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Abstract: Weather and climate play a significant role in infectious disease transmission, through
changes to transmission dynamics, host susceptibility and virus survival in the environment. Ex-
ploring the association of weather variables and COVID-19 transmission is vital in understanding
the potential for seasonality and future outbreaks and developing early warning systems. Previous
research examined the effects of weather on COVID-19, but the findings appeared inconsistent. This
review aims to summarize the currently available literature on the association between weather and
COVID-19 incidence and provide possible suggestions for developing weather-based early warning
system for COVID-19 transmission. Studies eligible for inclusion used ecological methods to evaluate
associations between weather (i.e., temperature, humidity, wind speed and rainfall) and COVID-19
transmission. The review showed that temperature was reported as significant in the greatest number
of studies, with COVID-19 incidence increasing as temperature decreased and the highest incidence
reported in the temperature range of 0–17 ◦C. Humidity was also significantly associated with
COVID-19 incidence, though the reported results were mixed, with studies reporting positive and
negative correlation. A significant interaction between humidity and temperature was also reported.
Wind speed and rainfall results were not consistent across studies. Weather variables including
temperature and humidity can contribute to increased transmission of COVID-19, particularly in
winter conditions through increased host susceptibility and viability of the virus. While there is less
indication of an association with wind speed and rainfall, these may contribute to behavioral changes
that decrease exposure and risk of infection. Understanding the implications of associations with
weather variables and seasonal variations for monitoring and control of future outbreaks is essential
for early warning systems.

Keywords: COVID-19; weather; temperature; humidity; precipitation; wind speed; seasonality

1. Introduction

In December 2019, the World Health Organization (WHO) was alerted to cases of
atypical pneumonia with unknown etiology in the city of Wuhan, Hubei Province, China.
The disease, termed COVID-19 (Coronavirus Disease 2019) spread by human-to-human
transmission from China throughout Asia and into Europe, North America, South Amer-
ica and Oceania and declared a pandemic by the WHO on 11 March 2020 [1,2]. As of
16 December 2020, over 74.7 million cases have been confirmed in 214 countries and terri-
tories, with over 1.65 million deaths recorded as a result of COVID-19 [3].The three most
affected countries account for 45.7% of all cases globally and include the US, with 23% of
all cases (n = 17,163,944), India with 13.3% of cases (n = 9,956,557) and Brazil with 9.4% of
all cases (n = 7,040,608) and 38.5% of total global deaths from the US (18.7% n = 310,095),
Brazil (11.1% n = 183,735) and India (8.7% n = 144,451) (Figure 1).
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Figure 1. Global distribution of COVID-19 cases per capita as of 16 December 2020 (cases per 100000 population). 

COVID-19 is a viral respiratory illness caused by the beta-coronavirus SARS-CoV-2, 
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causative agents in Severe Acute Respiratory Syndrome (SARS) and Middle East Respir-
atory Syndrome (MERS), SARS-CoV and MERS-CoV, respectively. The primary mecha-
nism of action of SARS-CoV-2 is through binding with angiotensin-converting enzyme 2 
(ACE2) receptors on surfaces of biological membranes predominantly found in the cells 
of the heart, lungs, arteries, intestine and renal tissues [5]. Following infection with SARS-
CoV-2, incubation time can vary from 2–14 days before symptom presentation and pre-
dominantly affects the lower respiratory system, with a clinical presentation of dry cough, 
fever and fatigue [6,7]. The severity of symptoms varies by the individual, ranging from 
asymptomatic presentation to severe and life-threatening symptoms, including myocar-
dial dysfunction and acute respiratory failure [8,9]. Those most at risk of severe COVID-
19 presentation are older individuals and those with pre-existing conditions and multi-
morbidities, particularly cardiovascular disease or diabetes [10]. 

The effects of weather variability on COVID-19 transmission is an emerging area of 
interest; as COVID-19 has similar transmission modes to other respiratory viruses such as 
seasonal influenza, it is predicted that SARS-COV-2 could have a similar relationship with 
weather variables such as temperature, humidity, rainfall and wind speed [11]. Weather 
and infectious diseases are linked, with the potential for weather variability to favor the 
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COVID-19 is a viral respiratory illness caused by the beta-coronavirus SARS-CoV-2,
that spreads rapidly through aerosolized droplets and virus-contaminated hands and
surfaces [4]. SARS-CoV-2 is from the same family of human beta-coronavirus, identified as
causative agents in Severe Acute Respiratory Syndrome (SARS) and Middle East Respira-
tory Syndrome (MERS), SARS-CoV and MERS-CoV, respectively. The primary mechanism
of action of SARS-CoV-2 is through binding with angiotensin-converting enzyme 2 (ACE2)
receptors on surfaces of biological membranes predominantly found in the cells of the
heart, lungs, arteries, intestine and renal tissues [5]. Following infection with SARS-CoV-2,
incubation time can vary from 2–14 days before symptom presentation and predominantly
affects the lower respiratory system, with a clinical presentation of dry cough, fever and fa-
tigue [6,7]. The severity of symptoms varies by the individual, ranging from asymptomatic
presentation to severe and life-threatening symptoms, including myocardial dysfunction
and acute respiratory failure [8,9]. Those most at risk of severe COVID-19 presentation are
older individuals and those with pre-existing conditions and multi-morbidities, particularly
cardiovascular disease or diabetes [10].

The effects of weather variability on COVID-19 transmission is an emerging area of
interest; as COVID-19 has similar transmission modes to other respiratory viruses such as
seasonal influenza, it is predicted that SARS-COV-2 could have a similar relationship with
weather variables such as temperature, humidity, rainfall and wind speed [11]. Weather
and infectious diseases are linked, with the potential for weather variability to favor the
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emergence of novel viruses and contribute to disease transmission, morbidity and mortality,
understanding global spatial and temporal patterns of COVID-19 transmission is vital in
the control and prevention of future outbreaks [12]. Due to the widespread and continuing
transmission of COVID-19, it is predicted that COVID-19 outbreaks will persist into the
future and potentially exhibit a seasonal outbreak profile similar to influenza and other
infectious respiratory diseases [13,14].

Understanding the potential for seasonality and the association with weather is par-
ticularly relevant in the context of the last pandemic; 1918–1919 Influenza Pandemic, also
known as the “Spanish Flu”, caused by an Influenza A virus of avian origin [15]. This
outbreak is suspected to have first emerged in the autumn/winter period of 1917 and
spread through troop movements and deployments during the First World War across
Europe, North America and Asia [16]. This pandemic exhibited three distinct waves of
outbreaks with very high mortality rates and virulence associated with cold temperatures
and increased precipitation in each of the peaks in Spring 1918, Autumn 1918 and Winter
1918–1919 [17]. Since the 1918 Influenza Pandemic, influenza A and B strains continue to
circulate the globe with distinct seasonal patterns of outbreaks associated with varying
climate regions, and in recent history, novel viruses have emerged, also showing an associ-
ation with weather variables—2009 H1N1 (Swine Flu) Pandemic, SARS 2003 and MERS
2012, among these.

