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Abstract: The purpose of this study is to investigate whether the relationship between meteorological
factors (i.e., daily maximum temperature, minimum temperature, average temperature, temperature
range, relative humidity, average wind speed and total precipitation) and COVID-19 transmission
is affected by season and geographical location during the period of community-based pandemic
prevention and control. COVID-19 infected case records and meteorological data in four cities
(Wuhan, Beijing, Urumqi and Dalian) in China were collected. Then, the best-fitting model of COVID-
19 infected cases was selected from four statistic models (Gaussian, logistic, lognormal distribution
and allometric models), and the relationship between meteorological factors and COVID-19 infected
cases was analyzed using multiple stepwise regression and Pearson correlation. The results showed
that the lognormal distribution model was well adapted to describing the change of COVID-19
infected cases compared with other models (R2 > 0.78; p-values < 0.001). Under the condition of
implementing community-based pandemic prevention and control, relationship between COVID-19
infected cases and meteorological factors differed among the four cities. Temperature and relative
humidity were mainly the driving factors on COVID-19 transmission, but their relations obviously
varied with season and geographical location. In summer, the increase in relative humidity and
the decrease in maximum temperature facilitate COVID-19 transmission in arid inland cities, while
at this point the decrease in relative humidity is good for the spread of COVID-19 in coastal cities.
For the humid cities, the reduction of relative humidity and the lowest temperature in the winter
promote COVID-19 transmission.

Keywords: community-based pandemic prevention and control; geographical location; precipitation;
relative humidity; season; temperature; wind speed

1. Introduction

The 2019 coronavirus disease (COVID-19) is ascribed to the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus. Due to high contagiousness,
COVID-19 quickly appeared around the world after the first report in Wuhan of Hubei
province, China, in late December 2019. The World Health Organization (WHO) announced
COVID-19 as a global public health emergency and one of the major human disasters in
the 21st century. Through 11 November, 2020, a total of 59,481,313 confirmed cases and
1,404,542 deaths had been reported around the world [1]. It is estimated that the global
impact of COVID-19 may last several years [1]. At present, as temperatures fall and winter
arrives, the COVID-19 pandemic in many parts of the Northern Hemisphere, such as
France, UK, Spain, Italy and Belgium, have seen a second outbreak [2]. For example, since
October, more than 10,000 new positive cases have been confirmed every day in many
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countries [1]. France and Germany announced a second national lockdown policy on
October 28, and parts of Spain and Greece have also implemented pandemic prevention
and control [2]. Governments and medical and public health systems in many countries
would once again face severe challenges of epidemic prevention.

Meteorological factors affect transmission of COVID-19 [3–6], but their influence
varies greatly among different regions [7–10]. For example, temperature had a significant
positive correlation with COVID-19 transmission in Singapore, Brazil, Indonesia, Japan
and Norway [5,11–14], but significantly negatively correlated in New York City, Iran,
Bangladesh and China [6,8,15,16], and not significantly related in the United States, Spain
and Mexico [17–19]. Relative air humidity was positively correlated with COVID-19
transmission in Singapore and Brazil [11,13], but not directly linked in New York and
India [6,9]. Precipitation was most conducive to COVID-19 transmission in Norway [5],
whereas not significantly affected by the increase in recorded COVID-19 confirmed cases
in Brazil, Mexico and many other countries [11,19]. Wind speeds were not promoted the
spread of COVID-19 in Singapore and Iran [8,13]; however, high wind speeds accelerated
the increase of COVID-19 confirmed cases in Turkey [20]. These studies have shown that
the relationship between COVID-19 transmission and meteorological factors varied among
different regions [10,21,22]. However, current research has not clearly revealed reasons for
this difference.

