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Abstract: The aim of the study was to determine the between-trial and between-day reliability of
the Glazer protocol and our multi-activity surface electromyography (sEMG) measurement protocol
for pelvic floor muscle (PFM) evaluation. The bioelectrical activity of PFM was collected using
an endovaginal electrode in 30 young, Caucasian, nulliparous women (age 22–27, 168.6 ± 5.1 cm,
57.1 ± 11.8 kg). The between-trial and between-day reliability of the original Glazer protocol and
the new multi-activity sEMG protocol were assessed during the following phases: pre-baseline
rest, phasic (flick) contractions, tonic contractions, endurance contraction, and post-baseline rest.
The Glazer protocol was characterized by poor and moderate measurement reliability. The time-
domain parameters for the rise and fall of the signal amplitude and median frequency showed poor
between-trial and between-day reliability. The mean and peak amplitudes indicated mainly good
between-trial and moderate between-days reliability. Our protocol showed moderate to excellent
reliability of both time-domain and quantitative parameters of muscle recruitment. In our protocol,
the frequency-domain parameters describing muscle fatigue demonstrated much higher reliability
than in the case of the Glazer protocol. The most important information obtained in this study
was the significant improvement of diagnostic validity in PFM bioelectrical activity evaluation.
The higher reliability of our sEMG protocol compared to original Glazer protocol allowed us to
suggest that protocol modifications and changes in sEMG signal processing methods were effective in
the improvement of PFM assessment quality. The new parameters calculated from the sEMG signal
proposed in our sEMG protocol allowed us to obtain additional clinically important information
about PFM dysfunctions regarding specific deficits of muscle contraction such as decrease in muscle
strength; endurance or coordination related to, e.g., stress urinary incontinence; or pelvic floor muscle
imbalance after childbirth.

Keywords: surface electromyography (sEMG); pelvic floor muscles; Glazer protocol; multi-activity
sEMG protocol; reliability

1. Introduction

The pelvic floor muscles (PFM) have dual function—providing trunk stability and con-
tinence [1–3]. It has been reported that women with urinary incontinence have weakened
PFM strength and endurance compared to women without pelvic floor dysfunctions [4–7].
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Because PFM dysfunctions are very common, there is a need to create a valid and ef-
fective diagnostic method. Many authors have described the use of intrapelvic surface
electromyography (sEMG) as an easy and non-invasive method for PFM evaluation [8–10].
This method allows assessment of the level of muscle fatigue, as well as chronic overload
or disturbed coordination [11–14]. The bioelectrical activity of the PFMs is commonly
evaluated with the Glazer protocol [15–17]. The intrapelvic sEMG assessment in the Glazer
protocol includes the following series of muscle contractions and relaxations: pre-baseline
rest, phasic contractions, tonic contractions, isometric contraction for muscle endurance
evaluation, and post-baseline rest. The sEMG signal analysis includes average sEMG
amplitude, recruitment and recovery latencies, changes in spectral frequency, and sEMG
amplitude variability [16]. Nonetheless, the Glazer protocol is based on a non-normalized
sEMG signal, which due to signal variability is its main weakness [16,18].

Some authors have assessed the reliability of PFM bioelectrical activity, but the vast
majority took only selected types of muscle contraction into account, such as short maxi-
mal contraction or endurance contraction lasting a several dozen seconds [6–8,14,18,19].
Therefore, in these works, the real measurement reliability of these tests was not shown,
being restricted to only its selected parts. Moreover, Glazer et al. [18] did not evaluate their
whole sEMG protocol for reliability, but only one of its phases—a 10-s contraction.

In the literature, the reliability of PFM sEMG measurements are equivocal. In some
studies, good reliability has been reported regarding the sEMG signal evaluated both quali-
tatively and quantitatively [6–9,14,18,19]. However, as underlined by Auchincloss et al. [20],
in each of these studies, different vaginal probes were used and different measurement
protocols were applied, making cross-study comparisons impossible. Between-session
reliability of sEMG recorded using intravaginal probes was variable, and much better
between-trial than between-day reliability was suggested [18]. Auchincloss et al. [20] have
also reported that between-trial reliability was acceptable to record PFM sEMG, but the
test–retest reliability between days was poor. However, in the Glazer et al. study [18],
between-day reliability of the sEMG data was strong and significant, but the authors
reported a correlation (r = 0.86, p < 0.001) of sEMG amplitude only between two measure-
ments. Therefore, due to the weak statistical methods employed, these findings regarding
reliability should be considered with caution.

Most often in subjects suffering from incontinence, we can observe complex changes in
PFM neuromuscular control, strength, endurance, and coordination. Therefore, for proper
diagnosis, a complex evaluative approach is required [3,10,15,21]. In the majority of the
studies, the results of PFM assessment with sEMG have been reported only on the basis
of PFM activity during contraction and relaxation state [4,14,18,19,22]. Some authors
performed assessment during 30 s of contraction evaluating changes in PFM fatigue [23].
However, because the changes in PFM are multifactorial, the clinical evaluation should
include different types of muscle contractions, which are similar to those performed during
daily life [10,21,24].

