration Time Region I Erosivity =~ Region II Erosivity TP Erosivity
El Nifo events
1 1972.05-1973.03 11 282.09 233.00 201.92
2 1976.09-1977.02 6 90.57 216.53 198.37
3 1977.09-1978.01 5 114.40 132.34 120.58
4 1979.10-1980.02 5 104.33 209.91 175.40
5 1982.04-1983.06 15 83.32 214.03 174.49
6 1986.09-1988.02 18 315.97 221.63 225.18
7 1991.05-1992.06 14 106.09 256.33 210.08
8 1994.09-1995.03 7 74.89 167.78 142.50
9 1997.05-1998.05 13 144.15 235.53 193.00
10 2002.06-2003.02 9 141.13 251.03 208.63
11 2004.07-2005.02 8 155.69 247.67 133.83
12 2006.09-2007.01 5 84.40 167.47 188.51
13 2009.07-2010.03 9 128.03 217.52 170.04
14 2014.10-2016.04 19 63.75 193.68 204.68
15 2018.09-2019.06 10 318.80 169.55 201.92
La Nina events

1 1971.01-1972.01 12 105.87 162.81 142.12
2 1973.05-1974.07 15 101.82 327.52 197.69
3 1974.10-1976.04 19 136.34 246.86 234.16
4 1983.09-1984.01 5 170.46 216.68 191.36
5 1984.10-1985.08 11 125.46 251.72 216.24
6 1988.05-1989.05 13 408.05 261.23 486.03
7 1995.08-1996.03 8 117.67 249.63 190.13
8 1998.07-2001.02 32 153.16 264.05 209.01
9 2005.11-2006.03 5 474.19 124.57 142.75
10 2007.06-2008.06 13 155.75 201.97 178.10
11 2008.11-2009.03 5 283.13 123.77 138.83
12 2010.06-2011.05 12 102.80 214.74 185.26
13 2011.07-2012.04 10 195.09 192.46 187.99
14 2016.08-2016.12 5 109.84 251.42 223.47
15 2017.10-2018.04 7 48.87 116.56 101.67
16 2020.08-2020.12 5 93.12 156.05 229.36
Average monthly erosivity El Nifio 147.17 208.93 181.94
Average monthly erosivity La Nifia 173.85 210.13 203.39
Average monthly erosivity ENSO 160.51 209.53 192.67
Average monthly erosivity non-ENSO 140.48 253.09 213.77
Average monthly erosivity 1971-2020 146.25 233.68 208.12

In terms of the degree of influence of cold and warm events on the rainfall erosivity,

the average monthly rainfall erosivity for the El Nifio event was slightly lower than the
La Nifia event across the TP, but the average of both events was less than the monthly
rainfall erosivity for the period 1971-2020. During the El Nifio event, the maximum
monthly average rainfall erosivity was 225.18 MJ-mm-ha~!-h~! and the minimum value
was 120.58 MJ-mm-ha~—!-h~1, with an extreme value ratio of 1.87; during the La Nifia event,
the maximum monthly average rainfall erosivity was 486.03 MJ-mm-ha=1-h~! and the
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minimum value was 101.67 MJ-mm-ha—1-h~!, with an extreme value ratio of 4.78; thus,
higher variability occurred during the La Nifia event. In terms of the presence or absence of
ENSO events, the average rainfall erosivity during the ENSO and Non-ENSO periods were
192.67 MJ-mm-ha~!-h~! and 213.77 MJ-mm-ha~—!-h~!, respectively. It was evident that
the average monthly rainfall erosivity during the non-ENSO period was not only greater
than that during the ENSO period, but also greater than the total average monthly rainfall
erosivity for the whole study period.