Seasonal influenza outbreaks have a distinct seasonal profile, with annual peaks in
outbreaks coinciding with winter and the associated cold and dry weather patterns [18].
Seasonal outbreaks in subtropical and tropical climates exhibit a different pattern, of-
ten with a persistent low level of cases in the community, with multiple outbreaks over
the course of a year, most commonly in the shoulder seasons from Autumn through to
Spring [19,20]. These seasonal outbreaks vary in severity and climate and weather has been
associated with these variations, with changes in weather favoring increased transmis-
sion or contributing to increased morbidity and mortality [21]. Severe and early seasonal
outbreaks of Influenza can occur when a cold winter follows a mild winter, with wider
variations in weather increasing as a result of a changing climate [22,23]. Another impor-
tant use for this information is in developing surveillance systems for early detection of
COVID-19, to enable the timely and effective implementation of public health measures and
lockdowns [24]. As is the case for current influenza surveillance methods, COVID-19 case
and cluster detection is limited due to the delay between onset of disease and confirmation
through testing. Understanding the association between weather variability and COVID-19
incidence and transmission is vital and can contribute to the development of early warning
systems and surveillance for seasonal outbreaks when used in conjunction with “big data”
such as internet search queries or Google search trends, for trend forecasting of seasonal
weather patterns of transmission and outbreaks [25–27].

As a recently emerged disease with a significant global impact on health, there are
limited published peer-reviewed studies on the association between COVID-19 and mete-
orological or climate factors, but the available literature is growing. The purpose of this
review is to update and further evaluate available literature on the association between
weather variables including temperature, humidity, wind speed or rainfall and COVID-19
incidence over a wide climate range, to provide useful information for predicting seasonal-
ity and early warning for future outbreaks.

2. Materials and Methods
2.1. Search Strategy

This review was conducted according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines. We searched PUBMED, Web of Science
and Scopus databases for relevant studies on COVID-19 and weather with the results
restricted to journal articles on human studies published in English. The keywords used
in this study included “COVID-19” and “temperature” or “humidity” or “wind speed”
or “rainfall” or “weather” or “climate” or “seasonality” or “spatial” or “temporal”. Titles
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and abstracts were scanned for relevance and further relevant studies were identified from
references.

2.2. Inclusion and Exclusion Criteria

Eligible articles included epidemiological studies to evaluate the association between
weather variables and COVID-19 transmission up to 1 October 2020. Ecological studies,
preferably with spatial or temporal methodologies, were considered for inclusion. Letters,
experimental studies, reviews and duplicated publications were excluded from potential
articles (Figure 2).
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2.3. Quality Assessment and Data Analysis

Using modified criteria from BioMed Central, the quality of eligible studies was
assessed (Supplementary Materials—Table S1) [28]. The studies are ranked according to
several areas including: source of information; confounding factors; study design and
statistical analysis to evaluate the quality of information. According to the criteria scale,
the scoring range is from 1–22 (Low: 1–7; Middle: 8–15; High: 16–22).

All eligible articles were reviewed, and the following information was extracted from
these: first author, journal of publication, study site/location, study design, incidence
(cumulative cases or daily cases), weather variables (keywords) and source, main findings,
strengths, limitations and confounders. Due to the varying study designs, statistical
analysis and potential confounders, no meta-analysis was performed.

3. Results
3.1. Literature Search

From the initial search of PUBMED, Web of Science and Scopus, 1218 articles up to
1 October 2020 were identified by keywords, filtered for English language and studies in
humans. After duplicates were removed, 988 articles remained. Studies were then screened
by title and abstracts, excluding articles not discussing COVID-19 incidence or weather (i.e.,
articles focusing on climate change, air pollution or air quality, effect of lockdown on climate
or treatment, clinical or biological studies and reviews), further reducing the number of
studies to 86 for full-text review. Full-text review reduced the number of articles to 23, after
quality assessment evaluating study design, data collection and analysis, discussion and
limitations, all 23 articles with moderate or high rating were eligible for discussion. All
eligible studies discussed weather variables (temperature, humidity, wind speed, rainfall)
and COVID-19 incidence and relationship with community transmission, either spatially
or temporally, in a varied range of geographical locations.

3.2. Study Characteristics

All included studies were peer-reviewed and published online by 1 October 2020.
Of these studies, four studies were a global analysis of weather variables—two assessing
distribution globally [29,30] and one evaluating association in 166 COVID-19 affected
countries excluding China [31], and an early analysis of 100 affected countries [32]. The
remaining articles were at the continent, country, state or city level (n = 19/23) and included
three from North America: one from New York, USA [33], one from Canada [34], and
the third included selected counties in USA [35]. Four studies from China were included,
two at the city level [36,37] and two at the provincial level [38,39], two studies were
based in South America—one including multiple countries [40] the second focusing on
Brazil [41]. The remaining studies included New South Wales, Australia [42]; a study
of countries in Africa [43]; Saudi Arabia [44]; two studies of states in India [45,46]; two
studies from Spain [47,48] and three studies at city level including Jakarta, Indonesia [49];
Singapore [50]; and Oslo, Norway [51] (Figure 3). The incidence data included in these
studies are categorized from country level to city level, the majority of cases globally were
recorded in urban or metropolitan areas—particularly at the beginning of the pandemic,
isolated rural and regional areas were less affected in the initial outbreak period and are less
likely to be included in the data analyzed. The data sets included in the studies reviewed
ranged from 30 days up to 115 days long (mean = 59.3 days, median = 43 days)—the earliest
data set started on 1 December 2019–29 February 2020 and the most recent data set ran
from 5 March–7 June 2020.
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3.3. Weather Variables and COVID-19

All included articles addressed COVID-19 incidence and weather variability, with all
articles including temperature (n = 23/23) as the following variables: minimum tempera-
ture, maximum temperature, average temperature or diurnal temperature range (Figure 4).
Humidity was the next most common weather variable, with 16 of the included studies
measuring absolute humidity (AH) or relative humidity (n = 16/23). Wind speed was
measured in 10 of the included studies (n = 10/23), and six studies included precipitation
or rainfall (n = 6/23).
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3.3.1. Temperature

From all 23 articles evaluating the association between temperature and COVID-
19, three studies reported no significant association—one study based in Canada, one
from Spain and the other from New South Wales (NSW), Australia (Table 1). The authors
reported no significant association between temperature and new daily cases [34,42,48]. An
optimal temperature range is suggested in Bukhari et al. where the majority of new cases
were reported in regions, with the mean temperature recorded between 0–17 ◦C, while
cases for the same period were lower in warm regions (i.e., mean temperature >17 ◦C).
Huang et al. reported 60% of cases occurring in the temperature range 5–15 ◦C, cases
peaked at 11.54 ◦C. Of the remaining 18 studies, all reported a significant correlation with
temperature and COVID-19 incidence; 11 of these were negatively correlated and seven
were positively correlated.
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Table 1. Characteristics of epidemiological studies on weather variables and COVID-19 transmission.