The difference in relationship between COVID-19 transmission and meteorological
factors may be caused by the changes of season and geographical location [23,24]. For
example, in arid regions, an increase in relative humidity might be beneficial for virus
survival and spread because it reduces drought stress [25]. Oppositely, it might play
a negative influence on COVID-19 transmission as it promotes viruses and droplets to
combine into larger drops in humid regions [11,25]. The deposition of massive syncretic
droplets will reduce virus abundance in the atmosphere [26,27]. In winter, a slight reducing
temperature can prolong survival time of virus in atmosphere, thus facilitating virus
transmission [18,28,29]. However, as high temperatures inactivates virus via denaturing
the capsid protein and the glycoprotein spike, the increase in maximum temperature would
prevent virus attaching to the host cells in summer [24,30].

Difference in relationship between COVID-19 transmission and meteorological factors
may also be related to government’s epidemic prevention and control measures [31,32]. The
effective implementation of epidemic prevention and control might reduce the impact of
meteorological factors on COVID-19 transmission, or even lead to no obvious relationship
between them [10,33]. At present, a wide variety of measures have been implemented
to prevent and control COVID-19 in different regions [1]. For example, China and Italy
imposed community lockdown and home quarantine in COVID-19 outbreak cities. The
U.S. states of Oregon, Washington, California and New York limited family gatherings and
closed public places (such as bars, restaurants and gyms) after 22:00 to control COVID-19.
Germany used curfew, the closure of public places, and forbid celebrations in public and
private places to prevent COVID-19 during the outbreak period. However, there is no
uniform standard of pandemic prevention and control around the world. It is difficult to
accurately reveal the influences of season and geographic location on relationship between
COVID-19 transmission and meteorological factors.

After December 2019, successive outbreaks of COVID-19 occurred in Wuhan, Harbin,
Beijing, Urumqi, Dalian, Qingdao and Kashgar, China. China’s government implemented
a series of community-based prevention and control measures, such as traffic control,
home quarantine, and nucleic acid testing of all residents and registering digital QR code,
to minimize the danger of the virus to local residents [34]. Since pandemic prevention
and control is carried out under the guidance of the National Health Commission of
China, all COVID-19 outbreak cities adopted the same community management measures.
According to the China government report and the published studies, the implementation
of these measures effectively limited the spread of COVID-19 [18,32,34,35]. Until now,
R0, the basic reproductive rate indicating the transmissibility of novel coronavirus, is
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below 1 [36,37]. The death toll is less than 5000 [34]. Because the same community-based
pandemic prevention and control measures were adopted in different cities by the Chinese
government, the change of relationship between meteorological factors and COVID-19
transmission may be mainly affected by season and geographical location. However, at
present there is no study analyzing and testing this speculation.

The aim of this study is to reveal if the influence of meteorological factors on COVID-
19 transmission varies with season and geographical location. In order to achieve this
scientific aim, we collected the total number of COVID-19 infected people (including the
confirmed cases and asymptomatic-infected persons) and meteorological factors in all
COVID-19 outbreak cities of China during the period of community-based pandemic
prevention and control. Then, we used four statistical models to fit the change of COVID-19
infected cases, and used multiple stepwise regression and Pearson correlation to analyze
the relationship between meteorological factors and COVID-19 infected cases. Our study
provides a new view for explaining the reasons for COVID-19 transmission while under the
implementation of community-based pandemic prevention and control, which is conducive
to predicting COVID-19 transmission dynamics, and developing effective prevention and
control measures.

2. Data Collection

After December 2019, the Chinese government officially reported COVID-19 outbreaks in
seven cities (Wuhan, Harbin, Beijing, Urumqi, Dalian, Qingdao and Kashgar) (Table 1). Among
these cities, the number of infected cases reported in Harbin and Qingdao was small, thus we
did not include these two cities in the data processing due to low statistical significance. At
present (11 November 2020), the epidemic has not ended in Kashgar, so we did not study it.
Wuhan, Beijing, Urumqi and Dalian were selected as research objects. The epidemic data of
each city, including the number of newly confirmed cases and the number of the asymptomatic
infections person, were obtained from the China National Health Commission (NHC) (http:
//www.nhc.gov.cn). Meteorological data were collected from the China National Meteorological
Information Center (http://data.cma.cn), which included daily maximum temperature (Tmax),
minimum temperature (Tmin), temperature range (DTR), average temperature (Tm), relative
humidity (RH), average wind speed (MWS) and precipitation (TP) (Figure 1).