The impact of ENSO events on the monthly mean rainfall erosivity in different regions
was notably dissimilar. For Region I, the average monthly rainfall erosivity for the El
Nifio and La Nifia events were 147.17 MJ-mm-ha~'-h~! and 173.85 MJ-mm-ha—!-h~1,
respectively. This was higher than the average monthly rainfall erosivity for this region
for 1971-2020. Moreover, we found that when El Nifio events or La Nifia events occurred,
there was a significant increase in rainfall erosivity in Region I relative to the Non-ENSO
period, but La Nifia events had a greater impact on the monthly average rainfall erosivity,
compared with El Nifio events; For Region II, the average monthly rainfall erosivity for the
El Nifio and La Nifia events were 208.93 MJ-mm-ha~!-h~! and 210.13 MJ-mm-ha—!-h~1,
respectively, with the El Nifio event slightly lower than the La Nifia event. There was a
modest gap between the two events. However, compared with Region I, the direction of
influence of ENSO in Region II was in the opposite direction. In other words, when ENSO
occurs, the average monthly rainfall erosivity in this region decreased more significantly
than the average for the study period. Due to the difference in the magnitude of rainfall
erosivity on the Tibetan Plateau during the ENSO period and the non-ENSO period, under
the premise that other contributing factors was fixed, rainfall erosivity was stronger during
the non-ENSO period and soil erosion concerns and soil conservation measures should
be strengthened during this period. Considering the obvious spatial heterogeneity of
the impact of ENSO on the Tibetan Plateau, the emphasis should be on erosion in the
north-west during El Nifio or La Nifia events, especially during the La Nifia event when
control measures should be enhanced.

3.4.2. Correlation between Rainfall Erosivity and Multivariate ENSO Index

To examine the extent and impact of ENSO on rainfall erosivity, an XWT and WTC
analysis were conducted on the time series of rainfall erosivity and MEI index in different
regions of the Tibetan Plateau from 1971 to 2020, revealing the periodicity characteristics of
both. As shown in Figure 8, in the time-frequency space domain of Region I, it is obvious
that there was 3-5 years of high-energy resonance cycle between rainfall erosivity and
the MEI index for the period of 1981-1988, during which there was a negative correlation
between both time series. In the Region II power spectrum, there were two significant
high-energy domains, specifically a 3-5 years resonance cycle from 1981 to 1988 was similar
to that of Region I, indicating a consistent ENSO effect across the plateau during this period,
but the intensity of the Region II resonance cycle was higher. The other was that there
was a 2-5 years resonance cycle of rainfall erosivity and the MEI index from 1995 to 1999,
and the mean phase angle was nearly 90° vertically upwards, indicating that the rainfall
erosivity change was later than the MEI index. In other words, rainfall erosivity had a lag
compared with ENSO over the same period. As shown in Figure 9, in the Region I WTC
power spectrum, there were negative phase cycles of 3-5 years and 2-3 years in 1985-1992
and 2006-2009, respectively, indicating a negative correlation between rainfall erosivity
and the MEI index during this period. Regarding Region II, there were negative phase
cycles of 3-7 years from 1977 to 1988, 1-3 years from 1994 to 1998 and 2—4 years from 2007
to 2013, indicating a negative correlation between rainfall erosivity and the MEI index
during these periods. While positive phase cycles of 1-2 years from 1987 to 1989 indicate a
positive correlation between rainfall erosivity and the MEI index during this period.
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Figure 8. Cross wavelet transforms (XWTs) for annual rainfall erosivity and multivariate ENSO Index (MEI) in Region I
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translucent area indicates the cone of influence, and the color bar indicates the magnitude of the XWT cross spectral power.
That is, red is strong and blue is weak. The arrows (vectors) designate the phase difference between rainfall erosivity and
MEI. Where the left arrow indicates the opposite phase relationship between the rainfall erosivity and MEI and vice versa.
The north-pointing arrow indicates that the peak rainfall erosivity are lower than the peak MEL
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Figure 9. Wavelet transform coherence (WTC) for annual rainfall erosivity and multivariate ENSO Index (MEI) in Region I
(a) and Region IT (b). NOTE: The thick black outline indicates the 95% significance level, the white translucent area indicates
the cone of influence, and the color bar indicates the significance level of the Monte Carlo test. That is, red means strong
correction and blue is weak. where the left arrow indicates the opposite phase relationship between the two-time series,
vice versa.