Record Journal Site Study Period Source of Case Data Weather Variables Study Design Main Findings Strengths Limitations and Confounders

Adekunle et al. 2020 [43] Heliyon Africa (urban–rural)
30 March 2020–29

April 2020
(31 days)

Daily confirmed cases from
WHO daily situation reports

Daily Temperature (mean),
wind speed,

relative humidity

Ecological–time series
analysis (GAM)

Mean temperature negatively correlated with
COVID-19 cases, with 1 ◦C increase, cases
decreased by 13.53% (95% CI: 1.53–4.63) in
the range of −2.42 ◦C–33.37 ◦C. Average

wind speed positively correlated, 1% increase
in average wind speed (m/s) associated with

11.21% (95%CI: 0.51–1.19) increase in
confirmed cases. Relative humidity (%)

not significant.

P values and 95% CI reported.
GAM for lag/incubation period

effects and
non-linear relationship

Confounders not identified.
Regional variations in testing

and reporting.

Alkhowailed et al.
2020 [44] Inform Med Unlocked Saudi Arabia

(urban)

5 March 2020–7
June 2020
(95 days)

Daily new cases from Saudi
Arabia Ministry of
Health dashboard

Temperature, Dew point,
Relative Humidity, Wind

speed, atmospheric pressure

Ecological study–Spearman’s
correlation

Temperature and humidity (weak) negative
correlation with new daily cases. Wind speed

also negatively correlated with new
daily cases.

P values and 95% CI reported
Longer time-period

Incubation period/lag not
accounted for. Testing limitations.

Population density may
confound results

Bashir et al. 2020 [33] Sci Total Environ New York City, USA
(urban/metropolitan)

1 March 2020–12
April 2020
(43 days)

Total confirmed cases and daily
new cases from the New York

City health department
COVID-19 data archive

Temperature, Relative
Humidity, Wind speed,
Precipitation/rainfall

Ecological study–Spearman’s
correlation

Average temperature, minimum temperature
and air quality significant correlated with

new cases and mortality. Temperature range
−3.37 ◦C–25 ◦C

A large number of climate
variables analyzed in the model

Air quality (confounder)
Potentially limited testing and

reporting.
Short time-period (~one month

of data)
No accounting for

onset/incubation period lag

Briz-Redón &
Serrano-Aroca, 2020 [48] Sci Total Environ Spain

(urban)

25 February 2020–28
March 2020

(33 days)

Daily cumulative cases from
online resource Temperature Ecological

study–spatio-temporal

No consistent evidence for association
between temperature and cumulative cases in

the temperature range −3.19–29.26

Onset/incubation period lag
included in model. Population

density, age distribution,
travelers and companies

by province.

Short study period–2 weeks
during lockdown period.

Early in pandemic–limited testing
and reporting ability

Only assessed temperature

Bukhari et al. 2020 [29] Int J Environ Res
Public Health

Global
(urban)

20 January 2020–1
May 2020
(103 days)

Confirmed cases from John
Hopkins University

Coronavirus Resource
Centre repository

Temperature, relative
humidity, absolute humidity,

wind speed.
Ecological study—correlation

For the time-period, the majority of new cases
were reported in regions with a mean
temperature between 0 ◦C–17 ◦C and

absolute humidity between 1–9 g/m3. In
regions >17 ◦C and AH >9 g/m3 reported
cases much lower for the same time-period.

Large global data set–data at
country or state level

Testing and under-reporting of
cases, population density,

community structures,
socioeconomic factors

Lag/incubation period not
accounted for

Chien & Chen, 2020 [35] Stoch Environ Res
Risk Assess

USA
(urban–rural)

16 March–22
April 2020
(38 days)

Confirmed cases from Johns
Hopkins Coronavirus

Resource Centre

Temperature, Relative
Humidity,

Precipitation/Rainfall
Ecological study—GAM

Temperature and precipitation significant
negative correlation with COVID-19 cases.

RR% −0.21 (95%CI: −0.26, −0.15), in further
modelling a threshold of 15.3 ◦C was
identified, where RR% switched from

negative to positive above this threshold and
peaking at 20.25 ◦C and decreasing towards

29.2 ◦C. Relative humidity significant
positive correlation with COVID-19 cases

GAM–modelling for spatial and
temporal factors including

lag/incubation period. Included
confounders in model

Confounding
variables–county-specific

population, age, gender, racial
composition and poverty level in
the model. Limited testing and
reporting. Short study period

Goswami et al. 2020 [45] Diabetes Metab Syndr India
(urban–rural)

1 April 2020–10
May 2020
(40 days)

Confirmed cases from official
reports of the Ministry of Health

and Family Welfare of India

Temperature, relative
humidity Ecological study—GAM

Statistically significant relationship between
cases as a result of interaction between AT

and ARH on COVID-19 incidence. Not
consistent across regions of India.

Used 3 day moving average to
account for lag.

Large geographical area and
varying climate range, early strict

lockdowns
Limited testing

Huang et al. 2020 [30] Sci Total Environ Global
(urban)

21 January 2020–6
May 2020
(107 days)

Johns Hopkins University Temperature, Relative
humidity, Absolute humidity

Ecological–time series
analysis

Significant association between temperature
and AH—60% of cases occurred in the

temperature range 5–15 ◦C, cases peaked at
11.54 ◦C. 73.8% of confirmed cases in regions

with AH of 3–10 g/m3.

Large data set with cases from
185 countries/regions.

Data from a longer time-period
(~3 months)

Correlation between temperature
and cases as a distribution rather

than assessing association.
Doesn’t account for lag or

imported cases.
Control measures and public

health measures

Liu et al. 2020 [36] Sci Total Environ China
(urban/metropolitan)

20 January 2020–2
March 2020

(43 days)

Daily confirmed cases from
Health Commissions per city

Temperature, humidity,
diurnal temperature range Ecological study—GLM

AT, AH and DTR negatively associated with
transmission in pooled results. AT increase of

1 ◦C correlated to decrease in daily case
counts RR = 0.80 (95% CI: 0.75–0.85) in the
range −20 ◦C–20 ◦C. 1% increase in DTR
associated with decrease in lag cases RR =

0.90 (95% CI: 0.86–0.95). increase in AH of 1
g/m3 associated with decrease in cases RR =

0.72 (95% CI: 0.59–0.89) and 0.33 (95% CI:
0.21–0.54) based on lag period.

