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Abstract: In Bayesian analysis of clinical trials data, credible intervals are widely used for inference
on unknown parameters of interest, such as treatment effects or differences in treatments effects.
Highest Posterior Density (HPD) sets are often used because they guarantee the shortest length.
In most of standard problems, closed-form expressions for exact HPD intervals do not exist, but they
are available for intervals based on the normal approximation of the posterior distribution. For small
sample sizes, approximate intervals may be not calibrated in terms of posterior probability, but for
increasing sample sizes their posterior probability tends to the correct credible level and they become
closer and closer to exact sets. The article proposes a predictive analysis to select appropriate sample
sizes needed to have approximate intervals calibrated at a pre-specified level. Examples are given for
interval estimation of proportions and log-odds.

Keywords: Bayesian inference; highest posterior density intervals; normal approximation; predictive
analysis; sample size determination

1. Introduction

The use of Bayesian methods for design, analysis and monitoring of clinical trials is
becoming more and more popular. For instance, in some recent contributions [1,2] the
Authors note that “compared with its frequentist counterpart, the Bayesian framework
has several unique advantages, and its incorporation into clinical trial design is occurring
more frequently.” Acknowledgements have been arriving also from official institutions.
In 2010 FDA, recognizing the merits of Bayesian inference, authorized and encouraged its
use in medical device clinical trials. Similarly Bittle and He observe that “ [...] in a major
shift, the American College of Cardiology and American Heart Association have recently
proposed using Bayesian analysis to create clinical trials guidelines” [3].

There are at least two main motivations for using Bayesian methods. The first is that,
unlike frequentist analysis, the Bayesian approach allows the integration of information
from a current experiment with pre-trial knowledge. The second advantage is that Bayesian
inferential methods are derived from probability distributions that are directly defined
on the quantity of interest in the trial (i.e., the parameter). This makes communication
between statisticians and experts in the field much more effective than it is when frequentist
methods are employed.

With no significant loss of generality, suppose we are concerned with inference on
the unknown effect of a new treatment, that we assume to be our parameter of interest.
Bayesian methodology is based on elaborations of the posterior distribution of the pa-
rameter, which merges pre-experimental knowledge (i.e., the prior distribution) and trial
information (i.e., the likelihood function) on this parameter via Bayes theorem. Inferential
tools—such as point estimates, set estimates or test statistics—are simply special func-
tionals of the posterior distributions. Nowadays analytic and computational methods for
handling complex Bayesian problems are available, even in high dimensional settings.
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Nevertheless, the availability of closed-form expressions makes the use of Bayesian analysis
more accessible also to non-statisticians. For this reason a relevant part of the available
Bayesian literature in clinical trials resorts heavily to normal approximations [4].

Interval estimation is one of the most common techniques used to summarize infor-
mation on an unknown parameter. Bayesian inference usually relies on exact Highest
Posterior Density intervals (HPD). The (1− γ)-HPD interval is the subset of the parameter
space of probability (1− γ) whose points have density higher than the density of any
value of the parameter outside the interval. When the posterior distribution is symmet-
ric, HPDs are also equal-tails (ET) intervals, i.e., they are limited respectively by the γ/2
and the 1− γ/2 quantiles of the posterior density of the parameter. HPDs are, typically,
not easy to compute, but of minimal length among intervals of given credibility. For a
predictive comparison between HPDs and ETs see [5]. Explicit closed-form expressions for
the bounds of common exact credible intervals are in most of the cases, not available even
in very common models. However, their computation can be simplified by approximating
the exact posterior distribution with a normal density and finding the equal-tails intervals,
i.e., the γ/2 and the 1− γ/2 quantiles of the approximated (symmetric) normal density.