4. Discussion

This study revealed the spatial and temporal characteristics of rainfall erosivity on the
TP from 1971 to 2020 and their relationship with the ENSO Index. The results showed that
the average annual rainfall erosivity on the TP since 1971 was 1071.42 MJ-mm-ha~!1-h~L.
According to previous studies, this value is higher than in northwestern China but lower
than in southeastern China [74], and the overall degree of erosion is light, approximately
0.5 times the global average [91]. Upward trends are shown for rainfall erosivity during
1971 to 2020. Gu et al. also found an increasing trend in rainfall erosivity from 1981 to
2015 in the Tibet Autonomous Region (TAR) [60], and Wang et al. found a same uptrend in
rainfall-runoff erosivity from 1961 to 2012 in Sanjiangyuan region, Qinghai Province [53],
which is consistent with this study. Fan et al. [61] used TRMM 3B42 data to assess the
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spatial and temporal variability of rainfall erosivity in the TAR from 2000 to 2010 and
found that the average rainfall erosivity was 768 MJ-mm-ha~!-h~!, which is lower than
the results of this study, probably due to the different extent of the study area and the
accuracy of the data. Moreover, the reasons for the trend of increasing annual rainfall
erosivity but significant decreasing rainfall erosivity in spring and autumn may be related
to the variation in rainfall on the TP [92]. Previous studies have shown that since 1961, the
Tibetan Plateau is gradually warming and humidifying [93], which may contribute to an
increase in rainfall erosivity. Meanwhile, while changes in the westerly circulation lead to a
reduction in rainfall in spring and autumn which in turn affects rainfall erosivity [94].

In the previous section, this work indicated rainfall erosivity on the TP varied greatly
not only seasonally but also monthly. This may be caused by its complicated geography
and dominant atmospheric circulation conditions [95]. The plateau spans a wide range of
latitudes and longitudes and has a variety of climate types. It is also at the crossroads of
monsoon and non-monsoon zones, and is influenced by the prevailing westerly winds,
the South Asian monsoon and the East Asian monsoon circulation, resulting in an uneven
spatial and temporal distribution of rainfall. Besides, according to previous reports, the
amount and intensity of rainfall are the main factors affecting the rainfall erosivity [96]. The
spatial and temporal variability of rainfall at various magnitudes will certainly contribute
to soil erosion by water at different times and regions to different degrees [97,98]. The
average heavy rainfall and average heavy rainfall erosivity for each station from 1971
to 2020 are presented in Table S3. It can be seen from Table S3 that the average heavy
rainfall (>25 mm) of 91 meteorological stations in the plateau was 33.05 mm, and the
average rainfall erosivity was 243.35 MJ-mm-ha~!-h~!. The absolute amount of erosivity
caused by heavy rainfall on the TP is low compared with the eastern coastal areas of China,
mainly because the total rainfall erosivity in the plateau is much lower than those in the
east [35,99,100]. Furthermore, the comparison of the proportion of heavy rain and rainfall
erosivity found that the average heavy rainfall on the TP accounted for only 27.02% of the
total rainfall, but the rainfall erosivity caused by heavy rainfall occupied by 43.3% of the
total rainfall erosivity (Figure 10). In addition, the change in the percentage of heavy rainfall
and heavy rainfall erosivity has a high consistency on the TP. In case of heavy rainfall, it
can be easily seen that rain erosivity becomes more intense. The maximum values of heavy
rainfall and heavy rainfall erosivity were 71.26% and 81.46%, respectively, both of which
occurred at Dujiangyan station, and the minimum values of 6.77% and 8.15%, respectively,
which occurred at Zhidoi station. Studies have revealed that rainfall is the most important
climatic factor contributing to soil erosion, and in particular, heavy rainfall (>25 mm) is one
of the main factors affecting the rainfall erosivity [101]. In general, the higher the intensity
of the heavy rainfall, the greater the amount of soil erosion. The frequency of extreme
rainfall events is growing as a result of global climate change [102,103], Future research
should pay more attention to high intensity rainfall and soil erosion.

The spatial distribution of rainfall erosivity on the TP decreased roughly from south-
east to north-west, with significant spatial heterogeneity. Previous studies have shown that
mountain tectonics and topographic gradients are essential factors influencing precipita-
tion [104]. The high rainfall erosivity in the south-east is largely attributed to the roughly
north-south alignment of the Hengduan Mountains and the gradual rise in elevation from
south to north, which is a natural water vapor corridor and facilitates the deeper uplift of
monsoon air masses and the formation of rainfall. The north-west of the plateau, on the
other hand, is located in an inland region, with high altitude and low temperatures. It is
extremely hard for the monsoon to reach it, and rainfall is minimal throughout the year,
resulting in lower rainfall erosivity. Besides, in the southern part of the plateau, although it
is on the leeward slopes of the Himalayas, where water vapor is not easily accessible, the
Yarlung Tsangpo valley is at a relatively low altitude and has locally better hydrothermal
conditions, resulting in a higher rainfall erosivity in the region. In addition, the role of
anthropogenic activities should not be neglected. Nearly 38.8% of the grasslands on the TP
have been degraded [105], and the degradation of meadows caused by overgrazing is a
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serious environmental and ecological problem. Consequently, soil erosion caused by the
contradiction between people and land may exacerbate the rainfall erosivity.

