Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Analyzed
2.2. Testing PGPR Activity
2.3. Maximum Bactericidal Concentration of Hg (MBC)
2.4. Bio-Mercury Remediation Suitability Index (BMRSI)
2.5. Data Processing
3. Results
4. Discussion
5. Conclusions
- The presence of Hg in culture mediums directly affects the capability of PGPR bacteria by decreasing their effectiveness. Such bacteria are affected in the following order, from highest to lowest affected: Siderophores > Phosphate production > ACC deaminase > IAA production.
- The Bio-Mercury Remediation Suitability Index (BMRSI) has proven to be a useful tool for evaluating strains in an integrated way based on their PGPR capabilities in the presence of Hg. MBC (Hg) > 100 μg/mL and BMRSI ≥ 6.5 are proposed as a strain selection criterion for later bioremediation of Hg-contaminated soils.
- Based on the criteria described, the strains Bacillus toyonensis (9), Pseudomonas moraviensis (7), Pseudomonas baetica (26), and Brevibacterium frigoritolerans (95) have been selected as good candidates for further phyto-rhizoremediation trials of Hg-contaminated soils.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bjørklund, G.; Tinkov, A.A.; Dadar, M.; Rahman, M.M.; Chirumbolo, S.; Skalny, A.V.; Skalnaya, M.G.; Haley, B.E.; Ajsuvakova, O.P.; Aaseth, J. Insights into the Potential Role of Mercury in Alzheimer’s Disease. J. Mol. Neurosci. 2019, 67, 511–533. [Google Scholar] [CrossRef]
- Das, S.; Dash, H.R.; Chakraborty, J. Genetic Basis and Importance of Metal Resistant Genes in Bacteria for Bioremediation of Contaminated Environments with Toxic Metal Pollutants. Appl. Microbiol. Biotechnol. 2016, 100, 2967–2984. [Google Scholar] [CrossRef] [PubMed]
- Marumoto, M.; Sakamoto, M.; Marumoto, K.; Tsuruta, S.; Komohara, Y. Mercury and Selenium Localization in the Cerebrum, Cerebellum, Liver, and Kidney of a Minamata Disease Case. Acta Histochem. Cytochem. 2020, 53, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Gil-Hernández, F.; Gómez-Fernández, A.R.; la Torre-Aguilar, M.J.; Pérez-Navero, J.L.; Flores-Rojas, K.; Martín-Borreguero, P.; Gil-Campos, M. Neurotoxicity by Mercury Is Not Associated with Autism Spectrum Disorders in Spanish Children. Ital. J. Pediatr. 2020, 46, 1–7. [Google Scholar] [CrossRef]
- Lado, L.R.; Hengl, T.; Reuter, H.I. Heavy Metals in European Soils: A Geostatistical Analysis of the FOREGS Geochemical Database. Geoderma 2008, 148, 189–199. [Google Scholar] [CrossRef]
- Ballabio, C.; Jiskra, M.; Osterwalder, S.; Borrelli, P.; Montanarella, L.; Panagos, P. A Spatial Assessment of Mercury Content in the European Union Topsoil. Sci. Total Environ. 2021, 769, 144755. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. 2010 Biennial National Listing of Fish Advisories; US Environmental Protection Agency: Washintong, DC, USA, 2011.
- Hao, X.; Xie, P.; Johnstone, L.; Miller, S.J.; Rensing, C.; Wei, G. Genome Sequence and Mutational Analysis of Plant-Growth-Promoting Bacterium Agrobacterium Tumefaciens CCNWGS0286 Isolated from a Zinc-Lead Mine Tailing. Appl. Environ. Microbiol. 2012, 78, 5384–5394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloepper, J.W. Plant Growth-Promoting Rhizobacteria on Radishes; INRA: Agers, France, 1978; Volume 2, pp. 879–882. [Google Scholar]
- Zhao, M.M.; Kou, J.; Chen, Y.; Xue, L.; Fan, T.T.; Wang, S. Bioremediation of Wastewater Containing Mercury Using Three Newly Isolated Bacterial Strains. J. Clean. Prod. 2021, 299, 126869. [Google Scholar] [CrossRef]
- Robas, M.; Jiménez, P.A.; González, D.; Probanza, A. Bio-Mercury Remediation Suitability Index: A Novel Proposal That Compiles the PGPR Features of Bacterial Strains and Its Potential Use in Phytoremediation. Int. J. Environ. Res. Public Health 2021, 18, 4213. [Google Scholar] [CrossRef]
