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Abstract: The sinonasal microbiota in human upper airway may play an important role in chronic
rhinosinusitis (CRS). Thus, this study aimed to investigate the human upper airway microbiome
in patients with unilateral CRS, and compare the sinonasal microbiome of the unilateral diseased
site with that of a contralateral healthy site. Thirty samples, 15 each from the diseased and healthy
sites, were collected from the middle meatus and/or anterior ethmoid region of 15 patients with
unilateral CRS during endoscopic sinus surgery. DNA extraction and bacterial microbiome analysis
via 16S rRNA gene sequencing were then performed. Corynebacterium showed the highest relative
abundance, followed by Staphylococcus in samples from both the diseased and healthy sites. Further,
the relative abundances of Staphylococcus and Pseudomonas were significantly lower in samples from
diseased sites than in those from healthy sites. Conversely, anaerobes, including Fusobacterium,
Bacteroides, and Propionibacterium, were abundantly present in samples from both sites, more so in
samples from diseased sites. However, the sites showed no significant difference with respect to
richness or diversity (p > 0.05). Our results indicate that CRS might be a polymicrobial infection, and
also suggest that Corynebacterium and Staphylococcus may exist as commensals on the sinus mucosal
surface in the upper respiratory tract.

Keywords: microbiome; 16S rRNA sequencing; rhinosinusitis; unilateral sinusitis

1. Introduction

The human body surface is colonized by several microorganisms, which constitute
the microbiota that plays a crucial role in host immunity [1,2]. The introduction of culture-
independent bacterial DNA sequencing techniques has enabled the identification of various
microbiomes [3], and many studies have suggested the microbiota to play a role in health
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and human diseases [2,4–7]. Commensal bacteria are key components in the develop-
ment of mucosal barrier function and play a key role in innate and adaptive immune
responses [2,8,9]. They also function in suppressing the establishment of pathogens [7,10].
Microbiota dysbiosis may be associated with various diseases including asthma [11],
allergic rhinitis [12], atopic dermatitis [13], cardiovascular diseases [14], obesity [15], di-
abetes [16], and neurodegenerative diseases [17]. Moreover, besides serving as a source
of immune perturbation, breaching the mucosal barrier during pathological conditions,
such as atherosclerosis, type 2 diabetes, non-alcoholic fatty liver disease, obesity, and
inflammatory bowel disease, can also induce commensal bacteria to become a chronic
inflammatory stimulus to adjacent tissues [4,6,18]. Thus, abnormalities in microbiota and
the resulting effects on the immune system deserve attention.

Chronic rhinosinusitis (CRS), which can persist for at least 12 weeks, is a chronic inflam-
mation of the sinonasal mucosa characterized by nasal obstruction, discharge, facial pain,
and a decrease in the sense of smell [19]. Although it is considered to be an inflammation-
related disease, rather than an infection, commensal resident microbes and pathogens play
a crucial role in the initiation and progression of mucosal inflammation [20–22]. Further,
emerging evidence has improved our understanding of the relationship between CRS and
the microbiome of the sinuses and nasal cavities [20,21,23–26].