minimum maximum
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Figure 10. Comparison of the proportion of heavy rain (daily rainfall > 25 mm) and rainfall erosivity for 91 meteorological

stations on the TP from 1971 to 2020. Note: the designation of station numbers is shown in Table S3; and the percentage of

heavy rainfall represents the proportion of heavy rain amount to total annual precipitation; percentage of heavy rainfall

erosivity represents the proportion of heavy rainfall erosivity to annual rainfall erosivity.

Clarifying the temporal and spatial patterns of rainfall erosivity on the TP over the
past 50 years is of great significance for soil conservation and future land use planning.
This paper indicates that the tendency of increasing rainfall erosivity was identified in the
southeastern part of the TP. Published studies have shown that the Hengduan Mountains
region has the highest soil erosion modulus of the TP [106]. Furthermore, the alternation
of steep slopes and deep ravines, the superimposed effect of complex topography and
intensified rainfall erosivity may further magnify soil erosion in this region. The Yarlung
Tsangpo Valley and the Hehuang Valley are areas of intensive human activity on the TP,
and are also major wheat and barley cultivation areas, with crops mostly grown on the
slopes of the valleys [107]. Although rainfall erosivity has not shown a sharp rise over the
past 50 years in these origins, the region’s originally high rainfall erosivity may still result
in frequent natural hazards and elevated ecological risks. The deployment of measures
against landslides and debris flows should be considered as a priority. In the western
and northern parts of the Tibetan Plateau, there is higher variability, although with lower
rainfall erosivity. On the one hand, in the context of increased rainfall erosivity across the
plateau, it is still possible to damage the low-cover turf. In particular, the interactive effects
of human activities such as grazing and soil erosion processes can also exacerbate the ‘black
beach’” degradation of plateau grasslands. On the other hand, the north-west has a higher
altitude and fragile natural environment where seasonal differences in rainfall erosivity is
more likely to cause damage to alpine ecosystems. Therefore, soil erosion management
strategies in this region should not be neglected either.

The impact of global-scale climate oscillation regimes on climate change has received
widespread attention. This paper used MEI to characterize the global-scale climate oscil-
lation model ENSO in an attempt to explore the relationship between ENSO and rainfall
erosivity on the Tibetan Plateau, with a view to providing guidance for collaborative
work on climate change and soil conservation. This study found that rainfall erosivity
was lower during ENSO than during non-ENSO, and other studies have found the same
results [35,36]. ENSO is a major factor influencing temperature and precipitation in China.
Some studies have shown that precipitation anomalies can reach up to 30% of the average
precipitation during ENSO periods [108]. It is worth noting that rainfall erosivity was
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higher during the La Nifia period than during the El Nifio period on the TP. This is not
in agreement with previous studies, with results in places such as Fujian in southeastern
China [37], but is consistent with studies in Guizhou in southwestern China [36]. The other
research indicated that El Nifio occurs with a delayed arrival of the southwest monsoon,
while the opposite occurs at La Nifia, so this may be related to a weakening of the Indian
monsoon [109,110]. These findings would explain the difference of rainfall erosivity be-
tween the La Nifia period and El Nifio period. According to the CWT results, a noticeable
resonance cycle between rainfall erosivity and MEI was found in different regions of the
Tibetan Plateau, but there were also significant differences in cycle duration, direction of
action, and intensity. This may be due to the fact that ENSO events themselves present
diversities of climatic features at each stage of occurrence, development, maturation and
decline [108]. Additionally, it also suggested that global climate anomalies are an important
driver of changes in the rainfall erosivity on the TP.

Due to the vast expanses of land and sparse populations as well as the harsh natural
conditions, the distribution of weather stations on the Tibetan Plateau is extremely irregular,
which may affect the accuracy of the interpolation. Although this study improves the
comprehension of the impact of ENSO on rainfall erosivity, it still lacks further explanation
from a mechanistic perspective. Furthermore, in light of the known results, it is clear that
not only ENSO but also topography, altitude, and microclimate are associated with rainfall
erosivity, and detailed knowledge will be necessary for future studies.