When sEMG is used clinically as well as in research, the reliability of this measurement
is fundamental for interpretation of the obtained results. Despite the common use of
sEMG in PFM function evaluation, the reliability of this measurement has not been fully
established. Therefore, there is a need to verify the reliability of PFM sEMG evaluation
including different types, strength, and duration of muscle contractions, and also to reduce
the sEMG signal variability by appropriate signal processing.

Because there is a lack of studies in which the reliability of PFM sEMG assessment
would be comprehensively evaluated, in this study, the aforementioned issue is under-
taken for the first time. The purpose of this study is to determine the between-trial and
between-day reliability of the multi-activity sEMG measurement protocol for PFM clinical
evaluation, which includes all phases described by Glazer et al. [18]. Moreover, because
the original Glazer protocol has weaknesses related to sEMG signal variability, making
its clinical validity vulnerable to errors, we proposed additional parameters obtained
during sEMG signal processing, which may increase the quality of the sEMG signal and,
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therefore, improve the reliability of PFM assessment. This is the first study in which the
reliability of PFM bioelectrical activity is comprehensively evaluated with the broad aspect
of muscle contraction and full signal processing standardization. Moreover, in this study,
the reliability of full Glazer protocol was evaluated for the first time.

2. Materials and Methods
2.1. Participants

In this study, 30 young, Caucasian, nulliparous women (age 22–27, 168.6 ± 5.1 cm,
57.1 ± 11.8 kg) without pelvic floor muscle ailments were evaluated. They were recre-
ationally active and did not engage in regular physical training. They did not have any
symptoms of urinary incontinence and did not experience any spinal pain in the 6-month
period prior to enrolment in the study. They were informed in detail about the research
protocol and gave their written informed consent to participate in the study. All procedures
were performed in accordance with the 1964 Helsinki declaration and its later amendments.
Approval of the Ethical Committee of Rzeszów University (4 January 2015) was obtained
for this study.

2.2. Procedures
The sEMG Measurement

Bioelectrical activity of the PFM was collected using the Life-Care two-sided endovagi-
nal electrode (Everyway Medical Instruments Co., Ltd., Taiwan). The signal was registered
with 16-bit accuracy at a sampling rate of 1500 Hz using the Noraxon G2 TeleMyo 2400 unit
(Noraxon USA, Inc., Scottsdale, AZ, USA) [12,25].

PFM activity was recorded in supine position with a pillow underneath the partici-
pant’s head. The hips and knees were gently flexed, supported by a pillow under the knees,
and the lumbar spine was in a neutral position. The women were asked to empty their
bladder prior to electrode application. After electrode application, to better familiarize
the subjects with testing procedures, we got them to perform a short trial of phasic, tonic,
and endurance contractions. After 10 min of rest in supine position, the measurement was
performed. During all measurements, participants were verbally instructed to perform the
PFM contraction without the use of the abdominal, gluteal, or hip adductor muscles.

Visit 1—For the between-trial reliability, 2 measurements were performed with 15 min of
rest between them. The reliability was calculated between the first and second measurement.

Visit 2—For the between-day reliability, 1 measurement was performed 2–3 days later,
during the second visit in the laboratory. The reliability was calculated between the first
measurement from Visit 1 and the measurement from Visit 2.

The between-trial and between-day reliability of the original Glazer protocol and
the new multi-activity sEMG protocol were performed during a single measurement.
The measurement of PFM sEMG activity included all phases required by both protocols:

1. One 60-s rest (pre-baseline).
2. Five phasic (flick) contractions (2-s contraction with a 2-s rest in-between).
3. Five phasic (flick) contractions (2-s contraction with a 10-s rest in-between).
4. Five 10-s tonic contractions, with a 10-s rest in-between.
5. One 60-s endurance contraction.
6. One 60-s rest (post-baseline).

The Glazer protocol consisted of 5 activities [17]:

1. One 60-s rest (pre-baseline)—the women were instructed to feel the PFM in rest.
2. Five phasic (flick) contractions—the women were instructed to contract the PFM as

quickly as possible (2-s contraction with a 2-s rest in-between).
3. Five 10-s tonic contractions, with a 10-s rest in-between—the women were instructed

to contract the PFM as strongly as possible, hold the contraction for 10 s, and then
fully relax the PFM after contraction remaining relaxed for 10 s.

4. One 60-s endurance contraction—the women were instructed to contract the PFM at
such a level as to hold it for 60 s.
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5. One 60-s rest (post-baseline)—the women were instructed to feel the PFM in rest.

The following sEMG signal parameters were calculated for the Glazer protocol [17]:

1. One 60-s rest (pre-baseline):

Average mean amplitude (µV)
Mean amplitude variability (%)

2. Five 2-s phasic (flick) contractions with 2-s rest in-between:

Average peak amplitude (µV)—the result was the mean value from 5 contractions.
Time before peak (s)—the result was the mean value from 5 contractions.
Time after peak (s)—the result was the mean value from 5 contractions.