Previous studies on the microbiome in CRS have mostly focused on the comparison
of the microbial composition of patients with CRS (CRS with and without polyps) with
that of healthy subjects [27–32]. In addition, some studies have investigated patients with
CRS with clinical variables, including asthma, cystic fibrosis, geographical locations, and
the relationship between the heterogeneity of CRS and microbiome dysbiosis [27,33,34].
However, the results of these studies are controversial. For example, while some studies
showed a decrease in microbiota diversity in patients with CRS compared with that in
controls (p < 0.05, 29 controls and 47 patients of CRS with asthma [27]; p < 0.05, 3 controls
and 8 CRS patients [28]), others suggested either an increase in microbiota diversity in
patients with CRS (no mention of p-value, 12 controls and 30 CRS patients [29]; p < 0.05, 6
controls and 38 CRS patients [30]) or no difference between patients and controls (5 controls
and 15 patients of CRS [31]; 26 controls and 56 patients of CRS [32]). These conflicting
results can be explained by methodological and population differences, different DNA
extraction protocols, and the various confounding factors that correspond to different
individuals, including age, severity, and phenotype of diseases, genetic background of
patients, and antibiotic use around the time of sampling [21]. Patients with other diseases,
which may affect microbiota, including allergies, may have different residential microbiota,
despite being administered the same antibiotics at the time of sampling, given that the
accumulated antibiotics from childhood in different individuals could be different [21,35].
Moreover, populations of individuals respond differently to the microbiota present, and
the microbial community may be individualized [36]. Furthermore, the nasal microbiota
could be altered owing to surgery, by several factors including alteration of mucociliary
clearance and airflow of sinus [37–39].

This implies that it is necessary to investigate the microbiota of a diseased site relative
to that of a non-diseased (healthy) site in patients with unilateral sinusitis. Therefore, the
objective of this study was to examine the upper airway microbiome in human patients
with CRS and compare the sinonasal microbiome of the unilateral diseased site with that
of a contralateral healthy (control) site.

2. Materials and Methods
2.1. Study Subjects

Between May 2017 and September 2019, a total of 30 samples were collected from
15 adult patients with unilateral CRS (aged 18–70 years), who visited the Department of
Otorhinolaryngology—Head and Neck Surgery. According to the European position paper
on rhinosinusitis and nasal polyps (EPOS) 2020 criteria, a CRS diagnosis was made. The
diagnosis was confirmed if the nasal symptoms lasted more than 12 weeks, nasal polyps or
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purulent discharge were present on endoscopic examination, or mucosal inflammation was
observed in the sinuses or ostiomeatal unit on computed tomography (CT) [19]. All patients
had undergone endoscopic sinus surgery (ESS); 15 samples were obtained from unilateral
diseased sinus and another 15 (controls) were obtained from the contralateral healthy
sinus that was clean on CT scan and did not show purulent discharges on endoscopy.
The exclusion criteria included pregnancy, immunocompromised status, age < 18 years,
and other sinonasal diseases, such as acute rhinosinusitis, fungal sinusitis, and tumors.
Patients had not taken oral steroids, non-steroidal anti-inflammatory drugs, antihistamines,
or antibiotics for at least four weeks prior to the surgery.

Clinical data, including demographic information, such as age and gender, Lund–
Mackay CT (LM CT) scores, past medical history, atopy, and asthma, were recorded. The
diagnosis of allergy was based on the serum allergen-specific immunoglobulin E (IgE) tests,
such as the multiple allergen simultaneous test (MAST) or ImmunoCAP.

All patients provided written informed consent, and all the protocols were approved
by the Institutional Review Board of Hallym University College of Medicine (IRB #
2016-524-I). Portions of data on some subjects in this study have been partially presented
in a previous study [26]; however, the case number of the study was newly assigned, and
the aim and results are different.

2.2. Sample Collection

Samples were collected during ESS under general anesthesia before the administration
of topical mucosal vasoconstrictors, including 1:100,000 epinephrine and anesthetics. We
used a nasal speculum and endoscope and collected the samples carefully to avoid contami-
nation from the skin around the anterior nostril and nasal vestibule. Pairs of endoscopically
guided swab samples were taken from the middle meatus and/or anterior ethmoid region
using sterile swabs (Quick Swab, 3M Microbiology, St. Paul, MN, USA), not touching
the anterior nostril and nasal vestibule (Figure 1). If it was determined that the specimen
was contaminated, the specimen was discarded, and we collected the sample again. After
collection, the samples were immediately placed in ice and frozen at −80 ◦C.