5. Conclusions

This study carried out an insightful analysis of the spatial, interannual, and seasonal
variability of rainfall erosivity on the TP from 1971 to 2020 and its relationship with ENSO.
Daily rainfall data from 91 meteorological stations were collected, and the change trend
of rainfall erosivity calculated based on a daily rainfall erosivity model were detected
at a regional and site-scale using methods such as Mann—Kendall test and Sen'’s slope.
The potential influence of ENSO on rainfall erosivity was revealed using the continuous
wavelet transform method. The main findings were summarized below:

Rainfall erosivity has shown a fluctuating trend of increasing over the past half century.
Seasonal and monthly rainfall erosivity showed high heterogeneity, which was greatly related
to heavy rainfall. The rainfall erosivity in order was summer > autumn > spring > winter.
July was the most erosive month, accounting for 24.19% of the year, while November was
the lowest, accounting for only 1.12%. The rainfall erosivity in spring and autumn showed
a significant decreasing trend (p < 0.05), and in summer it showed an increasing trend but
not significant. There was generally an obvious spatial variation in rainfall erosivity on
the TP from 1971 to 2020, presenting a roughly spatial pattern of decreasing distribution
from southeast to northwest. Annual rainfall erosivity in the south-eastern part of the
plateau was mainly characterized by a slow increase, while in the north-western part
annual rainfall erosivity was more unstable with mostly no significant trends.

ENSO events had a significant impact on rainfall erosivity on the TP. The rainfall
erosivity in the non-ENSO period was higher than that in the ENSO period, and the
La Nifia event was higher than the El Nifio event. It was also found that there was a
clear resonance cycle between rainfall erosivity and ENSO in different regions of the
plateau, with an average cycle of about 3-5 years in the high energy region, but there were
differences in the timing of occurrence, direction of action, and intensity of the cycle. The
rainfall erosivity on the TP was relatively large during non-ENSO periods and relatively
small during El Nifio/La Nifia periods. In addition, the response of rainfall erosivity to
ENSO was spatially heterogeneous. Rainfall erosivity in the northwest of TP appears to be
more serious during the La Nifia event and less severe during the El Nifio event. It can
be concluded that soil erosion may become more intense during the La Nifia event in the
northwest TP. Therefore, during the La Nifia event, soil protection should be enhanced to
diminish soil spattering and disturbance.
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This study contributes to the understanding of the spatial and temporal variability
of annual rainfall erosivity across the entire TP over the last half century and extends the
cognition of the possible impact of changes in ENSO characteristics associated with climate
change. Uncertainties may be involved due to limited data availability and interpolation
bias errors. Future studies should integrate the effects of multiple factors on rainfall
erosivity, more carefully relate the effects of climate extremes, and improve the insights
from the mechanistic aspects of change.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182111054/s1, Figure S1: Rainfall erosivity anomalies from 1971 to 2017, the blue line
shows the 5-year moving average curve, Figure S2: Sequential MK test for 50-year rainfall erosivity of
TP. Note: UF and UB refer to progressive and retrograde sequences within the sequence, respectively.
UF > 0 indicates an increasing trend, UF < 0 indicates a decreasing trend. The mutation year exists at
the intersection of UF and UB. The dashed line represents the 95% confidence interval, Figure S3:
Seasonal and monthly average rainfall erosivity Mann-Kendall trends of plateau from 1971 to 2020.
**p <0.01;* p <0.05; + p < 0.1, Figure S4: Long—term trend pattern of rainfall erosivity at each station
from 1971 to 2020. Note: DE: decreasing, ST: stagnating, IN-ST: increasing-stagnating, IN: increasing,
Table S1: The basic information of 91 meteorological stations in this study. ‘No’ refers to station
number, which is the same as the station number in Figure 1, Table S2: Statistical results of Z, SLOPE,
and R associated with the rainfall erosivity trend classification at each meteorological station on the
TP from 1971 to 2020, Table S3: The average heavy rainfall (AHR) and its proportion (HR) and the
proportion of average heavy rain erosivity (HRE) of each station from 1971 to 2020.
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