- Millán, R.; Carpena, R.; Schmid, T.; Sierra, M.; Moreno, E.; Peñalosa, J.; Gamarra, R.; Esteban, E. Rehabilitación de Suelos Contaminados Con Mercurio: Estrategias Aplicables En El Área de Almadén. Rev. Ecosistemas 2007, 16, 56–66. [Google Scholar]
- Ehmann, A. The Van Urk-Salkowski Reagent—A Sensitive and Specific Chromogenic Reagent for Silica Gel Thin-Layer Chromatographic Detection and Identification of Indole Derivatives. J. Chromatogr. A 1977, 132, 267–276. [Google Scholar] [CrossRef]
- Glick, B.R. The Enhancement of Plant Growth by Free-Living Bacteria. Can. J. Microbiol. 1995, 41, 109–117. [Google Scholar] [CrossRef]
- Alexander, D.; Zuberer, D. Use of Chrome Azurol S Reagents to Evaluate Siderophore Production by Rhizosphere Bacteria. Biol. Fertil. Soils 1991, 12, 39–45. [Google Scholar] [CrossRef]
- De Freitas, J.; Banerjee, M.; Germida, J. Phosphate-Solubilizing Rhizobacteria Enhance the Growth and Yield but Not Phosphorus Uptake of Canola (Brassica Napus L.). Biol. Fertil. Soils 1997, 24, 358–364. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root Exudates: From Plant to Rhizosphere and Beyond. Plant. Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the Molecular Mechanisms for the Enhanced Phytoremediation of Heavy Metals through Plant Growth Promoting Rhizobacteria: A Review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef]
- Mariano, C.; Mello, I.S.; Barros, B.M.; da Silva, G.F.; Terezo, A.J.; Soares, M.A. Mercury Alters the Rhizobacterial Community in Brazilian Wetlands and It Can Be Bioremediated by the Plant-Bacteria Association. Environ. Sci. Pollut. Res. 2020, 27, 13550–13564. [Google Scholar] [CrossRef]
- Nazli, F.; Mustafa, A.; Ahmad, M.; Hussain, A.; Jamil, M.; Wang, X.; Shakeel, Q.; Imtiaz, M.; El-Esawi, M.A. A Review on Practical Application and Potentials of Phytohormone-Producing Plant Growth-Promoting Rhizobacteria for Inducing Heavy Metal Tolerance in Crops. Sustainability 2020, 12, 9056. [Google Scholar] [CrossRef]
- Arregui, G.; Hipólito, P.; Pallol, B.; Lara-Dampier, V.; García-Rodríguez, D.; Varela, H.P.; Zaniani, P.T.; Balomenos, D.; Paape, T.; de la Peña, T.C. Mercury-Tolerant Ensifer Medicae Strains Display High Mercuric Reductase Activity and a Protective Effect on Nitrogen Fixation in Medicago Truncatula Nodules under Mercury Stress. Front. Plant Sci. 2020, 11. [Google Scholar]
- Sharma, A.; Kumar, V.; Handa, N.; Bali, S.; Kaur, R.; Khanna, K.; Thukral, A.K.; Bhardwaj, R. Potential of Endophytic Bacteria in Heavy Metal and Pesticide Detoxification. Plant Microbiome Stress Response 2018, 307–336. [Google Scholar]
- Gontia-Mishra, I.; Sapre, S.; Sharma, A.; Tiwari, S. Alleviation of Mercury Toxicity in Wheat by the Interaction of Mercury-Tolerant Plant Growth-Promoting Rhizobacteria. J. Plant Growth Regul. 2016, 35, 1000–1012. [Google Scholar] [CrossRef]
- Chari, K.D.; Reddy, R.S.; Triveni, S.; Trimurtulu, N.; Rani, C.V.D.; Sreedhar, M. Isolation and Characterization of Abiotic Stress Tolerant Plant Growth Promoting Bacillus Spp. from Different Rhizospheric Soils of Telangana. Biosci. Biotechnol. Res. Asia 2018, 15, 485–494. [Google Scholar] [CrossRef]
- Hindersah, R.; Nurhabibah, G.; Asmiran, P.; Pratiwi, E. Antibiotic Resistance of Azotobacter Isolated from Mercury-Contaminated Area. J. Agric. Stud. 2019, 7, 70–81. [Google Scholar] [CrossRef]
- Kang, S.-M.; Asaf, S.; Khan, A.L.; Khan, A.; Mun, B.-G.; Khan, M.A.; Gul, H.; Lee, I.-J. Complete Genome Sequence of Pseudomonas Psychrotolerans CS51, a Plant Growth-Promoting Bacterium, under Heavy Metal Stress Conditions. Microorganisms 2020, 8, 382. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.M.; Khairalla, A.S.; El-Gendy, A.O.; Elkhatib, W.F. Isolation and Characterization of Mercury-Resistant Bacteria from Wastewater Sources in Egypt. Can. J. Microbiol. 2019, 65, 308–321. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, N.; Yadav, A.N.; Kumar, A.; Meena, V.S.; Singh, B.; Chauhan, V.S.; Dhaliwal, H.S.; Saxena, A.K. Rhizospheric microbiomes: Biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In Plant Growth Promoting Rhizobacteria for Agricultural Sustainability; Springer: Berlin/Heidelberg, Germany, 2019; pp. 19–65. [Google Scholar]