2.3. DNA Extraction and Metagenomic Analysis

Total DNA was extracted using the FastDNA SPIN Kit for Soil (MP Biomedicals, USA),
following the manufacturer’s instruction. PCR amplification was performed using fusion
primers targeting the V3-V4 regions of the 16S rRNA gene with the extracted DNA. For bac-
terial amplification, fusion primers were 341F (5′- AATGATACGGCGACCACCGAGATCT-
ACAC-XXXXXXXXTCGTCGGCAGCGTC-AGATGTGTATAAGAGACAG-CCTACGGGN-
GGCWGCAG-3′; underlined sequence indicates the target region primer) and 805R (5′-
CAAGCAGAAGACGGCATACGAGAT-XXXXXXXXGTCTCGTGGGCTCGG-AGATGTG-
TATAAGAGACAG-GATACHVGGGTATCTAATCC-3′). The fusion primers were con-
structed in the following order: P5 (P7) graft binding, i5 (i7) index, Nextera consensus,
sequencing adaptor, and target region sequence. We purified the amplified products using
CleanPCR (CleanNA, Waddinxveen, The Netherlands), pooled together equal concentra-
tions of purified products, and eliminated short fragments (non-target products) using
CleanPCR (CleanNA, Waddinxveen, The Netherlands), followed by assessment of the
quality and product size on a Bioanalyser 2100 (Agilent, Palo Alto, CA, USA) using a DNA
7500 chip. Next, mixed amplicons were pooled, after which sequencing was performed
at ChunLab, Inc. (Seoul, Korea) using an Illumina MiSeq Sequencing system (Illumina,
San Diego, CA, USA), following the manufacturer’s instructions [40].

2.4. Pyrosequencing Data Analysis

The processing of raw reads began with a quality check and the filtering of low-quality
reads (average score < 25) using Trimmomatic v0.32 [41]. After passing the quality check,
paired-end sequence data were merged together using the fastq_mergepairs command of
VSEARCH v2.13.4, set to default parameters [42]. Further, primers were trimmed using the
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alignment algorithm proposed by Myers and Miller at a similarity cut-off of 0.8 [43]. Non-
specific amplicons that did not encode 16S rRNA were detected using the nhmmer 4 tool in
the HMMER software package v3.2.1 with hmm profiles [44]. Unique reads were extracted,
and redundant reads were clustered with the unique reads using the derep_fulllength
command of VSEARCH [42].
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2.5. Bioinformatics Analysis

Sequences were merged and checked for quality control. Thereafter, operational
taxonomic units (OTUs) were assigned, usually at the genus level, using pre-curated 16S
sequence databases. Relative abundance (abundance of an OTU as a percentage of all
sequences in a sample) and richness (number of OTUs identified in a sample) were es-
tablished for further downstream analysis [45]. Additionally, the EzBioCloud database
(http://www.ezbiocloud.net/, accessed on 8 August 2021) was used for taxonomic assign-
ment using the usearch_global command of VSEARCH [40,42], while pairwise alignment
was employed to calculate similarity [40]. Uchime and the non-chimeric 16S rRNA database
from EzBioCloud were used to detect chimera in reads that contained a < 97% best hit
similarity rate. Sequence data were then clustered using CD-Hit7 and UCLUST8, and then
alpha diversity analysis was conducted (Figure 2).

2.6. Statistical Analysis

All statistical analyses were performed using R software version 3.1.2. Comparisons
between groups were performed using Wilcoxon signed-rank tests. Further, correlations
between two variables were determined by Pearson and Spearman rank correlation tests.

http://www.ezbiocloud.net/
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3. Results
3.1. Sequence Read Counts and Taxonomic Assignments