Accounted for lag using 0, 3, 7
and 14-day intervals. Migration Scale Index (MSI)
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Table 1. Cont.

Record Journal Site Study Period Source of Case Data Weather Variables Study Design Main Findings Strengths Limitations and Confounders

Menebo, 2020 [51] Sci Total Environ Oslo, Norway
(urban/metropolitan)

27 February 2020–2
May 2020
(66 days)

Daily cases from the Norwegian
public health institute

Temperature,
Precipitation/rainfall,

Wind speed

Ecological study–Spearman’s
rank correlation

Tmax (r = 0.347; p = 005) and Tavg (r = 0.293 p
= 0.019) significant positive correlation with
COVID-19 cases in the temperature range
−0.5 ◦C–21.9 ◦C. Precipitation significant
negative correlation with COVID-19 cases.

Lag analysis of 5,6,14 days for
weather variables and onset

Humidity not included in model
Public health

measures–lockdowns,
sanitization, testing capabilities

not included in analysis

Meraj et al. 2020 [46] Environ Dev Sustain. India
(urban–rural)

9 March 2020–27
May 2020
(80 days)

Cumulative cases from official
region web sites for

Maharashtra, Kashmir
and Rajasthan

Temperature Ecological study–Pearson’s
correlation

Significant positive correlation with
COVID-19 cases in Rajasthan (25 ◦C–45 ◦C)
and Kashmir (10 ◦C–32 ◦C). No significant

association between temperature and
COVID-19 in Maharashtra (29 ◦C–38 ◦C).

Comparison between provinces
with varying climates

and ecologies

Only temperature included for
three provinces. Limited testing

rates initially (increased
over time).

Meyer et al. 2020 [32] Front public Health
Global

(100
countries)(Urban)

29 December 2020–17
March 2020

(80 days)

Daily cases from WHO
daily reports Temperature, Humidity Population–cohort study

GLMM

Statistically significant association with
temperature and COVID-19 incidence in
temperature range −33.9–34.3 ◦C). Small

effect size.

Lag delay between 3 and 20
days in model. Cases identified

as local or imported.

Limitations in COVID-19 testing
and reporting early in pandemic.

Paez et al. 2020 [47] Geogr Anal. Spain
(urban)

13 March 2020–11
April 2020
(30 days)

Daily new cases at provincial
level from Centro de Datos

COVID-19

Temperature, Humidity,
Daily Sunshine

Ecological
study–Spatio-temporal

Temperature significant negative correlation
with COVID-19 incidence in the range

1 ◦C–23.2 ◦C, humidity significant negative
correlation when accounting for

control variables.

Confounders included in SUR
model as controls

Spatial and temporal modelling.
Lag/incubation period included

Confounding variables–GDP, age,
population density, province area.
Human behavioral changes as a

result of lockdown, hours of
sunshine and population density

Pani et al. 2020 [50] Sci Total Environ Singapore (ur-
ban/metropolitan)

23 January 2020–31
May 2020
(59 days)

Daily cases of new infections
and deaths from the Ministry of

Health (MOH)

Temperature, Relative
humidity, Absolute humidity,
Surface pressure, Dew point,

Wind speed, Water vapor

Ecological study–Spearman’s
rank correlation

Temperature significant positive association
with daily and cumulative cases in the range

24 ◦C–32 ◦C. TRH significant for
transmission, along with AH and WV. WS

not significant.

Large range of weather variables
included in model

Meteorological data limited to
one site.

Public health measures and
personal hygiene. Testing

limitations.

Prata et al. 2020 [41] Sci Total Environ Brazil
(urban)

27 February 2020–1
April 2020
(35 days)

Daily cumulative cases reported
by the Ministry of Health

of Brazil
Temperature Ecological study—GAM

For each 1 ◦C rise in temperature, daily
COVID-19 cases decreased by 4.9% when

temperature below 25.8 ◦C, in the range of
16.8 ◦C–27.4 ◦C.

Climate and temperature zones,
GAM and GLM analysis

Testing limitations, only
temperature included

Qi et al. 2020 [38] Sci Total Environ China
(urban)

1 December 2019–11
February 2020

(73 days)

Daily confirmed cases from
National Health Commission

Temperature, Relative
Humidity

Ecological study–time series
analysis GAM

Temperature and Humidity have a significant
negative correlation with COVID-19

incidence in the range 1.5 ◦C–11.42 ◦C.

Data from early outbreak in
China prior to travel restrictions.

GAM with internet search
results for health-seeking
behaviors. 14-day onset
lag/incubation period

Short study period early in
outbreak

Confounders not included in
model–socioeconomic status,

intervention measures, weather is
at city, not province level

Shi et al. 2020 [39] Sci Total Environ China
(urban)

20 January 2020–29
February 2020

(41 days)

Confirmed cases from China
National health Commission

(CNHC)
Temperature

Ecological–spatio-
temporalSEIR

model

Temperature had a significant effect on
COVID-19 incidence in the range

−22 ◦C–26 ◦C. Increasing temperature
associated with decreased infection rate. RR =

0.96 (95%CI: 0.93–0.99)

Dynamic transmission model
with lag/incubation

period delay

Only temperature included.
Limited study period early in
outbreak. Limited testing and

reporting, change in diagnostic
criteria–healthy patients excluded.

To et al. 2020 [34] Sci Total Environ Canada
(urban–rural)

25 January 2020–18
May 2020
(115 days)

Case data for Alberta, British
Columbia, Ontario and Quebec

Temperature,
Precipitation/rainfall, Wind

speed

Ecological study–linear
regression model

No significant association for Temperature
and COVID-19 incidence when adjusted for

wind speed, precipitation and province in the
temperature range −6.83 ◦C–7.94 ◦C

A large geographical area with
variations in temperature across
the country, 2-week lag delay for

climate variables

Model adjusted for wind speed,
precipitation and province to

evaluate temperature
Linear regression model. Local

public health policies, testing rates
and urbanization varies

across regions

Tosepu et al. 2020 [49] Sci Total Environ Indonesia
(urban/metropolitan)

January 2020–29
March 2020
(~29 days)

Daily COVID-19 cases from the
Ministry of Health of Republic

of Indonesia

Temperature (min, max, avg),
Humidity,

Precipitation/Rainfall

Ecological study–Spearman’s
rank correlation

Average temperature correlated with
COVID-19 cases (26.1 ◦C–28.6 ◦C). Tmin,

Tmax, humidity and rainfall not significantly
correlated.