Table 1. Summary of COVID-19 outbreak information for selected cities in China (after December 2019).

Cites Season Duration of COVID-19
Outbreaks

Duration of Community
Control

Cumulative
Number of the

Confirmed
Cases (N)

Cumulative
Number of the
Asymptomatic

Infected
Persons (N)

Wuhan Winter 8 December 2019–23 March 2020 11 February 2020–27 March 2020 68,100 NA
Harbin Spring 10 April 2020–21 May 2020 12 April 2020–10 June 2020 66 26
Beijing Summer 11 June 2020–6 August 2020 13 June 2020–6 July 2020 335 53
Urumqi Summer 15 July 2020–7 September 2020 13 July 2020–23 August 2020 828 390
Dalian Summer 22 July 2020–23 August 2020 22 July 2020–20 August 2020 92 97

Qingdao Autumn 11 October 2020–12 November 2020 12 October 2020–26 October 2020 13 8
Kashgar Autumn 24 October 2020–at present 24 October 2020–at present 81 423

http://www.nhc.gov.cn
http://www.nhc.gov.cn
http://data.cma.cn


Int. J. Environ. Res. Public Health 2021, 18, 484 4 of 13

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 13 
 

 

Kashgar Autumn 24 October 2020–at 
present 

24 October 2020–at 
present 

81 423 

 
Figure 1. Changes in COVID-19 infected cases and meteorological factors during the period of community-based epidemic
prevention and control in four cities. Tmax, Tmin, DTR, Tm, RH, MWS and TP represent daily maximum temperature,
minimum temperature, temperature range, average daily temperature, air relative humidity, average wind speed and
precipitation, respectively. IC refers to COVID-19 infected cases.
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The aim of this study is to reveal the reason for the change in relationship between
COVID-19 transmission and meteorological factors among the four cities after the imple-
mentation of community-based epidemic prevention and control. Therefore, the starting
time of our study is when epidemic prevention control measures were first imposed, while
the end time is when the number of newly confirmed cases returns to zero (Table 1 and
Figure 1). Except for the confirmed cases, COVID-19 patients also include those who are
asymptomatically infected, which has no clinically identifiable symptoms such as fever,
cough and sore throat. Asymptomatically infected persons are difficult to find within the
population, but they can spread novel coronavirus to others, or become a confirmed case in
the days ahead [2]. Starting on 31 March 2020, the health commissions of Chinese provinces
and municipalities began to release data on the asymptomatically infected persons. There-
fore, the sum of the confirmed cases and the number of asymptomatically infected persons
is defined as the infected cases. However, the occurrence period of the COVID-19 outbreak
in Wuhan was earlier than 31 March 2020, so there are no data on asymptomatic infections
in Wuhan (Table 1).

3. Method

In this study, four statistic models (i.e., Gaussian, logistic, lognormal distribution and
allometric models) were first performed on the change of the infected cases. R2 and p-value
were used to select the best-fitting model. The model with larger R2 and the smallest p-value
was the best-fitting model. The difference in the fitting parameters was used to determine if
COVID-19 transmission patterns varied among the four cities. Since the best-fitting model
was presented as an identical equation, different fitting parameters indicated if COVID-
19 transmission patterns varied among the four cities. After that, one-way ANOVA was
used to compare the differences in meteorological factors among the four cities. Pearson
correlation and multiple stepwise regressions were used to analyze if the relationship between
meteorological factors and COVID-19 infected cases were different among the four cities, and
if the relationship can be affected by the season and geographic location.