We compared swab samples collected during ESS from 15 patients, aged 17–67 years.
The demographic and clinical characteristics of the patients are shown in Table 1. The total
number of reads was counted, after which the data were prefiltered and passed through the
quality check process to determine valid reads (Supplementary Table S1). Thus, an average
of 81,640 and 96,572 bacterial 16S rRNA-encoding gene sequence reads were observed
in samples from the healthy and diseased sites, respectively. Reads with low-quality
amplicons, non-target amplicons, and chimeric amplicons were removed. Further, the
rates of observation of valid reads at the healthy and diseased sites, considering the total
number of reads at both sites, varied in the ranges 21.0–96.1 and 37.9–96.5, respectively.
The mean sequence length, after sequence processing per sample, ranged from 409 to
425 bases. Furthermore, there was no statistically significant difference in the number of
valid reads between the healthy and diseased sites (Figure 3a). These findings indicate that
both sites have similar bacterial loads. After the valid reads were assigned against reference
databases at the species level, the number of reads identified at this level, obtained per
sample, varied in the ranges 10,402–208,560 and 11,606–289,190 at healthy and diseased
sites, respectively. The taxonomic coverage of the database ranged from 80.8 to 99.9 at both
sites, and there was no statistically significant difference between the number of species
identified at the healthy and diseased sites (Figure 3b).
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Table 1. Demographic and clinical characteristics of study population.

Subjects Sex Age Underlying
Diseases

Diseased
Site

LM CT Score at
Diseased Site

Blood Eo
(%) Allergy Bacterial Culture at Lesion Side Bacterial Culture at Normal Side

1 M 35 none Rt 5 1.9 none S. pneumoniae no growth
2 F 34 DM, Pul.Tb Rt 8 0.9 none S. aureus, S. epidermidis no growth
3 M 54 DM Lt 7 2.2 D. farinae, house dust P. aeruginosa, G (-) bacilli no growth
4 M 32 none Rt 4 1.7 none E. aerogenes no growth
5 F 17 none Rt 9 0.11 none H. parainfluenzae E. aerogenes
6 M 48 none Rt 6 3.5 none S. aureus (MRSA) S. aureus
7 M 56 none Lt 4 4.2 none S. epidermidis S. epidermidis

8 M 67 HTN,
Hepatitis B Lt 8 2.3 Cladosporium S. aureus, G (+) cocci S. aureus, G (+) cocci, G (−) bacilli

9 M 59 none Rt 9 5.2 none S. epidermidis, G (+) bacilli,
Corynebacterium Species S. epidermidis

10 M 34 none Rt 10 2.3 D. farinae, D. pteronyssinus S. aureus S. aureus

11 M 54 none Lt 8 1.8 D. farinae, house dust, storage mite, Acarus
siro, cockroach, Cladosporium, Aspergillus E. aerogenes S. epidermidis

12 M 57 none Lt 7 4.4
D. farinae, D. pteronyssinus, house dust,

storage mite, cockroach, multiple tree, grass,
weed pollens

S. anginosus S. aureus

13 M 39 none Lt 5 4.8 none S. epidermidis, S. aureus no growth

14 M 42 hyperthyroidism Rt 8 0.12 D. farinae, D. pteronyssinus, house dust,
Acarus siro E. aerogenes no growth

15 M 65 DM, HTN Rt 8 0.5 none K. aerogenes K. aerogenes

LM CT score, Lund–Mackay CT score; Blood Eo, blood eosinophils; DM, diabetes mellitus; HTN, hypertension; Pul.Tb, pulmonary tuberculosis; D. farinae, Dermatophagoides farinae; D. pteronyssinus,
Dermatophagoides pteronyssimus; S. pneumoniae, Streptococcus pneumoniae; S. aureus, Staphylococcus aureus; S. epidermidis, Staphylococcus epidermidis; P. aeruginosa, Pseudomonas aeruginosa;
E. aerogenes, Enterobacter aerogenes; MRSA, methicillin-resistant Staphylococcus aureus; H. parainfluenzae, Haemophilus parainfluenzae; S. anginosus, Streptococcus anginosus; K. aerogenes, Klebsiella
aerogenes.
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Figure 3. Sequence read counts in samples of healthy site and diseased site. (a) Total valid reads per sample in healthy site
and diseased site. (b) Number of species found per sample in healthy site and diseased site. Comparison of bacterial species
richness and alpha diversity in samples of healthy site and diseased site. Richness represented by (c) operational taxonomic
units (OTU), (d) abundance-based coverage estimators (ACE), and alpha diversity examined by (e) Shannon index.