Large range of weather variables

High mobility and population
density in Jakarta

Small data set/limited testing, no
accounting for

lag/incubation period

Ward et al. 2020 [42] Transbound Emerg
Dis

Australia
(urban)

12 February 2020–30
March 2020

(35 days)
NSW Government Case Reports

Temperature, Relative
humidity,

Precipitation/Rainfall

Ecological study–time series
analysis GAM

Negative significant relationship between
relative humidity and COVID-19 cases (p =

0.0304) where a 1% decrease in morning
humidity associated with up to 6.11%

increase in cases. Temperature
(18.4 ◦C–25.5 ◦C) and rainfall were not

significant in time series analysis.

Good quality data set available,
high testing rate and reporting.

Accounted for 14-day
lag/incubation period

Limited case numbers available,
mostly imported cases rather than

local transmission
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Table 1. Cont.

Record Journal Site Study Period Source of Case Data Weather Variables Study Design Main Findings Strengths Limitations and Confounders

Wu et al. 2020 [31] Sci Total Environ
Global (166 countries

excluding China)
(urban)

Up to 27 March 2020
(~75 days)

Daily cases and deaths from
WHO COVID-19 daily

situation reports

Temperature, Dew point,
Wind speed,

Relative humidity

Ecological study–time series
analysis GAM

Temperature and RH negatively correlated to
daily cases. 1 ◦C increase in temperature

associated with 3.08% (95% CI: 1.53–4.63%)
reduction in cases in the range of

−5.28 ◦C–34.3 ◦C. 1% increase in RH
associated with 0.85% (95% CI: 0.51–1.19%)

reduction in new daily cases.

Global data set with daily new
cases and deaths. Included

confounders in
modelling–economic level,

additional health conditions, age
and density. Daily

lag/incubation period included
in model

Confounders—Wind speed,
median age, Global Health

Security Index, Human
Development Index,
population density

Xie & Zhu, 2020 [37] Sci Total Environ China
(urban)

23 January 2020–29
February 2020

(38 days)

Daily cases from official
websites of each city
heath commission.

Temperature, Relative
Humidity, Air Pressure,

Wind speed

Ecological study– exposure
response GAM

Exposure response positive linear when
temperature below 3 ◦C and flat above 3 ◦C.
Each 1 ◦C rise in temperature was associated
with 4.861% (95%CI:3.209–6.513) increase in
COVID-19 cases average daily temperature

range −33.8 ◦C–26.9 ◦C

Large number of variables
included in model.

Lag/incubation period from 0–7,
0–14, 0–21 days

Case data from early in outbreak,
limited testing and diagnostic

capabilities.
Short study period

Zhu et al. 2020 [40] Sci Total Environ South America
(urban/metropolitan)

23 February 2020–6
May 2020
(74 days)

Data from National health
departments or

secondary websites

Temperature. Wind speed,
Relative Humidity

Ecological study–Spearman’s
rank correlation

Large variation in correlation by region. Daily
average temperature and absolute humidity

were most strongly correlated with COVID-19
cases averaged across regions. (Temperature

range 3.9 ◦C–35 ◦C) Wind speed not
significantly correlated with daily cases.

Accounted for lag using daily
incubated cases (median ~4 days

prior to positive test)

Demographic, geographical and
socioeconomic factors, healthcare
infrastructure, governmental and

social policies, testing
and reporting.
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A global study of 166 countries (excluding China) reported a significant negative
correlation between temperature and cases, where a 1 ◦C increase in temperature was
associated with a 3.08% (95% CI: 1.53–4.63%) reduction in cases [31]. In the global study
including 100 countries in the temperature range −33.9–34.3 ◦C, the authors reported a
significant negative association between daily temperature and global daily cases, when
temperatures increased above −15 ◦C (r = −0.88, p ≤ 0.001), leading up to 18 March
2020 [32]. In Liu et al., the authors reported a significant negative correlation for both
average temperature (AT) and diurnal temperature range in cities in China; the authors
reported that the decreases in the daily case counts were 80% (95% confidence interval (CI):
75–85%) and 90% (95%CI: 86–95%), with an increase of 1 ◦C in daily AT and 1% increase in
diurnal temperature range [36]. A time series analysis based on provincial level in China
showed a significant association with temperature in Hubei province, where every 1 ◦C
increase in average temperature led to a decrease in daily confirmed cases by 36–57% when
accounting for humidity, the association in other provinces varied [38]. Shi et al. reported
a significant negative association for provinces in China, with daily COVID-19 incidence
lowest at −10 ◦C and highest at 10 ◦C [39].

A study in Africa reported that with every 1 ◦C increase in mean daily tempera-
ture, daily cases decreased by 13.53% when accounting for time lag for incubation and
infectious periods [43]. In the study from India, for the period 1 April–10 May, the effect
of temperature varied across the 11 states, an association with COVID-19 incidence and
average temperature was reported as significant in four of the included states—Madhya
Pradesh (r = 1.43, p ≤ 0.05), Maharashtra (r = 2.76, p ≤ 0.05), Punjab (r = 1.49, p ≤ 0.05),
and Tamil Nadu (r = −15.9, p ≤ 0.05); maximum temperature was reported as significant
in association with COVID-19 incidence in two regions—Maharashtra (r = −0.32, p < 0.05)
and Tamil Nadu (r = 0.43, p ≤ 0.05), and minimum temperature was reported as significant
in association with COVID-19 incidence in two regions—Gujrat (r = 0.21, p < 0.05) and
Uttar Pradesh (r = 0.18, p < 0.05) [45]. In another study from India, in the three regions of
Maharashtra, Rajasthan and Kashmir, Meraj et al. reported significant positive association
in two of the three regions analyzed; no significant association between temperature and
COVID-19 incidence was reported for Maharashtra (r = 0.093); in Rajasthan and Kashmir, a
positive association between temperature and COVID-19 was reported (r = 0.76, p ≤ 0.0001)
and (r = 0.76, p ≤ 0.0001) respectively [46]. In Alkhowailed et al., a significant correlation
was reported in Saudi Arabia, for both average temperature (−0.162, p < 0.05) and max-
imum temperature (r = −0.211, p < 0.01) and daily new cases [44]. In a spatio-temporal
analysis of provinces in Spain, Paez et al. found for every percentage point increase in
temperature, there was a 1–2% reduction in COVID-19 incidence [47].