3. Five 10-s tonic contractions, with a 10-s rest in-between:

Average mean amplitude (µV)—the result was the mean value from 5 contractions.
Average peak amplitude (µV)—the result was the mean value from 5 contractions.
Time before peak (s)—the result was the mean value from 5 contractions.
Time after peak (s)—the result was the mean value from 5 contractions.

4. One 60-s endurance contraction:

Median frequency (Hz)
Average mean amplitude (µV)
Mean amplitude variability (%)

5. One 60-s rest (post-baseline):

Average mean amplitude (µV)
Mean amplitude variability (%)

Our multi-activity sEMG protocol consisted of 5 activities:

1. One 60-s rest (pre-baseline—divided into 3 intervals: I-5s, II-5s, III-50s)—the women
were instructed to feel the PFM in rest.

2. Five 2-s phasic (flick) contractions, with a 10-s rest in-between—the women were
instructed to contract the PFM as quickly as possible, and then quickly and fully relax
the PFM immediately after contraction.

3. Five 10-s tonic contractions, with a 10-s rest in-between—the women were instructed
to contract the PFM as strongly as possible, hold the contraction for 10 s, and then
fully relax the PFM after contraction remaining relaxed for 10 s.

4. One 60-s endurance contraction—the women were instructed to contract the PFM at
such a level as to hold it for 60 s.

5. One 60-s rest (post-baseline)—the women were instructed to feel the PFM in resting
position.

The following sEMG signal parameters were calculated for our sEMG protocol:

1. One 60-s rest (pre-baseline):

Average mean amplitude (µV)—the value was calculated separately for each of the
3 intervals: I-5s, II-5s, III-50s.
Mean amplitude variability (%)—the value was calculated separately for each of the
3 intervals: I-5s, II-5s, III-50s.

2. Five 2-s phasic (flick) contractions with 10-s rest in-between:

Average peak amplitude from contraction phase (µV)—the result was the mean value
from 5 contractions.
Onset to offset time (s) (contraction duration)—the result was the mean value from
5 contractions.
Average mean amplitude from rest in-between phase (µV)—the result was the mean
value from 5 rests.
Onset to peak time (s) (time of amplitude increase)—the result was the mean value
from 5 contractions.
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Peak to offset time (s) (time of amplitude decrease)—the result was the mean value
from 5 contractions.

3. Five 10-s tonic contractions, with a 10-s rest in-between:

Average mean amplitude (µV)—the result was the mean value from 5 contractions.
Mean amplitude variability (%)—the result was the mean value from 5 contractions.
Median frequency (Hz)—the result was the mean value from 5 contractions.
Mean frequency (Hz)—the result was the mean value from 5 contractions.

4. One 60-s endurance contraction:

Median frequency (Hz)—the result was the mean value from 6 intervals lasting 10 s each.
Mean frequency (Hz)—the result was the mean value from 6 intervals lasting 10 s each.
Average mean amplitude (µV)—the result was the mean value from 6 intervals lasting
10 s each.
Mean amplitude variability (%)—the result was the mean value from 6 intervals
lasting 10 s each.

5. One 60-s rest (post-baseline):

Average mean amplitude (µV)
Mean amplitude variability (%)

The sEMG data were filtered using the built-in hardware first-order high-pass fil-
ter set to 10 Hz ± 10% cut-off. The raw sEMG data were visually checked for artefacts.
The root mean square (RMS) value was determined over a 200-msec window [12,25]. Then,
mean and peak amplitude values, and timing parameters were calculated [12,26]. In the
Glazer protocol, the signal processing for mean and peak amplitude was performed by
averaging sEMG RMS from appropriate phase of this test (average from phase start to
end). Average peak amplitude it was mean value of all peaks within evaluated activity.
Time before peak and time after peak in the Glazer protocol was calculated strictly accord-
ing to original procedure implemented in Noraxon MyoResearch software. The resting
activity was considered as 0% (minimal) and the peak amplitude was considered as 100%
(maximal). The threshold relative at 50% between min and max was considered as the
beginning of contraction (rise—before peak) and as the end of contraction (fall—after
peak). The signal processing in our protocol was also performed on the basis of sEMG
RMS. For resting activity, average mean amplitude was calculated by averaging sEMG
RMS within evaluated activity. The average mean amplitude during tonic and phasic
contractions (contraction in tonic and rest in phasic) was calculated as a mean value be-
tween onset and offset points. The final value was a mean from 5 intervals. The onset
time was determined when the signal amplitude reached value above 3 SD of resting mean
amplitude. Onset to peak time was calculated as the time between onset and peak (highest
amplitude value). Peak to offset time was between peak and offset (point below 3 SD of
resting mean amplitude). Fatigue-related changes such as mean and median frequency
were calculated using the FFT (fast Fourier transform) in the Glazer protocol and STFT
(short-time Fourier transform) in our protocol. The unfiltered RAW sEMG signal was
analyzed with a 512-point window over 60 s static contractions. [27,28].