3.2. Comparison of Richness and Alpha Diversity Indices

Richness is defined as the number of unique species per sample, identified using
a reference database. The number of OTUs in samples from healthy and diseased sites
varied in the ranges 76–373 (median: 145) and 61–370 (median: 146), respectively. How-
ever, these different numbers of OTUs in samples from the two sites showed no statistical
significance (p = 0.852) (Figure 3c). Additionally, other species richness indices, such as
abundance-based coverage estimators (p = 0.694) (Figure 3d) and a Jackknife estimator
(p = 0.568), did not show any statistically significant difference between the two sampling
sites (Supplementary Figure S1a). Alpha diversity, which refers to intra-community diver-
sity, was measured based on the Shannon index, Simpson index, and phylogenetic diversity.
Based on these indices, there was no statistically significant difference between the two
sites (Figure 3e), (Supplementary Figure S1b,c). Beta diversity, which refers to a comparison
of diversity between different groups, was evaluated by principal coordinates analysis
(PCoA) plots. There was no definite clear separation between the two sites (Supplementary
Figure S1d).

3.3. Average Composition of Microbiota at Phylum, Genus, and Species Levels

In this study, we also examined the differences in microbiota composition between
the diseased and contralateral healthy sites. At the phylum level, five bacterial phyla,
Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria, showed dominance
at both sites (Figure 4a). Further, diseased sites showed slightly lower Actinobacteria and
Firmicutes compositions than healthy sites, which showed slightly higher compositions of
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Proteobacteria, Bacteroidetes, and Fusobacteria. However, the differences were not statistically
significant (Figure 4b).
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At the genus level, Corynebacterium was identified as the most abundant genus in
samples from both sinuses (25.11 and 17.48% at healthy and diseased sites, respectively),
followed by Staphylococcus (18.32%), Fusobacteria (5.89%), Enterobacteriaceae (5.24%), Law-
sonella (5.08%), Bacteroides (4.89%), Prevotella (4.47%), and Anaerococcus (4.27%) at healthy
sites and Staphylococcus (9.79%), Fusobacterium (9.08%), Prevotella (7.59%), Porphyromonas
(7.49%), Haemophilus (4.50%), and Bacteroides (4.06%) at the diseased sites (Figure 5). Further,
at the species level, Corynebacterium spp., such as Corynebacterium accolens (16.28 and 11.44%
at healthy and diseased sites, respectively) and Corynebacterium tuberculostearicum (8.39
and 5.07% at healthy and diseased sites, respectively), were prevalent at both sites, while
Staphylococcus aureus was also prevalent at both sites, showing a tendency to decrease at
the diseased sites compared with the control sites (18.39 and 9.55% at healthy and diseased
sites, respectively) (Supplementary Figure S2).

3.4. Comparison of Relative Abundance at Genus and Species Levels

Next, we compared the microbiota compositions of the samples collected from the
healthy and unilateral diseased sites. At the genus level, the relative abundances of Staphy-
lococcus, Anaerococcus, Acinetobacter, Halomonas, and Pseudomonas significantly decreased at
the diseased sites more so than at the healthy sites (Figure 6a,b). Conversely, the relative
abundances of anaerobes, including Prevotella, Porphyromonas, Fusobacterium, and Propi-
onibacterium, showed a significant increase at the diseased sites (Figure 6c). However, the
relative abundances of other microbiota did not show any statistically significant difference
between the two sites.
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At the species level, the relative abundances of Staphylococcus aureus, Anaerococcus
octavius, Corynebacterium tuberculostearicum, and Halomonas stevensii significantly decreased
more so at the diseased site than at the healthy site. Notably, the relative abundances of
anaerobes belonging to the anaerobic genus, including Prevotella, Porphyromonas, Fusobac-
terium, and Propionibacterium, showed a significant increase in samples from the diseased
sinus. However, the compositions of other microbiota did not show any statistically
significant difference between the two sites (Supplementary Figure S3).
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3.5. Relationship between Microbiota Abundance and LM CT Scores