4. Results and Discussion
4.1. The Best-Fitting Model of COVID-19 Infected Cases during the Period of Community-Based
Epidemic Prevention and Control

Our results found that all p-values of the four models were less than 0.1, while R2 in
the lognormal distribution model were higher than other models (Table 2 and Figure 2).
These indicated that the lognormal distribution model had a best-fitting effect on COVID-19
infected cases. Except for the statistical model used in this study, some traditional infectious
disease dynamics models, like Susceptible-Exposed-Infected-Removed model (SEIR), were
often used in previous studies to fit the change of pandemic infected cases [38,39]. The
coefficient of determination (R2) of SEIR in these studies fitting the change of COVID-
19 confirmed cases ranged from 0.40 to 0.80, which was less than our selected model
(R2 ≥ 0.86). Pei et al. [40] demonstrated that the SEIR model was not suitable for fitting
the change of the infection cases when implemented for high-intensity community-based
epidemic prevention and control, due to high-difficulty collection of spatial distribution
for the patients and complex modeling process. Compared with SEIR, only one parameter,
infected cases, was used. Spatial distribution data were not involved in the lognormal
distribution model, which was very simple and easy to use. The lognormal distribution
model might have a good application to fit and predict the change of COVID-19 infected
cases for the period of community-based epidemic prevention and control.
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Table 2. The fitting models of COVID-19 infected cases during the period of community-based epidemic prevention and
control. NA indicates no appropriate model to fit the change of COVID-19 infected cases because R2 is less than 0.

Models Equations Wuhan Beijing Urumqi Dalian

R2 p R2 p R2 p R2 p

Gaussian
model y = y0 +

A
w
√

π/2
e−2 (x−xc )2

x2 0.88 <0.01 0.74 <0.01 0.78 <0.01 0.48 <0.01

Logistic
model y = A2 +

A1−A2

1+
(

x
x0

)p NA NA 0.67 <0.01 NA NA NA NA

Lognormal
distribution

model
y = y0 +

A√
2πwx

e
−(ln x

xc )2

2w2 0.89 <0.01 0.89 <0.01 0.79 <0.01 0.86 <0.01

Allometric
model y = axb 0.02 <0.01 0.21 <0.01 2.27 × 10−5 <0.01 0.11 <0.01
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Figure 2. The fitting curve of COVID-19 infected cases using the lognormal distribution model in four Chinese cities (A–D).

The fitting effect of the lognormal distribution model to the infected cases was better
in Wuhan (R2 = 0.89, p-value < 0.001) and Beijing (R2 = 0.89, p-value < 0.001) than in Dalian
(R2 = 0.86, p-value < 0.001) and Urumqi (R2 = 0.78, p-value < 0.001). This indicated that the
fitting accuracy of the lognormal distribution model on COVID-19 infected cases varied among
cities. Dalziel et al. [41] and Soebiyanto et al. [42] considered that the fitting accuracy of the
pandemic model may be related to virus transmission pattern. Differences in population size
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and mobility, environmental condition, the quality and quantity of public medical resource,
the initial infectious cases and genetic type of virus all affected the variation of COVID-19
spread [23,35,38]. Thus, the transmission pattern would be varied among different cities [35].
This result also can be proven by the difference in model fitting parameters among the four
cities. Our result found that the fitting parameters (i.e., y0, xc, w and A) of the lognormal
distribution model on COVID-19 infected cases all varied, indicating that the transmission
pattern of COVID-19 changed among the four cities (Figure 2).