2.3. Statistical Analysis

Statistical analysis was carried out using the STATISTICA 12.0 software. To assess the
normality of variables distribution, we performed the Shapiro–Wilk test. The between-trial
and between-day reliability of the sEMG variables were determined using intraclass corre-
lation coefficients (ICC). We used the ICC (3,1) model according to Shrout and Fleiss [29].
The interpretation of the ICC agreement was performed according to Koo et al. [30]: below
0.50—poor, between 0.50 and 0.75—moderate, between 0.75 and 0.90—good, and above
0.90—excellent. The variability within each set of data was described using coefficients
of variation (CV), on the basis of the mean and SD values. Additionally, in order to
compare the results of our research with the reliability presented by other authors, we cal-
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culated Pearson’s linear correlation coefficient (r) for both between-trial and between-day
comparisons. The level of statistical significance was set at (p < 0.05).

3. Results
3.1. The Glazer sEMG Protocol
3.1.1. Between-Trial Reliability

The weakest reliability of the Glazer protocol presented muscle timing parameters
such as time before peak and time after peak, the median frequency during endurance
contraction, and the mean amplitude variability during the pre-baseline resting phase.
ICC values for these parameters ranged from 0.05 to 0.37, indicating their poor reliability
(Table 1). Moreover, for these parameters, low correlation coefficients (r) between the
first and second measurements were noted (Table 1). The reliability of other parameters
was relatively high, and ICC ranged from 0.68 to 0.95 with a slightly lower value of their
correlation coefficient (r = 0.52–0.91) (Table 1).

Table 1. The Glazer surface electromyography (sEMG) protocol between-trial reliability.

Outcome Measure ICC r Mean ± SD (1) CV (%) (1) Mean ± SD (2) CV (%) (2)

Rest (pre-baseline)—average mean (µV) 0.83 0.72 * 7.09 ± 3.9 55.6 6.13 ± 3.8 62.0
Rest (pre-baseline)—variability (%) 0.37 0.47 * 10.9 ± 3.5 32.2 10.5 ± 3.1 30.2

Flick contractions—average peak (µV) 0.81 0.69 * 55.2 ± 32.1 58.2 51.4 ± 35.4 68.7
Flick contractions—time before peak (s) 0.05 0.18 0.27 ± 0.10 36.9 0.29 ± 0.1 38.0
Flick contractions—time after peak (s) 0.08 0.11 0.35 ± 0.17 50.4 0.36 ± 0.1 45.8

Tonic contractions—average mean (µV) 0.72 0.59 * 39.6 ± 25.7 64.9 34.9 ± 27.8 79.6
Tonic contractions—average peak (µV) 0.73 0.64 * 47.4 ± 30.5 64.4 42.6 ± 33.6 78.9

Tonic contractions—time before peak (s) 0.12 0.07 1.33 ± 1.35 101.2 1.2 ± 0.9 78.1
Tonic contractions—time after peak (s) 0.70 0.80 * 0.68 ± 0.69 101.4 0.69 ± 0.5 74.8

Endurance contraction—median frequency (Hz) 0.19 0.13 59.0 ± 13.3 22.6 65.0 ± 18.2 92.1
Endurance contraction—average mean (µV) 0.95 0.91 * 17.3 ± 9.06 52.2 16.9 ± 9.6 56.6

Endurance contraction—variability (%) 0.81 0.72 * 17.08 ± 4.5 32.3 20.29 ± 8.9 44.0
Rest (post-baseline)—average mean (µV) 0.95 0.90 * 7.86 ± 4.3 55.0 7.68 ± 4.3 56.5

Rest (post-baseline)—variability (%) 0.68 0.52 * 17.5 ± 14.1 84.0 16.4 ± 12.9 84.3

ICC—intraclass correlation coefficient, r—Pearson’s correlation coefficient, SD—standard deviation, CV—coefficient of variation, *—statistical
significance (p < 0.05).

3.1.2. Between-Day Reliability

Analysis of the Glazer protocol reliability between measurements made on differ-
ent days showed lower values of ICC and correlation coefficients (r) compared to their
between-trial values. time before peak, time after peak, and the mean amplitude variability
during the pre-baseline rest and during endurance contraction phases demonstrated poor
reliability (ICC ranged from 0.08 to 0.44 and r ranged from 0.08 to 0.39) (Table 2). The re-
liability of other parameters was moderate, and ICC ranged from 0.54 to 0.75 with the
correlation coefficient of r = 0.37–0.76 (Table 2).
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Table 2. The Glazer sEMG protocol between-day reliability.

Outcome Measure ICC r Mean ± SD (1) CV (%) (1) Mean ± SD (2) CV (%) (2)

Rest (pre-baseline)—average mean (µV) 0.80 0.68 * 7.09 ± 3.9 55.6 6.19 ± 3.65 59.0
Rest (pre-baseline)—variability (%) 0.39 0.39 10.9 ± 3.5 32.2 10.4 ± 2.9 27.8

Flick contractions—average peak (µV) 0.51 0.41 55.2 ± 32.1 58.2 47.5 ± 27.74 58.3
Flick contractions—time before peak (s) 0.08 0.08 0.27 ± 0.10 36.9 0.28 ± 0.10 36.0
Flick contractions—time after peak (s) 0.10 0.12 0.35 ± 0.17 50.4 0.37 ± 0.17 45.7