Finally, the relationship between clinical manifestation and microbiota composition
was explored. Specifically, we examined the preoperative LM CT score corresponding to
the diseased site (Table 1) and compared the same with the observed microbial composition.
At the genus level, the relative abundance of Staphylococcus, one of the most important
bacteria for microbial dysbiosis, was slightly correlated with the LM CT score (p = 0.08)
(Figure 7a,b). Specifically, the abundance of Staphylococcus aureus at the species level tended
to increase slightly with an increase in the LM CT score (Figure 7b). Other microbiota
showed no significant correlation with the LM CT score at both the genus (Supplementary
Figure S4) and species levels (Supplementary Figure S5).
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4. Discussion

The crosstalk between innate immunity and microbiome composition is considered
to occur via the microbiota integrating into the entire physiology of organisms and in-
fluencing multiple facets of organismal homeostasis via its effects on the innate immune
system [9]. Further, microbiome contributes to epithelial barrier reinforcement, regulatory
T cell induction, and also interacts with the innate immune system [46–48]. Even though
the underlying mechanisms of CRS pathogenesis have not been clearly elucidated till date,
hypothetically, it involves alterations in mucociliary clearance, abnormalities in epithelial
barrier function, bacterial biofilms, and tissue remodeling in host innate and adaptive
immune systems [49]. Additionally, in human upper airway, the sinonasal microbiome
might play an important role in the pathogenesis of CRS, and based on advances in the
culture-independent 16S rRNA sequencing technique, it has been proposed that dysbiosis
is the initial cause of inflammation in CRS [50].
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Many researchers have also used conventional bacterial culture methods for the
identification of sinonasal bacteria, and have revealed that Staphylococcus, Streptococcus, and
Hemophilus influenza are the commonly encountered microbiota in patients with CRS [21,51];
in this study, we also collected data from culture studies for reference (Table 1). However,
culture-based studies are less informative compared with studies based on next-generation
sequencing. Further, owing to the presence of non-culturable and unidentifiable microbiota,
they are characterized by discrepancies in various sampling regions [21,52]. Specifically,
advanced gene sequencing techniques have shed light on our clinical understanding
regarding the effects of a diverse microbiome on human health [1,45].

In a recent study on inflammatory endotypes and microbial associations in CRS,
bacterial community dysbiosis, including the depletion of Corynebacterium, Propionibac-
terium, and Staphylococcus spp., in patients with CRS, compared with the controls, has been
reported [53].

Previous studies on the microbiome in patients with CRS have shown polymicrobial
inflammation, suggesting the existence of complex interactions between the microbiome
and the host. Further, in several studies, decreased diversity and richness in patients with
CRS compared with the controls, have been reported [27,28,53–55]. Additionally, studies
involving endoscopically guided brush samples of maxillary sinus revealed that the rela-
tive abundance of Corynebacterium tuberculostearicum increased, while that of Lactobacillales,
Carnobacterium alterfunditum, Enterococcus mundtii, and Pediococcus pentosaceus decreased in
patients with CRS, compared with the controls [53]. Studies involving bacteria and bacteria-
derived extracellular vesicles from nasal lavage (NAL) fluid have also shown that patients
with CRS showed a decrease in the proportion of Bacteroidetes and an increase in that of
Proteobacteria at both phylum and genus levels. Further, the relative abundance of Prevotella
showed a decrease, whereas that of Staphylococcus, belonging to the phylum Firmicutes,
showed an increase in patients with CRS, compared with the controls [28]. Another study,
involving swab samples from middle meatus, showed that Corynebacterium and Staphylo-
coccus are dominant in both controls and patients with CRS, while Streptococcus, Moraxella,
and Haemophilus showed lower relative abundances [27]. Additionally, comparing controls
with patients with CRS suggested a more significant depletion in the relative abundance of
typical health-associated bacterial taxa, including Anaerococcus, Corynebacterium, Finegoldia,
Peptoniphilus, Propionibacterium, and Staphylococcus in the patients with CRS than in the
controls [55].