In many standard models the posterior density has a unique mode internal to its sup-
port. The degree of skewness of the posterior distribution with respect to its mode depends
on the shapes of the likelihood function and of the prior distribution [6]. As shown in
Figure 1 asymmetry affects the quality of approximate credible intervals that in general may
differ substantially from exact HPDs. This means that, in general, for approximate intervals:
(a) their actual posterior probability is not equal to the nominal credibility of the exact
interval; (b) they are not the shortest intervals among those of given posterior probability.
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Figure 1. Posterior density, given a prior density of hyperparameters (α, β) = (10.8, 9.2), and likelihood approximation,
given x̄n = 0.45 (top row) and x̄n = 0.8 (bottom row) for n = 10 (left column) and n = 100 (right column). Exact credible
intervals (HPD: Highest Posterior Density) are denoted by empty circles, likelihood approximated credible intervals (LNA:
Likelihood Normal Approximation) are denoted by black circles. The probability that θ belongs to the approximate interval
under the exact posterior distribution is highlighted in grey.
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Under standard and fairly general conditions [7], the degree of asymmetry of the like-
lihood function is strictly related to the sample size: as the number of experimental units
increases, the shape of the likelihood becomes closer and closer to a Gaussian function
whose mode is the maximum likelihood estimate and whose precision is measured by
the square root of the observed Fisher Information [8]. Likelihood normalization carries
along the same tendency of the posterior distribution and, for sufficiently large sample
sizes, the posterior density can be approximated by a normal density with data-dependent
parameters. This is the so-called Bayesian Central Limit Theorem. As a consequence,
as the sample size increases, exact and approximate intervals become closer and closer and
the accuracy of approximate intervals improves.

Example 1 (Single arm phase II trial). Let us consider an example for binary data,
where θ is the probability of response to a treatment. The setup, the choice of the prior
hyperparameters and a sensitivity analysis will be fully described in Section 4. A Beta prior
of mean 0.54 is considered. Figure 1 shows the Beta posterior distributions of θ (solid line)
and their normal approximations based on the likelihood (dotted line) for four different
data sets. It also reports bounds of approximate intervals (black circle) and of exact HPD
intervals (empty circles). Gray areas highlight the probability of the approximate intervals
w.r.t. the exact posterior probability distributions. More specifically, when comparing
right panels (n = 100) and left panels (n = 10) better approximations of the posteriors are
observed, due to the larger sample size. Furthermore, the comparison between the two
rows of panels (sample mean x̄n = 0.45 and x̄n = 0.80, respectively) shows that the
distance between the posterior mode and the likelihood mode (i.e., the maximum likelihood
estimate) affects the quality of the approximation: in this example, the larger the difference,
the greater the discrepancy between exact and approximate intervals.

The problem we discuss in this paper is the selection of the minimal number of
observations to obtain approximate sets that are sufficiently accurate. This sample size
determination (SSD) problem is addressed from a pre-posterior perspective, i.e., by taking
into account the randomness of the posterior density and of credible intervals.

In the existing literature besides a very general introduction to credible intervals [6,7,9,10]
one can find reviews on Bayesian SSD in [11–13], articles specifically dedicated to Bayesian
SSD using credible intervals in [14–17] and some contributions focused on binomial pro-
portions, such as [18–20]. Recently, methods that take into account the variability of prior
opinion have been developed: for instance, some contributions [15,21,22] deal with ro-
bustness with respect to the prior distribution, whereas a more recent proposal is about
a consensus-based SSD criterion in the presence of a community of priors [23]. The idea
of controlling the conflict between alternative procedures is also used for point estima-
tion [24,25].

In the framework of Bayesian SSD based on credible intervals, our innovative purpose
is to look for a sample size sufficiently large so that the approximate likelihood interval
provides an accurate approximation to the HPD interval determined from the exact poste-
rior distribution of the parameter of interest. It is worth recalling that whereas the HPD
interval is obtained from the prior-to-posterior analysis, the likelihood normal approxima-
tion is independent on the prior distribution. In this sense our proposed criterion yields
the smallest sample size such that the role of the prior in the posterior distribution is made
negligible by the information provided by the data. This provides an additional motivation
for our proposal, i.e., to find the study dimension that guarantees a substantial equivalence
between closed-form formulas based on the normal approximation and exact Bayesian in-
tervals, or, conversely, to evaluate the expected discrepancy between approximate intervals
and exact Bayesian intervals.

The paper is organized as follows. In Section 2, after introducing notation, we pro-
pose a measure of discrepancy between exact and approximate intervals to be analyzed
from a preposterior perspective: we select the minimal sample size so that the expected
discrepancy is sufficiently small. Section 3 specifically refers to the Beta-Binomial model
when the paramer of interest is the proportion (Section 3.1) and the logodds (Section
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3.2) respectively. Section 4 illustrates some numerical examples related to the setup of
the phase II clinical trial of Example 1 and makes comparison with other SSD methods.
Finally, Section 5 contains some concluding remarks.