Tonic contractions—average mean (µV) 0.54 0.37 39.6 ± 25.7 64.9 33.8 ± 23.9 72.4
Tonic contractions—average peak (µV) 0.59 0.42 * 47.4 ± 30.5 64.4 40.4 ± 29.1 71.9

Tonic contractions—time before peak (s) 0.14 0.11 1.33 ± 1.35 101.2 1.34 ± 1.37 102.2
Tonic contractions—time after peak (s) 0.70 0.76 * 0.68 ± 0.69 101.4 1.02 ± 1.01 98.2

Endurance contraction—median frequency (Hz) 0.16 0.11 59.0 ± 13.3 22.6 62.2 ± 21.0 94.3
Endurance contraction—average mean (µV) 0.76 0.64 * 17.3 ± 9.06 52.2 17.42 ± 11.0 63.1

Endurance contraction—variability (%) 0.44 0.28 17.08 ± 4.5 32.3 18.29 ± 5.7 31.2
Rest (post-baseline)—average mean (µV) 0.77 0.63 * 7.86 ± 4.3 55.0 6.66 ± 3.7 55.0

Rest (post-baseline)—variability (%) 0.68 0.68 * 17.5 ± 14.1 84.0 13.4 ± 7.9 59.0

ICC—intraclass correlation coefficient, r—Pearson’s correlation coefficient, SD—standard deviation, CV—coefficient of variation, *—
statistical significance (p < 0.05).

3.2. Our Multi-Activity sEMG Protocol
3.2.1. Between-Trial Reliability

All phases of our protocol demonstrated higher reliability compared to the Glazer
protocol. Muscle timing parameters such as onset to offset time, onset to peak time,
and peak to offset time showed good and excellent reliability (ICC = 0.85–0.91). The average
mean and peak amplitude during rest, flick, tonic, and endurance contractions presented
good and excellent reliability (ICC = 0.80–0.95) (Table 3). In our protocol, the reliability of
the mean and median frequency during tonic and endurance contractions demonstrated
good reliability (ICC = 0.80–0.86) (Table 3).

Table 3. Our multi-activity sEMG protocol between-trial reliability.

Outcome Measure ICC r Mean ± SD (1) CV (%) (1) Mean ± SD (2) CV (%) (2)

Rest (pre-baseline) phase
1—average mean (µV) 0.83 0.72 * 7.36 ± 3.93 53.4 5.94 ± 3.74 63.0

Rest (pre-baseline) phase
2—average mean (µV) 0.89 0.82 * 7.07 ± 4.01 56.8 5.97 ± 3.73 62.5

Rest (pre-baseline) phase
3—average mean (µV) 0.89 0.81 * 7.06 ± 3.98 56.3 6.16 ± 3.82 61.9

Rest (pre-baseline) phase
1—variability (%) 0.22 0.14 10.29 ± 3.91 38.0 9.80 ± 3.29 33.6

Rest (pre-baseline) phase
2—variability (%) 0.54 0.56 10.38 ± 5.24 50.5 8.78 ± 3.26 37.1

Rest (pre-baseline) phase
3—variability (%) 0.38 0.48 10.55 ± 3.27 31.0 10.19 ± 3.08 30.2

Flick contractions—average peak
from contraction (µV) 0.85 0.71 * 57.66 ± 27.3 47.3 47.73 ± 27.8 58.3

Flick contractions—time onset to
offset (s) 0.91 0.85 * 0.91 ± 0.38 42.0 0.94 ± 0.41 43.3

Flick contractions—average mean
from rest in-between (µV) 0.94 0.81 * 8.20 ± 3.87 47.2 6.71 ± 3.91 58.2

Flick contractions—time onset to
peak (s) 0.85 0.77 * 0.36 ± 0.13 37.2 0.38 ± 0.14 37.8

Flick contractions—time peak to
offset (s) 0.86 0.77 * 0.51 ± 0.24 48.5 0.52 ± 0.25 47.9

Tonic contractions—average mean
(µV) 0.73 0.58 * 30.7 ± 16.4 53.6 29.0 ± 15.0 51.7
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Table 3. Cont.

Outcome Measure ICC r Mean ± SD (1) CV (%) (1) Mean ± SD (2) CV (%) (2)

Tonic contractions—average mean
frequency (Hz) 0.81 0.71 * 88.6 ± 13.8 16.8 90.2 ± 17.7 19.6

Tonic contractions—average
median frequency (Hz) 0.86 0.79 * 71.9 ± 12.1 16.8 73.3 ± 16.3 22.2

Tonic contractions—variability (%) 0.83 0.82 * 15.10 ± 3.6 24.0 14.5 ± 3.3 23.1
Endurance contraction—median

frequency (Hz) 0.80 0.79 * 62.1 ± 11.7 18.8 62.2 ± 12.8 20.6

Endurance contraction—mean
frequency (Hz) 0.82 0.71 * 79.88 ± 13.6 17.1 79.96 ± 12.8 16.1

Endurance contraction—average
mean (µV) 0.80 0.67 * 16.34 ± 5.06 49.2 16.9 ± 7.6 47.3

Endurance
contraction—variability (%) 0.81 0.84 * 16.10 ± 3.2 28.0 17.5 ± 3.1 26.3

Rest (post-baseline)—average
mean (µV) 0.95 0.90 * 7.86 ± 4.3 55.0 7.68 ± 4.3 56.5

Rest (post-baseline)—variability
(%) 0.68 0.52 * 17.5 ± 14.1 84.0 16.4 ± 12.9 84.3

ICC—intraclass correlation coefficient, r—Pearson’s correlation coefficient, SD—standard deviation, CV—coefficient of variation, *—
statistical significance (p < 0.05).