4.2. Influence of Meteorological Factors on COVID-19 Transmission

One-way ANOVA results showed that, except for precipitation (TP), other meteorolog-
ical factors (Tmax, Tmin, DTR, Tm, RH and MWS) showed significant difference among the
four cities (p < 0.05) (Figure 1 and Table 2). Pearson correlation analysis found that TP had
no significant relationship with COVID-19 infected cases (p > 0.05) (Table 3). This result
was consistent with previous studies that rainfall had no direct effect on host susceptibility,
virus transmission and survival [6,14,19,42]. Our results showed that the influence of
temperature on COVID-19 infected cases varied with their types. Tmax, Tmin and Tm were
significantly correlated with COVID-19 infected cases in most situations (p < 0.05), while
DTR was not related in all cities (p > 0.05) (Table 3), suggesting that Tmax, Tmin and Tm
had more influence on COVID-19 transmission than DTR. This result was consistent with
the temperature–amplitude coupling hypothesis, which implies that virus activity and
enzymes necessary to replicate in the host are mainly influenced by the highest, lowest and
optimum temperatures, instead of day–night temperature difference [3,6,11,15].

Table 3. Pearson correlation between meteorological factors and COVID-19 infected cases in four cities. Definitions of Tmax,
Tmin, DTR, Tm, RH, MWS and TP are presented in Figure 1; * p < 0.05; ** p < 0.01; *** p < 0.001.

City Tmax (◦C) Tmin (◦C) DTR (◦C) Tm (◦C) RH (%) MWS (m·s−1) TP (mm)

Wuhan
(January–March) −0.42 * −0.55 ** 0.12 −0.53 ** 0.15 0.13 0.34

Beijing (June–July) 0.36 0.14 0.24 0.31 −0.67 ** 0.65 ** −0.25
Urumqi (July–August) −0.22 −0.47 ** 0.29 −0.39 ** 0.42 * −0.04 0.21
Dalian (July–August) −0.27 −0.02 0.11 −0.11 −0.65 ** −0.33 0.22

The significant influencing factors of COVID-19 infected cases differed among the
four cities. Specifically, COVID-19 infected cases in Wuhan were significantly negatively
correlated with Tmax, Tmin and Tm (p < 0.05), but not related with other factors (p > 0.05).
RH had a significant negative correlation with COVID-19 infected cases in Beijing (p < 0.05),
while MWS showed an opposite pattern (positive; p < 0.05). COVID-19 infection cases in
Urumqi were significantly affected by Tmin (negative), Tm (negative) and RH (positive)
(p < 0.05), while not correlated with other factors. COVID-19 infection cases in Dalian
were only significantly positively associated with RH (p < 0.05) (Table 3). These results
indicate that the influences of Tmax, Tmin, Tm, RH and MWS on COVID-19 transmission
differed among the four cities. This was probably due to the superadaptability of the novel
coronavirus [10,14,15]. The four cities of this study were located in different climatic regions
of China, and the seasons of COVID-19 outbreak also varied among them. According to
ecological adaptability theory, the major limiting meteorological factors of viruses vary
for different seasons and climatic regions [18,21,24,32]. Similar results were found in
previous research, which showed that the contribution of meteorological factors to COVID-
19 transmission varied between tropical and temperate regions [11–14]. For example, high
relative humidity mitigated the spread of COVID-19 in tropical regions [14,15], whereas it
contributed to the increase of COVID-19 infections in temperate regions [32,43].