2. Methodology

Assume that X1, X2, . . . , Xn is a sample from fn(·|θ) (either a density or a probability
mass function), where θ ∈ Θ is an unknown scalar parameter and Θ is the parameter
space. The quantity of interest may be either θ or a relevant function ψ = g(θ). Following
the Bayesian inferential approach, we assume that prior information on θ is available
(from experts or from historical data) and converted in a prior probability density function,
denoted as π(·). Given an observed sample xn = (x1, x2, . . . , xn), let

π(θ|xn) =
fn(xn|θ)π(θ)

m(xn)

be the posterior distribution of θ, where m(xn) =
∫

Θ fn(xn|θ)π(θ)dθ denotes the marginal
distribution of the the data, computed at the observed xn. In the following we assume that
π(θ|xn) has a unique mode.

2.1. Exact and Approximate Intervals

Let C(xn) = [`(xn), u(xn)] be an exact credible interval of level 1− γ, that is a subset
of the parameter space such that

P[θ ∈ C(xn)|xn] = 1− γ. (1)

In the following, we will focus on HPD intervals. C is HPD if

π(θ|xn) ≥ π(θ′|xn), ∀θ ∈ C(xn) and ∀θ′ /∈ C(xn),

or, equivalently, if
C(xn) = {θ ∈ Θ : π(θ|xn) ≥ kγ},

where kγ is such that (1) holds. The values of ` and u are the roots of the two equations

π(`|xn) = π(u|xn) and
∫ u

`
π(θ|xn)dθ = 1− γ,

and they typically do not have a closed-form expression.
In general, π(θ|xn) is not symmetric with respect to its unique mode. Its level of

skewness depends on the constitutive elements of Bayesian analysis—the likelihood
(i.e., model and observed data) and the prior distribution— and it determines the level of
discrepancy between approximate and exact credible intervals. However, as the sample
size increases, the shape of both the likelihood function and the posterior density tend
to become more and more Gaussian. This happens under standard regularity conditions:
(a) the support of the Xi’s does not depend on θ; (b) the derivatives with respect to θ of
likelihood and posterior density at least up to the second order exist; (c) the maximum
likelihood estimate of θ, θ̂, is in the interior of the parameter space [6–8]. More specifically,
for sufficiently large n we have that

θ|xn ≈ N[θ̂, In(θ̂)
−1], (2)

where In(θ) = − d2

dθ2 ln L(θ; xn) is the expected Fisher Information and L(θ; xn) is the likeli-
hood function. Note that this approximation of the posterior distribution does not take
into account the prior. From Equation (2) the (1− γ)-likelihood approximate interval for θ is
defined as C̃(xn) = [ ˜̀(xn), ũ(xn)] where

˜̀ = θ̂ − z1− γ
2

In(θ̂)
−1/2 and ũ = θ̂ + z1− γ

2
In(θ̂)

−1/2, (3)
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with zε denoting the ε-quantile of the standard normal distribution. As a consequence, as n
increases, any measure of discrepancy between a chosen feature of exact and approximate
intervals tends to become more and more negligible.

When the quantity of interest is ψ = g(θ), under the same regularity conditions stated
above and assuming that the first derivative of g exists and is not equal to 0, the delta
method provides the following normal approximation [26]

ψ|xn ≈ N[g(θ̂), g′(θ̂)2 In(θ̂)
−1], (4)

and the bounds of the (1− γ) likelihood approximate credible interval for ψ are respectively

˜̀ = g(θ̂)− z1− γ
2
· |g′(θ̂)| · In(θ̂)

−1/2 and ũ = g(θ̂) + z1− γ
2
· |g′(θ̂)| · In(θ̂)

−1/2. (5)

2.2. A Measure of Discrepancy and Predictive Analysis

The set C̃ = [ ˜̀ , ũ] is calibrated if its exact posterior probability is equal to 1− γ:

P(θ ∈ C̃|xn) = F(ũ|xn)− F( ˜̀|xn) = (1− γ), (6)

where F(·|xn) is the exact posterior cumulative distribution function of the parameter of
interest. The departure from this situation can be measured by∣∣P(θ ∈ C̃|xn)− (1− γ)

∣∣ (7)

which quantifies the discrepancy between the actual posterior probability of C̃ (the gray
area of each panel of Figure 1 in Example 1) and its nominal value 1− γ. Notice that,
under the typical assumption 0 < γ � 1

2 , this discrepancy takes values in (0, 1 − γ).
More specifically, it is equal to 0 when C̃ is perfectly calibrated and it is equal to 1− γ when
P(θ ∈ C̃|xn) = 0. Hence, a relative measure based on (7) is