3.2.2. Between-Day Reliability

The between-day reliability of our protocol was slightly lower compared to between-
trial values. Muscle timing parameters such as onset to offset time, onset to peak time,
and peak to offset time showed moderate and good reliability (ICC = 0.66–0.90). The av-
erage mean and peak amplitude during rest, flick, tonic, and endurance contractions
presented moderate and good reliability (ICC = 0.62–0.80) (Table 4). The reliability of
the mean and median frequency during tonic and endurance contractions demonstrated
moderate reliability (ICC = 0.61–0.75) (Table 4).

Table 4. Our multi-activity sEMG protocol between-day reliability.

Outcome Measure ICC r Mean ± SD (1) CV (%) (1) Mean ± SD (2) CV (%) (2)

Rest (pre-baseline) phase
1—average mean (µV) 0.78 0.65 * 7.36 ± 3.93 53.4 6.18 ± 3.63 58.7

Rest (pre-baseline) phase
2—average mean (µV) 0.78 0.66 * 7.07 ± 4.01 56.8 6.29 ± 3.74 59.4

Rest (pre-baseline) phase
3—average mean (µV) 0.80 0.68 * 7.06 ± 3.98 56.3 6.18 ± 3.66 59.1

Rest (pre-baseline) phase
1—variability (%) 0.29 0.26 10.29 ± 3.91 38.0 9.07 ± 3.12 34.4

Rest (pre-baseline) phase
2—variability (%) 0.54 0.59 10.38 ± 5.24 50.5 8.42 ± 2.63 31.2

Rest (pre-baseline) phase
3—variability (%) 0.47 0.39 10.55 ± 3.27 31.0 9.99 ± 2.37 23,7

Flick contractions —average peak
from contraction (µV) 0.62 0.44 * 57.66 ± 27.3 47.3 43.79 ± 27.5 62.8

Flick contractions—time onset to
offset (s) 0.90 0.82 * 0.91 ± 0.38 42.0 0.97 ± 0.45 46.3

Flick contractions—average mean
from rest in-between (µV) 0.80 0.50 * 8.20 ± 3.87 47.2 6.04 ± 3.89 64.4

Flick contractions—time onset to
peak (s) 0.64 0.52 * 0.36 ± 0.13 37.2 0.33 ± 0.10 30.6

Flick contractions—time peak to
offset (s) 0.66 0.68 * 0.51 ± 0.24 48.5 0.59 ± 0.28 48.1

Tonic contractions—average mean
(µV) 0.69 0.53 * 30.7 ± 16.4 53.6 27.4 ± 21.9 79.8
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Table 4. Cont.

Outcome Measure ICC r Mean ± SD (1) CV (%) (1) Mean ± SD (2) CV (%) (2)

Tonic contractions—average mean
frequency (Hz) 0.63 0.55 * 88.6 ± 13.8 16.8 84.9 ± 13.9 16.4

Tonic contractions—average
median frequency (Hz) 0.75 0.68 * 71.9 ± 12.1 16.8 69.0 ± 17.1 24.8

Tonic contractions—variability (%) 0.56 0.51 * 15.10 ± 3.6 24.0 14.1 ± 3.8 27.1
Endurance contraction—median

frequency (Hz) 0.61 0.66 * 62.1 ± 11.7 18.8 57.7 ± 11.7 20.4

Endurance contraction—mean
frequency (Hz) 0.73 0.68 * 79.88 ± 13.6 17.1 73.89 ± 11.4 15.4

Endurance contraction—average
mean (µV) 0.72 0.75 * 16.34 ± 5.06 49.2 17.12 ± 5.8 51.3

Endurance
contraction—variability (%) 0.58 0.48 * 16.10 ± 3.2 28.0 19.4 ± 4.8 33.3

Rest (post-baseline)—average
mean (µV) 0.77 0.63 * 7.86 ± 4.3 55.0 6.66 ± 3.7 55.0

Rest (post-baseline)—variability
(%) 0.68 0.68 * 17.5 ± 14.1 84.0 13.4 ± 7.9 59.0

ICC—intraclass correlation coefficient, r—Pearson’s correlation coefficient, SD—standard deviation, CV—coefficient of variation, *—
statistical significance (p < 0.05).