The result of multiple stepwise regressions (MSR) differed among the four cities (Table 4).
Tmin was the only last reserved variable of MSR in Wuhan (R2 = 0.30, p < 0.001). Tm, RH
and MWS were the last influencing factors of COVID-19 infected cases in Beijing (R2 = 0.68,
p < 0.001). Tmax and RH were the last reserved variables affecting COVID-19 infected cases in
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Urumqi (R2 = 0.27, p < 0.05), while Tmax, Tmin and RH were final reserved variables of MSR in
Dalian (R2 = 0.75, p < 0.001) (Table 4). These results indicate that temperature, humidity and
wind speed were most directly related to COVID-19 transmission. This result is consistent with
many previous studies [5,11,19,22]. For example, Lowen et al. [28] found that temperature
affected the risk of coronavirus infection in humans. Living in a low temperature environment
was beneficial for viruses having higher reproductive rate in the upper respiratory tract
due to the cooling of mucosa. Novel coronavirus remains active for a long time in the low
temperature environment [4,15,16]. A slight rise of temperature will increase spatial distance
and exposure risk of the virus due to the increase in the intensity of Brownian motion of
atmospheric particulates [27]. Changes in air humidity may injure respiratory epithelial cells
and reduce the mucosal ciliary clearance due to the fact that it has an obvious relationship
with the moisture conditions of nasal mucosa. The change in air humidity will affect the
exposure risk of viruses to humans [11,28]. As wind speed is positively related with the
speed and distance of virus transmission in the atmosphere, and the virus is also adsorbed
on suspended particles that accumulate near the ground, the increase in wind speed will
accelerate the spread of COVID-19 [20,44,45].

Table 4. The result of multiple stepwise regressions used to analyze the influence of meteorological factors on COVID-19
infected cases (Y) in four cities.

City Regression Equation R2 p-Values

Wuhan (January–March) Y = 897.06 − 73.24XTmin 0.30 <0.001
Beijing (June–July) Y = 142.10 − 3.32XTm − 0.87XRH + 1.65XMWS 0.68 <0.001

Urumqi (July–August) Y = -293.62 + 7.19XTmax + 2.94XRH 0.27 <0.05
Dalian (July–August) Y = 121.01 − 5.72XTmax + 6.72XTmin − 1.30XRH 0.75 <0.001

The influence of temperature on COVID-19 infected cases varied among cities (Table 4).
Tmin was the most determining factor of COVID-19 transmission in Wuhan, but its contri-
bution on the change of COVID-19 infected cases was less than Tmax in Beijing, Urumqi
and Dalian (Table 4). This difference may be caused by seasonal change. The COVID-19
outbreak in Wuhan occurred in winter (December–March), in contrast to summer in Beijing,
Urumqi and Dalian (June–August) (Table 1). COVID-19 transmission in summer may be
highly affected by the maximum temperature [46], whereas in winter it might be associated
more with the minimum temperature [43]. In summer, the influence of temperature on
organisms is mainly implemented by excessive water loss and the inactivation of physi-
ological metabolic enzymes caused by high temperature [6,28,29]. Compared with other
living organisms, viruses are more susceptible to high temperatures due to their simple
structure and lack of hardened protective tissues. A rise of maximum temperature will
induce the denaturation of viral proteins and nucleic acids, inactivating the virus and
making it less infectious [28,47,48]. However, in winter, an obvious drop in temperature
is beneficial for virus survival and infection. This is probably because the virus is coated
with a protective layer of lipid material [29]. In a warm environment, the virus will quickly
expire if not within a person or animal body, due to the fact that the protective layer of lipid
material needs to remain liquid. During cold winters, a temperature drop will make this
layer change from liquid to solid, which subsequently helps protective tissues lengthen
the time that the virus can survive in the atmosphere [28,29]. After entering a person’s
respiratory tract, the protective tissues will melt and not affect virus proliferation [29].
Thus, COVID-19 depended more on minimum temperature compared with average and
maximum temperature in winter. This result was also proven in many current studies.
For example, Cervino et al. [49] showed the persistence of coronavirus is favored by a low
temperature (4 ◦C) and is gradually inactivated by the increase of temperature, a finding
they reported after summarizing many published articles. Behnood et al. [50] found that
COVID-19 had the lowest infection rates at the peak of higher summer temperatures in the
United States. Tobías and Molina [51] indicated that minimum temperatures had negative
significant relation with COVID-19 confirmed cases in winter in Barcelona.
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The influence of relative humidity on COVID-19 infection cases also differed among
the four cities. COVID-19 infected cases had a negative correlation with RH in Beijing and
Dalian, while showing a positive relationship in Urumqi. Beijing and Dalian are located in
humid areas in eastern China, which are controlled by the oceanic climate and experience
abundance air relative humidity (RH > 50%) (Table 5). On the contrary, Urumqi is in an
inland desert region with low air relative humidity (RH = 41%) and controlled by the
continental climate (Table 5) [52]. This suggests that the influence of relative humidity
on COVID-19 infection cases might be associated with geographic location or climate
region [6,9,11,13]. The decrease in the relative humidity in humid region might promote
COVID-19 transmission, while an opposite pattern occurs in the arid inland region. This
conclusion differs from many previous studies showing that a decrease in relative humidity
is conducive to coronavirus transmission [53–55]. The reason for this difference might
be attributed to the relationship between air humidity and the deposition of atmosphere
particulates [25–27]. Novel coronavirus was mainly transmitted in the atmosphere through
droplets exhaled by the virus carrier. These could pass from one person to another through
a sneeze, a cough or direct personal contact [49]. Most of it was attached on the surface
of a droplet. In humid regions, under the effect of high air humidity, the droplets exhaled
by the virus carrier are quickly fused by other droplets into larger drops that quickly sink
to the ground when their weight is sufficiently high to overcome the air buoyancy [26,27].
According to the reports from WHO and Cervino et al. [49], the larger droplets (diameter
≥ 5 µm) travel in the air for short distances, generally less than 1 m. The deposition of a
large number of massive droplets reduced virus quantity, leading to a negative relationship
between air humidity and COVID-19 infected cases [11,38]. However, this explanation
does not apply in arid regions such as Urumqi. In drought desert areas, especially in
summer, intense evaporation and high temperature pumped more water from the virus
and reduced metabolic enzyme activity [56]. Therefore, the increase of air humidity would
be conducive to survival and transmission of COVID-19.