P(xn) =

∣∣P(θ ∈ C̃|xn)− (1− γ)
∣∣

1− γ
(8)

Before observing the data, P(Xn) is a random object. Therefore the progressive
calibration of C̃(Xn) can be studied by looking at its expected value

eP
n = Ed[P(Xn)],

that is computed with respect to the sampling distribution of the data fn(·|θd) for a design
value θd. In the following we assume that all the required regularity conditions hold such
that the numerical sequence {eP

n , n ∈ N} converges to zero.
In order to obtain a calibrated approximate interval, we must select the smallest

sample size such that eP
n is sufficiently small. More formally, for a suitable threshold εP > 0,

n?
P = min{n ∈ N : eP

n < εP}. (9)

In some cases the values of eP
n can be obtained with exact calculations. More often

they are obtained via Monte Carlo (MC) simulation. In the latter case, for each sample size
n and design value θd, we proceed according to the following steps:

(i) draw N samples xn
(1), . . . , xn

(N) from fn(·; θd);
(ii) compute ˜̀(xn

(j)) and ũ(xn
(j)), for j = 1, . . . , N;

(iii) compute P(xn
(j)), for j = 1, . . . , N;

(iv) set eP
n '

∑N
j=1 P(xn

(j))

N ;
with a large number of draws, e.g., N = 10000.
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In the following example, in order to assess the discrepancy between C̃ and C we also
consider the absolute distance between their bounds

B(xn) = | ˜̀(xn)− `(xn)|+ |ũ(xn)− u(xn)|

and we compare n?
P with

n?
B = min{n ∈ N : eB

n < εB}, (10)

where
eB

n = Ed[B(Xn)],

and εB > 0 is a chosen threshold. Note that, unlike P(xn) (and eP
n ), the discrepancy B(xn)

(and eB
n ) depends on the unit of measurement of the data and its range is case-specific.

Therefore the choice of εB is a critical issue, unless the parameter space is bounded (as in
Example 1 where the parameter space is (0, 1)). Similar measures of discrepancy based on
the bounds of credible intervals have been recently proposed [23].

3. Examples: The Beta-Binomial Model

In order to illustrate the ideas sketched above we now consider an example within
the Beta-Binomial model. Let Xi|θ ∼ Ber(θ), i = 1, . . . , n (i.i.d.), θ ∈ (0, 1) and θ ∼ Be(α, β),
α, β > 0. Then, from standard results [6], θ|xn ∼ Be(ᾱ, β̄), where ᾱ = α + sn, β̄ = β + n− sn
and sn = ∑n

i=1 xi. In the following we first analyze credible intervals for θ and then for
the log-odds ψ = g(θ) = ln θ

1−θ .

3.1. Credible Intervals for a Proportion

In this model exact HPD credible intervals for θ do not have closed-form expressions.
However, HPD bounds are easily obtained using the hdi() function of the HDInterval
package of R, [27], which simply requires the R function qbeta() in input. Conversely, closed-
form expressions for approximate intervals are easily obtained as follows. Recalling that
θ̂ = x̄n and In(θ) = n

θ(1−θ)
, from Equation (3) the bounds of the likelihood approximate

interval are

˜̀ = x̄n − z1− γ
2

√
x̄n(1− x̄n)

n
and ũ = x̄n + z1− γ

2

√
x̄n(1− x̄n)

n
.

3.2. Credible Intervals for the Log-Odds

As before, exact credible intervals for ψ do not have a closed-form expression.
HPD bounds can be otained via MC simulation as follows:

(i) draw θ(1), . . . , θ(M) from the posterior Beta density, where M is a large number;
(ii) compute ψ(j) = g(θ(j)), for j = 1, . . . , M;
(iii) use the R function HDInterval::hdi with the MC draws ψ(1), . . . , ψ(M) in input.

Closed-form expression of approximate credible intervals for ψ are obtained from
Equation (5) noting that

g(θ̂) = ln
x̄n

1− x̄n
and g′(θ̂) =

1
x̄n(1− x̄n)

.

Specifically, we have

˜̀ = ln
x̄n

1− x̄n
− z1− γ

2
·
√

1
nx̄n(1− x̄n)

and ũ = ln
x̄n

1− x̄n
+ z1− γ

2
·
√

1
nx̄n(1− x̄n)

.