In a study of the eight most affected regions and cities in South America, Zhu et al.
reported daily average temperature had a strong negative correlation with daily confirmed
cases; the strength of this association varied by region, with the city of Santiago reporting
the strongest correlation with temperature (p < 0.01), while Valparaiso and Lambayeque
reported no significant association with temperature [40]. Prata et al. reported a linear
negative association between temperature and COVID-19 cases in major cities in Brazil,
where every 1 ◦C rise was associated with −4.9% decrease in COVID-19 cases when
the temperature is below 25.8 ◦C [41]. In a study of New York City, USA, the authors
reported a significant association, with minimum temperature (r = 0.335, p < 0.1) and
average temperature (r = 0.289, p < 0.05) and COVID-19 cases for the period from 1
March–12 April [33]. In a third study based in the US, Chien and Chen reported average
temperature as significantly correlated with COVID-19 cases with RR% −0.21 (95%CI:
−0.26, −0.15); in further modelling, a threshold of 15.3 ◦C was identified, where RR%
switched from negative to positive above this threshold and peaking at 20.25 ◦C and
decreasing towards 29.2 ◦C [35]. In an ecological study from Jakarta, Indonesia, Tosepu
et al. observed a significant correlation between average temperature and COVID-19 cases
(r = 0.392; p < 0.01), where the average temperature ranged from 26.1 ◦C–28.6 ◦C [49]. In
Oslo, Norway, both maximum temperature (r = 0.347; p = 0.005) and average temperature
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(r = 0.293; p = 0.019) were significantly positively correlated with COVID-19 cases [51].
Xie and Zhu reported a significant positive correlation with mean temperature in cities in
China, where each 1 ◦C rise was associated with a 4.861% (95%CI: 3.209–6.513) increase in
COVID-19 cases when the temperature was below 3 ◦C [37]. Finally, in Pani et al., for the
period from February 4 to May 31, average temperature (r = 0.4, p < 0.01) and minimum
temperature (r = 0.32, p < 0.01) showed significant positive correlations with new and
total COVID-19 cases during this period, while maximum temperature (r = 0.40, p < 0.01),
minimum temperature (r = 0.39, p < 0.01) and average temperature (r = 0.47, p = 0) showed
strong associations in the early phase of the outbreak from 4 February–30 April [50].

3.3.2. Humidity

Sixteen of the included studies assessed the relationship between humidity and
COVID-19, measured as either absolute humidity in g/m3 (18.8% n = 3/16) or relative
humidity as a percentage (75% n = 12/16), or both absolute humidity and relative humid-
ity (12.5% n = 2/16). Twelve studies (75%) reported significant associations with relative
humidity, absolute humidity or both, with four studies reporting a positive correlation,
six studies reporting a negative correlation and two studies reporting an optimal range of
humidity for new cases.

The studies from Africa, New York, USA, Jakarta, Indonesia and one global study
of 100 countries (n = 4/16) did not find a significant relationship between humidity and
COVID-19 [32,33,43,49]. Goswami et al. reported mixed results across the regions of India,
with positive associations reported in Madhya Pradesh (r = 1.211, p < 0.05) and Punjab
(r = 0.584, p < 0.05); while a negative association was reported for Tamil Nadu (r = −6.79,
p < 0.05), the authors also reported a significant interaction between temperature and
relative humidity [45]. Qi et al. reported a significant negative association with relative
humidity and cases in provinces of China, where for every 1% increase in RH, daily cases
decreased in the range of 11–22% when AT was in the range of 5.04 ◦C to 8.2 ◦C [38]. The
authors also reported an interaction between relative humidity and average temperature.
In a multivariate analysis from New South Wales, Australia assessing 9 a.m. and 3 p.m.
relative humidity, a significant association with humidity was reported, where a 1% increase
in 9 a.m. humidity could increase the number of COVID-19 cases by 6.11% [42]. Wu et al.
reported an inverse correlation between relative humidity and global daily new cases,
where for every 1% increase in humidity, new daily cases reduced by 0.85% (95% CI:
0.51–1.19%) [31]. Alkhowailed et al. reported a weak positive correlation between average
relative humidity and new cases in Saudi Arabia (r = 0.194, p < 0.01) [44]. Chien and Chen
also reported a significant positive association with relative humidity in the US (RR 0.07
95%CI: 0.05–0.09) [35]. In Spain, Paez et al. reported a significant negative association
between relative humidity and daily cases, with a 3% reduction in incidence per 1% increase
in humidity when adjusting for population density, age and transit controls [47].

All studies assessing absolute humidity reported a significant association with COVID-
19. Bukhari reported an optimal absolute humidity range, with the majority of reported
cases between 1–9 g/m3, and Huang et al. reported 73.8% of confirmed cases in regions with
absolute humidity in the range of 3–10 g/m3 [29]. Liu et al. reported a negative correlation
between absolute humidity and confirmed case counts across 17 cities in China; when AH
increased by 1 g/m3, cases decreased (when adjusted for onset lag of 7 days and 14 days)
RR of 0.72 (95% CI: 0.59–0.89) and 0.33 (95% CI: 0.21–0.51) respectively [36]. Zhu et al.
reported varying results for absolute humidity, with significant negative correlation for
daily confirmed cases reported for Pichincha (p < 0.05) and Rio de Janeiro (p < 0.01) and
significant positive correlation in Santiago (p < 0.05) [40]. In Singapore, Pani et al. reported
a weak positive correlation with minimum, maximum and average relative humidity
(r = 0.19, r = 0.20 and r = 0.21) and COVID-19 cases (p < 0.05), with no significant effect
during the early phases of the outbreak from February to March, this effect increased in
strength with increases in relative humidity (80 ± 4%) in May. Maximum (r = 0.27) and
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average absolute humidity (r = 0.59) were reported as having a stronger significant positive
correlation with COVID-19 cases compared with relative humidity (p < 0.01) [50].

3.3.3. Wind Speed

Wind speed was included or mentioned in ten studies (43.5%). Wu et al., Xie and
Zhu and To et al. included wind speed in the model as a confounder and no results
were reported [31,34,37]. Of the remaining seven studies, including wind speed as a
weather variable, three reported significant associations between wind speed and COVID-
19 cases. Adekunle et al. reported a significant positive association with wind speed,
where a 1% increase in average wind speed was associated with 11.21% (95% CI: 0.51–1.19)
increase in COVID-19 cases in countries in Africa [43]. Pani et al. reported a significant
negative correlation with wind speed and COVID-19, where an increase in wind speed is
associated with decreased incidence of COVID-19 (r = −0.6, p < 0.001) [50]. Alkhowailed
et al. also reported a significant negative correlation with maximum and average wind
speed (p < 0.001 and p < 0.01, respectively) [44]. Bashir et al., Bukhari et al., Menebo, and
Zhu et al. did not report a significant association between wind speed and daily cases of
COVID-19 [29,33,40,51].