However, increased bacterial diversity was observed in other studies [29,30]. Specifi-
cally, a study involving NAL fluid from middle meatus showed qualitatively similar micro-
biomes in patients with CRS and the controls; however, patients with CRS showed greater
diversity and abundance of fungi. Cryptococcus neoformans was identified as the most
abundant fungus in both groups, showing greater prevalence in patients with CRS [29].

Moreover, some studies had reported no significant differences in microbiota diversity
between controls and patients with CRS [31,32]. Swab samples were obtained from the
ethmoid sinus of 56 patients with CRS and 26 control subjects. Analysis showed a similarity
in the biodiversity corresponding to the patients with CRS and the control groups at the
phylum level. However, at the genus level, the relative abundances of Propionibacterium
and Porphyromonas tended to decrease in the patients with CRS, more so than the controls.
Interestingly, patients with better surgical outcomes had increased bacterial diversity at the
time of surgery, along with a higher relative abundance of Actinobacteria [32].

In this study, we compared the sinonasal microbiome composition of unilateral dis-
eased and contralateral healthy sites in patients with unilateral sinusitis. In each patient, the
distributions of the local microbiome at the healthy and diseased sites were different, sug-
gesting that local microbial dysbiosis possibly plays a significant role in the pathogenesis
of CRS by altering the mucosal immune responses of sinonasal epithelium.

Further, it was also observed that at the genus level, Corynebacterium and Staphylococcus
constituted the most common genera in both sinuses, with Staphylococcus showing a greater
decrease in percentage relative abundance at the diseased sites than at the healthy sites.
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At the phylum level, Actinobacteria and Firmicutes showed a slight decrease, whereas
Proteobacteria, Bacteroidetes, and Fusobacteria showed a slight increase at the diseased sites,
more so than at the healthy sites. Notably, the anaerobe group showed a significant increase
in relative abundance at the diseased site. This is in accordance with a previous report,
indicating that anaerobes including Fusobacteria, Parvimonas, and Prevotella were found in
unilateral maxillary CRS samples, but not in healthy samples [56].

Staphylococcus and Corynebacterium have previously been reported as the most common
sinus microbiota [27,28,33,53]. Staphylococcus aureus colonizes the nares of 30% of people
and other nasal microbiotas have strategies to interfere with its colonization [57]. The rela-
tive abundances of Staphylococcus spp. [27,28] and Corynebacterium tuberculostearicum [27,53]
in the sinus mucosa of patients with CRS were determined in this study, and our results
show that Staphylococcus aureus and Corynebacterium tuberculostearicum were significantly
more decreased in samples from the diseased sites than in those from the healthy sites.
These two species might be the “keystone microbiome species” that normally maintain
a stable and interactive community, co-inhabiting with other microbiota in the healthy
state [54]. A recently published study also showed that the Corynebacterium species were
more abundant in the nasopharyngeal swabs of healthy controls compared with those of
patients with otitis media [58].

Furthermore, based on our results, the diseased and healthy sites showed similar
bacterial richness and diversity. The detailed mechanism of this bacterial diversity is still
unclear and may be resolved by conducting additional studies in the future.