Note that in the Beta-Binomial model the values of eP
n can be obtained using either

exact calculations or MC simulations as described in Section 2.2.
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4. Application to Clinical Trials

Let us assume that in an early phase trial we are interested in estimating the rate
of response, θ, to an experimental treatment using a credible interval. As in Example 1
we consider the setup of a single-arm phase II trial. Specifically, the goal of the study is
to test the combination of lenalidomideandrituximab in patients with recurrent indolent
non-follicular lymphoma [28–30]. The endpoint is the overall response rate θ̂, that is
the proportion of eligible patients who achieved complete, unconfirmed or partial response.

In the trial conducted between 2009 and 2011, 21 responses were observed out of
39 eligible patients. These hystorical data are used to elicit a Beta prior density for θ.
More specifically, we set the prior mean equal to α/(α + β) = 0.54 and we consider several
values for the prior sample size (i.e., the amount of information contained in the prior)
that for the Beta model is α + β [31]. For illustrative purposes in the following example
we set α + β equal to 5, 10 and 20. Moreover, for comparison, we also consider a uniform
density as non-informative prior (e.g., α = β = 1). The design value θd is set equal to 0.45,
that is the lowest acceptable value for the overall response rate [28]. In order to evaluate
the impact of the design parameter we also consider θd = 0.8 that represents a much more
optimistic design scenario.

Figure 2 shows the behaviour of eP
n for increasing values of the sample size n under

different prior assumptions. Table 1 reports the optimal sample sizes n?
P and n?

B obtained
using criteria (9) and (10) for several choices of the prior hyperameters, when θd = 0.45 and
θd = 0.8, given εP = εB = 0.01 (i.e., 1% of the width of the parameter space). Table 1 also
contains the optimal sample sizes obtained using the Average Length Criterion ALC [13],
given a threshold for the interval width as small as 0.1, for both exact (n?

L) and approximate
intervals (n?

L̃
).
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Figure 2. Plots of eP
n as a function of n for several values of the prior hyperparameters (α, β), with θd = 0.45 (left column)

and θd = 0.8 (right column).

The most relevant comments are the following.

1. Effect of sample size. As expected, the values of eP
n decrease as n increases and depend

on the specific choices of α, β and θd as commented in the following remarks.
2. Effect of prior sample size. For each value of n, the larger α + β, the greater the values of

eP
n . In fact, as the prior becomes more and more concentrated around the prior mean

0.54, the weight of the prior in the posterior distribution increases with respect to
the role of the likelihood. This makes the discrepancy between Bayesian exact intervals
and their likelihood approximation more striking. Moreover, when the uniform non-
informative prior is considered, the smallest values of eP

n are observed (see solid line
in Figure 2). As a consequence, larger values of the prior sample size imply greater
values of n?

P, as shown in Table 1.
3. Effect of the difference between design value and prior mean. When the distance between

θd and the prior mean α/(α + β) is relatively large and, at the same time, the prior
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sample size α + β dominates n, the posterior mode and the maximum likelihood
estimate are well separated. In other words, Equation (4) does not provide a good
approximation of the posterior density of θ. This explains the larger values of eP

n ,
in the right panel of Figure 2, where |θd−E(θ)| = 0.35, with respect to those observed
in the left panel, where |θd − E(θ)| = 0.09. As before, the effect of the difference
between design value and prior mean on eP

n also reflects on the values of the optimal
sample sizes reported in Table 1. For instance, under the most informative prior,
if |θd − E(θ)| = 0.09, then n?

P = 182; conversely, when |θd − E(θ)| = 0.35, a huge
number of experimental units (e.g., n?

P = 2911) is required to have a sufficiently small
expected discrepancy.

4. Comparison with n?
B. As expected, the trend of n?

B w.r.t. to (α, β) and θd is consistent
with that of n?

P.
5. Comparison with ALC. For each θd, n?

L becomes slightly smaller when the prior sample
size gets larger and the corresponding posterior is more concentrated (see Table 1).
Conversely, since approximate intervals do not depend on the prior, n?

L̃ is not affected
by the choice of prior hyperparameters. Furthermore, when the design value is closer
to the boundary of the parameter space, the posterior distribution and, consequently,
its approximation, become more concentrated, yielding shorter intervals. Hence
the values of n?

L and of n?
L̃ are uniformly smaller for θd = 0.80 than for θd = 0.45.