4. Discussion

The most important observation of this study is that the Glazer protocol commonly
used to assess PFM bioelectrical activity is characterized by poor and moderate measure-
ment reliability. The time-domain parameters for the rise and fall of the signal amplitude
proposed by Glazer showed poor reliability, which means that timing analysis of the
sEMG signal in the original Glazer protocol did not provide information on the temporal
characteristics of PFM recruitment. This problem concerns both the between-trial and
between-day reliability. Moreover, sEMG signal analysis of muscle fatigue assessment
in a 60-s isometric contraction was inconclusive. The poor reliability of the median fre-
quency did not provide useful information regarding fatigue of the tested muscles. Other
parameters characterizing the PFM strength (mean amplitude, peak amplitude) indicated
mainly good between-trial and moderate between-day reliability. Thus, verification of the
measurement reliability of all phases of the original Glazer protocol and all parameters
proposed by the authors of this test indicated its moderate diagnostic value.

In this work, the modification of the test performance itself in relation to the Glazer
protocol was not large. The greatest changes were made for the registered sEMG signal
processing. The main element of our protocol compared to Glazer’s proposal was de-
termination of many additional sEMG signal parameters, which, according to the sEMG
signal analysis methodology, allow for assessment of muscle recruitment timing, fatigue,
or endurance. In individual phases of the protocol, many additional sub-phases were
added, which enabled the calculation of signal parameters not only for the entire phase,
but also took signal variability into account during its duration by separate analysis of
relevant sub-phases. This approach allowed to largely eliminate errors resulting from
incorrect determination of phase boundaries in the protocol and from natural sEMG sig-
nal variability.

The results obtained in this way showed moderate to excellent reliability of both time-
domain and quantitative parameters of muscle recruitment. The time-domain parameters
proposed in our protocol characterizing the muscle recruitment during flick and tonic
contractions allowed for reliable assessment of the PFM condition. Moreover, the method
of quantitative analysis of the signal amplitude, indicating the amount of muscle recruit-
ment, allowed us to obtain reliable information. In our protocol, the frequency-domain
parameters describing muscle fatigue demonstrated much higher reliability than in the
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Glazer protocol. The sEMG signal processing for each of the six 10-s parts separately and
then the averaging the result for them significantly improved the reliability.

Moreover, the diagnostic value of the original Glazer protocol was verified in this study
for the first time. The measurement reliability of all phases in the Glazer protocol has not yet
been assessed, even by the test author himself. Glazer et al. [18] reported only the Pearson’s
correlation coefficient between two measurements, which did not reflect the real reliability
of the sEMG signal. Other authors have also reported the reliability of PFM activity,
but only during maximal isometric contraction and/or resting state [6–8,14,18,19,31].

In this study, for most parameters of the Glazer protocol compared to our protocol,
lower reliability coefficients were obtained. Moreover, our protocol demonstrated only
slight deterioration of between-day ICC values compared to between-trial ICC. In the
Glazer protocol, the between-day ICCs were much lower than the between-trial ICCs.
This may have been due to the fact that in the Glazer protocol, the natural variability of
the sEMG signal was additionally augmented by the variability resulting from improper
signal processing. Within our protocol, a decrease in between-day ICC was also observed,
however, only for a few parameters, and this decrease was much smaller than in the
Glazer protocol. Perhaps such a result was obtained thanks to the more complex sEMG
analysis, taking many specific aspects of signal processing not used in the Glazer protocol
into account.

Auchincloss et al. [20] analyzed the reliability of PFM bioelectrical activity using
two types of vaginal electrodes. The reliability of between-trial sEMG amplitude re-
garding short, maximal isometric contractions measured with bipolar electrodes was
within the range of ICC = 0.70–0.98, with simultaneous low-sEMG signal variability
(CV = 8.5–4.2%). In contrast, between-trial reliability assessed in the reflex contraction
when coughing was lower (ICC = 0.58, CV = 20.7%) [20]. Using a unipolar electrode,
these authors showed slightly higher between-trial reliability in isometric maximal con-
traction (ICC = 0.87–0.96, CV = 9.6–16.4%) as well as in reflex contraction during coughing
(ICC = 0.81–0.94, CV = 10.6–19.5%). In contrast, the between-day reliability was very low
for both maximal isometric contraction and for reflex contraction, respectively, for the
bipolar ICC = 0.20–0.57 and for a unipolar electrode ICC = 0.36–0.7 [20]. Moreover, Pear-
son’s correlation coefficient showed low values r = 0.20–0.58 (bipolar) and r = 0.37–0.82
(unipolar), respectively, and normalization of the sEMG amplitude did not significantly im-
prove the obtained values [20]. In our study, the peak and mean amplitude value reliability
for both flick and tonic contractions concerning the Glazer protocol reached a between-
trial ICC, totaling 0.72–0.81, and between-day ICC was equal to 0.51–0.59. However,
in the case of our protocol, these parameters demonstrated slightly higher between-trial
ICC = 0.73–0.94 and between-day ICC = 0.62–0.80 reliability. In the study by Auchincloss
et al. [20], the between-trial reliability was satisfactory, while between-day reliability was
low. The authors concluded that the large variability of the between-day results allows
this method of PFM assessment to be considered as appropriate when comparing the
sEMG signal within a single training session. However, the authors did not recommend
comparing the results between measurements carried out on different days. Nonetheless,
the author’s research did not confirm these observations, suggesting that sufficiently pre-
cise sEMG signal processing allows one to obtain high-quality data that can be used in
PFM clinical assessment.