3.3.4. Precipitation

Precipitation or rainfall was included in six studies (26.1%, n = 6/23), no significant
correlation was reported for rainfall or precipitation and COVID-19 in studies from New
York, USA; Jakarta, Indonesia or NSW, Australia [33,42,49]. To et al. included rainfall as
a control variable, no results reported. Chien and Chen reported a significant negative
correlation between rainfall and COVID-19 incidence in the US, with daily cases increas-
ing between 1.27–1.74 inches of rainfall and decreasing with rainfall over 1.77 inches of
rainfall (<0.0001) [35]. Menebo also reported a significant negative correlation, with daily
precipitation levels recorded at 7 a.m. in Oslo, Norway (p < 0.05) [51].

4. Discussion

The relationship between weather variables and COVID-19 transmission is complex.
Exploring association and correlation with weather variables and COVID-19 transmission
dynamics is complicated when considering the global scale of a pandemic and additional
factors involved in the COVID-19 pandemic including healthcare interventions; public
health measures; human behavioral patterns and socio-economic factors. The majority of
studies analyzed in this review reported significant associations between weather variables
and COVID-19 cases, particularly temperature and humidity, suggesting that weather and
climate play a role in transmission dynamics. The overall effect of this association varies,
so while seasonal variations and weather patterns may contribute to the increased trans-
mission of COVID-19, other factors such as human behavior and public health measures
may play a more significant role in future outbreaks.

4.1. Weather Variables and COVID-19

The findings of this review suggest that there is a significant association between both
temperature and humidity and COVID-19 incidence, while there is limited evidence for an
association between wind speed and precipitation and COVID-19 cases. The significant
effect of temperature and humidity on COVID-19 incidence is consistent with findings
in earlier studies on airborne respiratory viruses, including SARs, influenza, respiratory
syncytial virus (RSV) and MERs [18,52,53].

The studies assessed in this review suggest that ambient or environmental temperature
is the most consistently significant weather variable associated with COVID-19 incidence,
90% of the assessed studies reported a strongly significant or significant association with
new daily cases of COVID-19, with one study reporting daily cases decreased by 13.53%
(95% CI: 1.53–4.63) with a 1 ◦C increase in mean daily temperature [43]. There was some
difference in the range of temperatures between studies reporting negative versus positive
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correlations with COVID-19 incidence. The differences in temperature ranges could be as
a result of short data sets leading to a decreased range of temperature data points over a
shorter period of time, particularly during the seasonal transition from winter to spring or
summer to autumn. In some regions, low case numbers and limited local transmission were
reported at the beginning of the pandemic, particularly in the southern hemisphere and
equatorial countries, such as Indonesia, where low case numbers were reported initially,
most likely due to low testing capacity, and cases have since increased significantly [54].
Moreover, some research did not control potential confounders (Table 1) and model fit
needs to be further improved.

A significant association with humidity was also reported in 66.7% of the included
studies, the associations reported varied between positive and negative associations. One
study reporting for every 1% increase in relative humidity, new daily cases reduced by
0.85% (95% CI: 0.51–1.19%), while another reported for every 1% decrease in absolute
humidity cases decreased by 0.33 (95% CI: 0.21–0.51)—0.72 (95% CI: 0.59–0.89) [31,36].

Temperature and humidity are significant factors in virus transmission and seasonality
for several reasons; firstly, these factors determine virus survivability and persistence in
the air and on surfaces or fomites [55]. Generally, increased persistence of SARS-CoV-2 and
similar viruses is associated with low temperatures and low relative humidity, Chan et al.
reported viability of SARS-CoV of over 5 days at temperatures of 22–25 ◦C and relative
humidity of 40–50% on smooth surfaces [56]. A recent study suggested that SARS-CoV-2
may remain viable on glass, stainless steel and banknotes for up to 28 days in optimal
temperature conditions of 20 ◦C, with viability decreasing to 24 h at 40 ◦C [57]. Outside
these optimal ranges, virus survivability is limited, but is sufficient for transmission, as the
adaptive immune response is lacking for a previously unknown coronavirus. This leads to
a second consideration for the role of weather in transmission, and that is the effect on host
susceptibility, where cold dry air inhibits the innate immune response through damage to
mucous membranes and slowing of mucociliary clearing [58]. The innate immune response
is vital in preventing initial infection, inhibiting viral replication and in mediating the
severity of the immune response and inflammation [59].

Following the initial outbreak in Wuhan, COVID-19 spread globally, with the majority
of cases recorded in temperate regions in the northern hemisphere experiencing decreased
temperatures and humidity [60]. This correlates with an optimal temperature range for
transmission proposed by Huang et al. and Bukhari et al., where recorded cases of COVID-
19 were significantly associated with temperature in the ranges of 5–15 ◦C or 0 ◦C–17 ◦C
and absolute humidity ranges of 1–9 g/m3 and 3–10 g/m3 respectively in the period
up to May 2020 or the early stages of spring in the northern hemisphere [29,30]. Since
May, as autumn and winter began in the southern hemisphere, cases have increased
significantly, particularly in India and South America. The studies included reported
significant association with temperature and humidity in these regions [40,41,45,46].

The seasonal patterns of COVID-19 may be similar to influenza, where temperate
northern hemisphere regions exhibit a well-defined seasonal outbreak pattern in winter,
while tropical and subtropical regions may exhibit a less-defined outbreak over a longer
period of time or across multiple seasons—autumn through to spring, as observed in
annual influenza patterns [61]. It is vital to understand the effect of weather on COVID-19
transmission for mitigating and preventing future outbreaks, as without significant herd
immunity achieved either through a vaccine or exposure or shifting to a less-virulent strain,
COVID-19 is likely to continue circulating globally, exerting a significant toll on wellbeing,
lives and the economy.

The initial onset or phase one of the outbreak may be delayed in warmer and wetter
regions, due to the less optimal conditions for transmission but due to the infectivity of
COVID-19 and the lack of existing immunity in the population; these regions will still
experience significant outbreaks and mortality rates similar to temperate climates. As the
pandemic has progressed, outbreaks have spread to hotter climates and throughout the
southern hemisphere—this suggests that hotter countries could experience a lag in the
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initial outbreak, as hypothesized in a study on climate in Mexico [62], where increased
temperature and humidity might slow the rate of transmission initially, but is insufficient
to prevent future outbreaks or cause COVID-19 incidence to drop significantly in the
summer months.