It is interesting to note the opposite impact of the prior sample size α+ β on n?
P and n?

B
on the one hand, and on n?

L on the other hand. In fact, larger values of α+ β determine
shorter intervals and smaller values of n?

L. On the contrary, when θd 6= E(θ), a more
concentrated prior implies a more remarkable discrepancy between the posterior and
its likelihood approximation and, consequently, yields greater values of n?

P and n?
B.

Table 1. Optimal sample sizes for several choices of the prior hyperameters and of the design values,
given εP = εB = 0.01 and εL = 0.1.

θd (α, β) (1, 1) (2.7, 2.3) (5.4, 4.6) (10.8, 9.2)

0.45 n?
P 49 80 119 182

n?
B 42 96 180 347

n?
L 265 262 257 247

n?
L̃

267 267 267 267

0.80 n?
P 35 118 646 2911

n?
B 91 228 482 992

n?
L 170 169 169 167

n?
L̃

172 172 172 172

One of the drawbacks of approximate intervals for θ is that it is not guaranteed that
( ˜̀, ũ) ⊆ [0, 1]. A common solution in the applications is to trasform the parameter into
the log odds scale so that the normal approximation of the posterior improves. As an
example we implemented the credible intervals introduced in Section 3.2. Figure 3 shows
the behavior of eP

n as a function of n for the same choices of hyperparameters and design
values used in the previous example. Similar remarks apply.
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Figure 3. Plots of eP
n as a function of n for several values of the prior hyperparameters (α, β) with θd = 0.45 (left panel) and

θd = 0.8 (right panel), when the logodds ψ is the parameter of interest.

5. Conclusions

The control of relevant aspects of interval estimates is the starting point for the defini-
tion of several SSD criteria both from the frequentist and from the Bayesian perspective.
For instance, in the Bayesian side, traditional criteria rely on the pre-posterior control of
length and position of credible intervals. In this article we focus on a different request:
we look for a sample size sufficiently large so that the approximate likelihood interval
provides an accurate approximation to the HPD interval determined from the exact poste-
rior distribution of the parameter of interest. Since the likelihood normal approximation
does not depend on the prior distribution, another way to interpret the criterion is that it
provides the smallest sample size such that the role of the prior in the posterior distribution
is made negligible by the information provided by the data. This kind of analysis can be
read in two different ways. On the one side, one can know the number of units needed to
use safely closed-form and handy formulas (those provided by the normal approximation)
in the place of exact Bayesian intervals. On the other hand, a data analyst who uses ap-
proximate intervals instead of exact Bayesian intervals can know the price of this choice in
terms of expected discrepancy.

From another perspective this kind of preposterior analysis allows one to know
what the study dimension should be for a consensus between a Bayesian interval and a
frequentist interval, i.e., a non-informative analysis.

In general, the criterion we propose does not control the main goal of a clinical
trial, that can be, for instance, accuracy of estimation or efficacy/inefficacy of a given
treatment. For this reason, our criterion should be put beside additional criteria specifically
related to the main goal of the trial. For instance in our examples of Section 4 we consider
the optimal sample sizes based on ALC. Then, taking the maximum between the two
sample sizes obtained using the two criteria, one can control both interval length and
accuracy of approximation.

Possible extensions of this work are listed below.

1. Other models. The methodology proposed in the paper can be easily extended to
other models and setups relevant to clinical trials applications. A natural extension is
to two-arms designs for the comparison of two proportions (difference or log odds
ratio), in which the additional issue of units allocation arises [32]. For a predictive
approach to allocation based on the control of posterior variances, see for instance
[33]. See also [5] for related ideas in the Poisson model.

2. Probability vs. Expectation. In Section 2.2 we propose to summarize the predictive
distribution of the discrepancy using the expected value w.r.t. fn(·|θd). An alternative
is to take into account the whole probability distribution of P and to determine
the smallest n such that P[P(Xn) > εP] is sufficiently small.
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3. Design prior. For simplicity in this article we have performed preposterior calculations
using the sampling distribution fn(·|θd). An alternative is to consider the so-called
two–priors approach [23,24,30,34]) which avoids local optimality by replacing the design
value with the design prior.

4. Decision-theoretic approach. The approach proposed in the paper is performance-
based. Alternatively one could follow some previous works and rephrase the problem
in a decision-theoretic framework and define a measure of discrepancy based on
the posterior expected loss of C and C̃. We will elaborate on this in the future.
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