Moreover, another consideration is sinusitis of odontogenic origin, common cause
of unilateral sinusitis. The difference in microbial findings has been reported between
the patients with odontogenic sinusitis and the patients with rhinogenic chronic sinusitis
with nasal polyp; predominance of anaerobic species in the odontogenic sinusitis [59,60].
Bacterial biofilms, assemblies of bacteria embedded in a self-produced polysaccharide
matrix, also could be involved in the pathogenesis of odontogenic sinusitis [60].

In this study, it was also observed that the relative abundances of anaerobes, including
Prevotella, Porphyromonas, Fusobacterium, and Propionibacterium in the samples from the
diseased sites significantly increased. Reportedly, anaerobic genera are more abundant in
the middle meatus of patients with CRS than in controls, and usually, sinus cavities are
not anaerobic; therefore, augmentation of anaerobes might result from disease progression
and pathology [61]. For example, Fusobacterium, which is associated with suppuration,
can engender anaerobic conditions in paranasal cavities [62]. In several previous studies,
the role of anaerobes in CRS has been investigated [56,63–66]. According to the reports,
anaerobic organisms have been isolated from more than 50–100% of patients [66]. These re-
sults, along with the anaerobic microbiome dysbiosis observed in this study corresponding
to samples from healthy and diseased sites, might demonstrate the role of anaerobes in
CRS-related inflammation.

To investigate the association between clinical characteristics and microbial composi-
tion, we examined the LM CT scores corresponding to the samples obtained from diseased
sites and their relationship with microbiota (Figure 7). Unexpectedly, the relative abun-
dance of Staphylococcus tended to increase slightly with an increase in the LM CT score; this
was not consistent with the genus-level microbial data, which showed a greater decrease in
samples from diseased sites than in those from healthy sites (Figure 6). However, the exam-
ination of the relationship between the LM CT scores corresponding to samples obtained
from the diseased sites, without comparison with those corresponding to the samples from
the healthy sites, and the microbiota showed no statistically significant correlation. Thus,
this study showed that LM CT score is not a critical association factor; this might need to
be further verified by conducting further studies.

This study has some limitations, the first being the limited number of patients en-
rolled. Microbial composition from a larger population could add further weight to our
data. Second, it would also be worthwhile to investigate whether the microbiota of a
unilateral diseased site could be altered owing to surgery [37–39]. Third, further study is
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needed to examine the relationship between microbiota composition and another clinical
manifestation such as nasal endoscopic findings (secretion or mucosa edema). Finally, the
pathophysiological role of the microbiome in unilateral and bilateral CRS could differ;
therefore, we are planning to perform further investigations in this regard by comparing
our data on patients with unilateral CRS with those on patients with bilateral CRS.

5. Conclusions

In conclusion, we investigated the upper airway microbiome of patients with unilat-
eral sinusitis. The microbiome of samples from unilateral diseased sites was compared
with that of samples from contralateral non-diseased (healthy) sites, suggesting the im-
portance of local microbial dysbiosis in CRS pathogenesis. We expect that these findings
would contribute to further research on microbial dysbiosis in CRS and generate a deeper
understanding of CRS pathogenesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph18189878/s1, Figure S1: Comparison of bacterial species richness and alpha diversity
in samples of healthy site and diseased site. Richness represented by (a) Jackknife estimation. Alpha
diversity examined by (b) Simpson index, and (c) phylogenetic diversity. Beta diversity examined
by (d) principal coordinates analysis (PCoA) plots, Figure S2: Comparison of microbiota between
healthy site (upper bar) and diseased site (lower bar) at species level. Stacked bars show average
taxonomic composition of selected communities of bacterial species level, Figure S3: Composition
of representative microbiota at species level. Paired line plots show relative abundance of selected
communities in comparison between healthy site and diseased site, Figure S4: Graphs of correlation
between representative microbiota at genus level and Lund–Mackay CT score at diseased site, Figure
S5: Graphs of correlation between representative microbiota at species level and Lund–Mackay CT
score at diseased site, Table S1: Results from sequence read counts.
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