The observed increase in cases associated with increased temperature, as reported
in studies in hotter humid climates (i.e., countries in Africa and South America), may
be attributed to many factors separate to weather and climate, such as healthcare infras-
tructure, hygiene and infection control procedures. Human behavioral patterns may also
play a role in transmission, in subtropical or tropical climates with increased humidity
and heat people are often gathered indoors in air-conditioned buildings with decreased
ventilation and airflow which can contribute to increased transmission risk [63]. This
may also contribute to an increase in cases with increased temperature, as described in
Menebo, where increased sunshine and warmer weather lead to an increased number of
people gathering together in outdoor spaces and subsequent increased risk of exposure
and transmission [51]. Air quality and particulate matter (PM) levels are associated with
meteorological factors, particularly wind speed. Poor air quality is caused by pollution,
urbanization, and exacerbated through climate change with increasing hot, dry weather
events and subsequent dust storms and bush fires [64]. Consistent exposure to high lev-
els of PM and poor air quality is a risk factor in respiratory diseases by increasing host
susceptibility through oxidative stress and inflammation of the airways contributing to
virus transmission and poor respiratory outcomes [65]. High levels of particulate matter
also contribute to increased viral survivability and airborne spread of bioaerosols, where
large particles deposit on surfaces, while smaller particles remain airborne longer thus
increasing risk of transmission; this is particularly relevant with evidence of SARS-CoV-2
RNA detected in particulate matter from outdoor air samples in Italy [66,67].

This research is important for understanding the impact of weather on COVID-19
transmission and can be used to inform and implement health policy for future lockdowns
and future vaccine scheduling. Moreover, it may be useful for identifying high-risk behav-
iors and geographical regions at risk for future outbreaks. This research can also contribute
to understanding the changing transmission dynamics as a result of climate change and
changing weather patterns and socioenvironmental factors on emerging diseases and
future pandemics.

4.2. Strengths and Limitations

Due to the growing field of literature available on the COVID-19 pandemic, there are
limited reviews available summarizing epidemiological studies of weather and COVID-19.
The purpose of this review was to summarize the results and methods of ecological studies
on the association between weather variables, specifically temperature, humidity, wind
speed and rainfall, and COVID-19 incidence, and provide potential weather predictors
for developing an early warning system of COVID-19 transmission. Ecological studies
strengths lie in the ability to make comparisons and identify associations at the population
level, with the ability to examine spatial and temporal patterns of disease transmission
and exposures. The strengths of the included studies are the wide geographical range,
including several global studies, as this contributes to the understanding of spatial pat-
terns of transmission globally and association with weather variables in a wide range of
climates, looking at the association with COVID-19 outside temperate regions where the
pandemic spread initially, particularly in hot and humid climates. Another strength lies in
the availability of studies including multiple weather variables, to analyze and better un-
derstand possible interactions and associations between weather variables and mediating
or confounding weather variables (i.e., interactions between temperature and humidity).

This study has some limitations. While there is an increasing number of studies being
published on the relationship between weather and COVID-19, the data available for
analysis is limited in several aspects. These limitations include the relatively short period
of time since the initial outbreak in January–March for assessing the impact of weather and
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climate on cases. The sample size ranges of the studies included are based on available
data from the beginning of the pandemic and range from 30 days to 115 days, with the
earliest data from December 2019 and the most recent in June 2020, therefore it is difficult
to assess long term trend and annual seasonality and patterns in climate from a shorter
period of analysis. Many countries implemented control strategies to decrease transmission
including quarantines, lockdowns and bans on air travel from affected countries by March
and April, further influencing the transmission of COVID-19, and may confound or mediate
the actual association between cases and weather variables. Ecological studies are prone
to ‘ecological fallacy’, where results are interpreted as individual risk rather than group
or population risk. Some of the ecological studies included are simple correlation studies,
without analysis or modelling to account for confounding, such as lag between test and
onset or public health controls.

Confirmed case data may also have limitations due to testing and reporting variations
globally, as a result of issues with quality and accuracy of tests in addition to the availabil-
ity of testing may have created large discrepancies between the actual number of cases
and test-confirmed cases, particularly in countries with limited healthcare budgets and
infrastructure. The majority of global cases reported from the beginning of the pandemic
are also likely to be from urban or metropolitan areas; rural and regional areas are less
likely to be represented, particularly in early case counts. When considering the interaction
between weather variables and cases, bias may be introduced by using date of case reported
and not accounting for the lag or delay between the recorded date of a positive test and
initial symptom onset or exposure. Several of the articles included addressed this through
statistical modelling with varying lag intervals to account for incubation periods. Another
consideration is the reporting of infection sources in terms of locally transmitted cases
versus imported cases, where local or community transmission will be influenced by local
weather and climate factors.

Finally, the observed association with temperature and humidity may be influenced
by the seasonal emergence of COVID-19, where any association with seasonality is co-
incidental, as the outbreak increased and was transmitted globally through mechanics
of population behaviors and epidemic growth rates [68]. The COVID-19 outbreak may
have coincided with the northern hemisphere winter and subsided with milder spring and
summer weather as a result of public health measures and infection control rather than
seasonal forcing [69].

4.3. Recommendations for Future Research

Based on this review of the current literature, most of the included studies were
ecological, assessing association with temperature, humidity, wind speed or rainfall and
COVID-19 incidence. In future research, expanding the models to assess the association of
weather with mortality rates and disease severity is an important area for further explo-
ration, also assessing the relationship between temperature and humidity in conjunction
with internet search metrics for understanding transmission factors and predicting future
outbreaks. Another consideration for future research is the availability of longer data sets
(>3 months), as the pandemic continues globally, with the Northern hemisphere reporting
record new daily cases moving into the 2020–2021 winter period. Further analysis uses
spatiotemporal methods to fully explore the relationship from a spatial and temporal
perspective, mapping and modelling, to fully explore the association particularly, as there
are now data available over several seasonal transitions. Explore climate zones within
countries and regions for spatial patterns.

5. Conclusions

The studies included in this review suggest that weather is a significant contributing
factor to COVID-19 transmission, particularly temperature and humidity. The relationship
between temperature and humidity was addressed in more studies than wind speed and
rainfall. Optimal temperature zones were proposed, where the majority of COVID-19 cases
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were recorded, indicating favorable transmission factors. Wind speed and rainfall may
contribute to transmission, but the evidence was not consistent across studies, likely due
to limitations in available data and studies addressing these factors. The potential for
seasonality and a second wave occurring as a result of the northern hemisphere winter is
still emerging. Further analysis of the COVID-19 pandemic moving forward is essential
in understanding the impact of weather on transmission and developing early warning
systems for future outbreaks, and how this can inform infection control methods and public
health measures.
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