Table 5. Differences in meteorological factors between four cities during the period of community-based epidemic prevention
and control, which was tested using one-way ANOVA. Definitions of Tmax, Tmin, DTR, Tm, RH, MWS and TP are presented
in Figure 1. The different lowercase letters after the Mean values indicate a significant difference (p < 0.05) in meteorological
factors among the four cities, whereas same lowercase letters show no significant differences (p > 0.05).

Meteorological
Factor

Cites Statistical Parameter

Wuhan
(January–March)

Beijing
(June–July)

Urumqi
(July–August)

Dalian
(July–August) F p-Value

Tmax (◦C) 15.52 ± 4.40c 31.34 ± 2.57a 29.67 ± 2.76a 27.41 ± 1.90b 144.39 <0.001
Tmin (◦C) 6.47 ± 4.30c 21.84 ± 1.87a 19.95 ± 2.84b 22.61 ± 0.83a 173.34 <0.001
DTR (◦C) 9.05 ± 4.15c 9.50 ± 2.77b 9.72 ± 2.45a 4.80 ± 1.66d 9.64 <0.001
Tm (◦C) 10.87 ± 3.93d 26.73 ± 2.01a 24.83 ± 2.59b 24.69 ± 1.24c 193.43 <0.001
RH (%) 76.49 ± 8.82a 54.91 ± 13.87b 40.60 ± 9.34c 79.67 ± 10.85a 78.52 <0.001

MWS (m·s−1) 1.29 ± 0.97d 6.41 ± 2.51a 2.73 ± 0.72c 3.08 ± 1.76b 51.89 <0.001
TP (mm) 3.21 ± 6.96a 1.13 ± 5.38a 1.13 ± 3.23a 2.25 ± 6.11a 0.96 0.42