Many works to date in which the reliability of intravaginal PFM bioelectrical activity
has been evaluated have had some methodological errors. Thorp et al. [31] examined only
eight subjects, and PFM activity was measured only during one short isometric maximal
contraction (recorded with a vaginal electrode) and during a 10-s isometric contraction
(recorded with an anal electrode). The between-trial reliability of the sEMG signal am-
plitude was relatively high for both anal and vaginal probes, but simultaneously high
variability of the signal amplitude was observed. Moreover, the between-day reliability
was expressed only by a correlation coefficient that ranged from r = 0.76–0.97, and the
authors did not provide a coefficient of variation for the signal amplitude [31].
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Thompson et al. [7] observed high reliability of sEMG amplitude in PFMs (ICC = 0.98)
measured with a 1-week interval between measurements, but these ICC values were much
higher than reported by other authors (ICC = 0.61–0.76) [20]. This was probably due to
the fact that Thompson et al. [7] assessed PFM activity using a bipolar electrode, which is
more sensitive than a unipolar one. Glazer et al. [18] also reported high reliability of
PFM activity using correlation coefficients between two measurements taken on different
days (r = 0.86, p < 0.001). However, the correlation coefficient did not reflect the real
measurement reliability because it did not take such factors as signal amplitude variation
or measurement error into account. Aukee et al. [8] evaluated the PFM sEMG reliability
during short maximal isometric contraction and also reported this measurement reliability
as a correlation coefficient. The value was relatively high (r = 0.84–0.97, p < 0.05), however,
the authors underlined that the qualitative visual analysis of the signal collected from the
muscles indicated its very large variability [8], and therefore, the reported values seem to
be overstated. In our study, the between-day reliability of mean and peak amplitude during
tonic contractions in the Glazer protocol was lower (ICC = 0.44–0.59), with the correlation
for these parameters being r = 0.37–0.42. Moreover, for our protocol, the reliability presented
lower values than Glazer et al. [18] and Aukee et al. [8], reaching ICC = 0.73, with a
correlation of r = 0.58.

The following factor, which may significantly influence the results, is the group
homogeneity. In Glazer’s study [18], the group consisted of 37 women within a very large
age range: 19–69 years, and included healthy women, females with urinary incontinence,
and those with fecal incontinence. This high subject heterogeneity probably had influence
on the quality and size of the sEMG signal from the PFM. In our research, appropriate
exclusion and inclusion criteria allowed for high subject homogeneity in the cases of age
range, absence of any symptoms of urinary incontinence, and non-birth.

Another problem associated with the clinical utility of PFM activity testing is the
sequences and type of muscle contractions. There is no doubt that PFM dysfunction is very
complex and occurs with disruption of both PFM strength as well as the endurance and
coordination of these muscles [4]. Therefore, such complex muscle dysfunction requires
equally complex assessment. It seems insufficient to examine the PFM only during maximal
contraction lasting from a few to a several dozen seconds. The selective nature of this
assessment may lead to false conclusions. In our research, different types of contractions
were used in the measurement protocol, and additionally, many parameters characterizing
muscle work in various aspects were calculated from each phase of the test.

The limitation of this research is the fact that the study group consisted of young,
nulliparous women, aged 20–27 years, without PFM dysfunction. Therefore, due to the
better sEMG signal quality measured for non-dysfunctional muscles compared to muscles
with dysfunction, the PFM sEMG reliability reported in our study may be higher than in
women after childbirth, or in those above the age of 40, in which the bioelectrical activity
of PFM may present greater signal variability.

5. Conclusions

The most important information obtained in this study was the significant improve-
ment of diagnostic validity in PFM bioelectrical activity evaluation. The high reliability of
our sEMG protocol allowed us to suggest that protocol modifications and changes in sEMG
signal processing in our methods were effective in the improvement of PFM assessment
quality. The new parameters calculated from the sEMG signal which were proposed in
our sEMG protocol allowed us to obtain additional clinically important information about
PFM dysfunctions, regarding specific deficits of muscle contraction such as decrease in
muscle strength; endurance or coordination related to e.g., stress urinary incontinence; or
pelvic floor muscle imbalance after childbirth. Moreover, in this study, the reliability of all
phases in the original Glazer protocol was evaluated.
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Clinical Perspectives

1. There is a lack of studies in which the reliability of PFM sEMG assessment would be
comprehensively evaluated. The purpose of this study was to determine the between-
trial and between-day reliability of the multi-activity sEMG measurement protocol for
PFM clinical evaluation with the broad aspect of muscle contraction and full signal
processing standardisation.

2. The higher reliability of our sEMG protocol compared to original Glazer protocol
allowed us to suggest that protocol modifications and changes in sEMG signal process-
ing methods were effective in the improvement of PFM assessment quality. The new
parameters calculated from the sEMG signal that were proposed in our sEMG pro-
tocol allowed us to obtain additional clinically important information about PFM
dysfunctions
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