Wind speed had a significant positive influence on COVID-19 infected cases in Beijing,
but did not affect the other cities. This may be caused by geographic location and season.
Beijing is located in the northern part of the North Plains of China, surrounded by the Taihang
and Yanshan Mountains, and lies 150 km from the Bohai Sea, which is influenced by both
inland and oceanic climate. As the transition from inland to oceanic climates, wind speeds
are higher in the period from May and July compared with the other regions studied due to
frequently air convection. As Table 1 shows, average wind speed in Beijing was 6.41 m/s,
which was significantly higher than the other cities. The advantage of wind speed would be
to increase the spread distance and diffusion rate of SARS-CoV-2 coronavirus. Additionally,
higher wind speed is also beneficial for the formation of turbulence inside the city, which
results in the accumulation of novel coronavirus near the ground, and therefore a higher
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risk of infection [44,45]. This finding was consistent with previous studies [3,20,57]. For
example, Dhruv [3] and Şahin [20] found that wind speed promoted COVID-19 transmission
in California and Turkey in spring season, respectively. Yuan et al. [57] indicated that wind
speed positively affected the confirmed cases of COVID-19 in Beijing in the spring.

5. Conclusions and Comments

COVID-19 infected case records and meteorological data during implementation of
community-based epidemic prevention and control were collected in four Chinese cities, in
order to test if their relationship was affected by season and geographic location. Compared
with other statistical models, the results showed that the lognormal distribution model
had the best fit for the changes of COVID-19 infected cases. This indicated that this model
can be used to predict the change of the confirmed cases in COVID-19 outbreak cities,
especially in cities where community-based epidemic prevention and control in China were
implemented. However, the fitting parameters varied among the four cities, indicating
that the factors influencing COVID-19 transmission differed. Wind speed, temperature and
relative humidity were most directly related to COVID-19 transmission when compared
with other meteorological factors, but their influence varied with season and geographic
location. In the warm season, the increase in maximum temperature limited COVID-19
transmission in the arid inland region (Urumqi), while high air relative humidity promoted
transmission. However, in the more coastal region (Dalian and Beijing), the increases both
in maximum temperature and air relative humidity were not conducive to COVID-19
transmission. In contrast, in the cold season, minimum temperature was linked more
closely with the spread of COVID-19 than with other meteorological factors. The decrease
in the minimum temperature accelerated COVID-19 transmission (Wuhan). Wind speed
had a positive relationship with the spread of COVID-19 because it affected the formation
of turbulence, which influenced the spread distance and diffusion rate of virus in the
atmosphere. In this study, we established regression models to measure the relationship
between COVID-19 infected cases and meteorological factors in different seasons and
geographical regions (Table 4). R2 and p-values of all models were greater than 0.27 and
less than 0.05, respectively, indicating that our models have certain feasibility in predicting
the changes of COVID-19 confirmed cases by using meteorological data. In the future,
based on geographic location and season, government and epidemic management agencies
can use meteorological forecast data to predict COVID-19 confirmed cases in the short term
(such as 15 days) by using our models. This can provide an early warning for reducing the
impact of COVID-19 on the lives and health of local residents.

Our results suggest that novel coronavirus is very cunning, can always adapt to
adverse circumstances to sustain transmission. The influence of meteorological factors
on the propagation and survival of novel coronavirus is complicated and varies with
season and geographic location. At present, many studies have proved that meteorological
factors, especially temperature, air humidity and wind speed, have significant influence on
COVID-19 transmission [7–19]. However, such studies are mostly drawn on large scales
and humid regions [7–15]. The design of current pandemic control measures are usually
based on the research output of these studies, which may not be applicable for small scales
and arid inland cities. In addition, the influence of meteorological factors on COVID-19
transmission changes with season and geographical location. Therefore, the design of
community-based COVID-19 prevention and control measures should be conducted for
each individual city, and the influence of seasonal changes and difference of geographical
location should be accounted for simultaneously. We also found that lower values of both
air relative humidity and temperature facilitate the spread of COVID-19 in winter. In the
coming months of winter in the northern Hemisphere, increasing indoor temperatures
while reducing air relative humidity is an effective way to prevent COVID-19 spread within
the community.
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