- Abbas, S.Z.; Yee, C.J.; Hossain, K.; Ahmad, A.; Rafatullah, M. Isolation and Characterization of Mercury Resistant Bacteria from Industrial Wastewater. Desalin Water Treat. 2019, 138, 128–133. [Google Scholar] [CrossRef]
- Mirza, M.S.; Ahmad, W.; Latif, F.; Haurat, J.; Bally, R.; Normand, P.; Malik, K.A. Isolation, Partial Characterization, and the Effect of Plant Growth-Promoting Bacteria (PGPB) on Micro-Propagated Sugarcane in Vitro. Plant Soil 2001, 237, 47–54. [Google Scholar] [CrossRef]
- Shokri, D.; Emtiazi, G. Indole-3-Acetic Acid (IAA) Production in Symbiotic and Non-Symbiotic Nitrogen-Fixing Bacteria and Its Optimization by Taguchi Design. Curr. Microbiol. 2010, 61, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Dybas, M.J.; Tatara, G.M.; Criddle, C.S. Localization and Characterization of the Carbon Tetrachloride Transformation Activity of Pseudomonas Sp. Strain KC. Appl. Environ. Microbiol. 1995, 61, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Baldi, F.; Gallo, M.; Battistel, D.; Barbaro, E.; Gambaro, A.; Daniele, S. A Broad Mercury Resistant Strain of Pseudomonas Putida Secretes Pyoverdine under Limited Iron Conditions and High Mercury Concentrations. Biometals 2016, 29, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cordero, A.; Pérez-Espinosa, A.; Vitola-Romero, D. Lead Resistance by Bacillus Cereus 1DH1LIM Isolated from Contaminated Environments with Mercury. Indian J. Sci. Technol. 2018, 11, 38. [Google Scholar]
- Moreno-Jiménez, E.; Vázquez, S.; Carpena-Ruiz, R.O.; Esteban, E.; Peñalosa, J.M. Using Mediterranean Shrubs for the Phytoremediation of a Soil Impacted by Pyritic Wastes in Southern Spain: A Field Experiment. J. Environ. Manag. 2011, 92, 1584–1590. [Google Scholar] [CrossRef] [Green Version]
- Glick, B.R.; Penrose, D.M.; Li, J. A Model for the Lowering of Plant Ethylene Concentrations by Plant Growth-Promoting Bacteria. J. Theor. Biol. 1998, 190, 63–68. [Google Scholar] [CrossRef]
- Glick, B.R. Using Soil Bacteria to Facilitate Phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Carlos, M.-H.J.; Stefani, P.-V.Y.; Janette, A.-M.; Melani, M.-S.S.; Gabriela, P.-O. Assessing the Effects of Heavy Metals in ACC Deaminase and IAA Production on Plant Growth-Promoting Bacteria. Microbiol. Res. 2016, 188, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-L.; Liu, J.; Jia, P.; Yang, T.; Zeng, Q.; Zhang, S.; Liao, B.; Shu, W.; Li, J. Novel Phosphate-Solubilizing Bacteria Enhance Soil Phosphorus Cycling Following Ecological Restoration of Land Degraded by Mining. ISME J. 2020, 14, 1600–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, S.; Alikhani, H.A.; Pourbabaei, A.A.; Etesami, H.; Sarmadian, F.; Motessharezadeh, B. Effect of Rhizospheric and Endophytic Bacteria with Multiple Plant Growth Promoting Traits on Wheat Growth. Environ. Sci. Pollut. Res. 2019, 26, 19804–19813. [Google Scholar] [CrossRef]
- Bomfim, C.S.G.; da Silva, V.B.; Cursino, L.H.S.; da Silva Mattos, W.; Santos, J.C.S.; de Souza, L.S.B.; Dantas, B.F.; de Freitas, A.D.S.; Fernandes-Júnior, P.I. Endophytic Bacteria Naturally Inhabiting Commercial Maize Seeds Occupy Different Niches and Are Efficient Plant Growth-Promoting Agents. Symbiosis 2020, 81, 255–269. [Google Scholar] [CrossRef]
- Diaz-Garza, A.M.; Fierro-Rivera, J.I.; Pacheco, A.; Schüßler, A.; Gradilla-Hernández, M.S.; Senés-Guerrero, C. Temporal Dynamics of Rhizobacteria Found in Pequin Pepper, Soybean, and Orange Trees Growing in a Semi-Arid Ecosystem. Front. Sustain. Food Syst. 2020, 4, 220. [Google Scholar] [CrossRef]
- Cano, M.A. A Review of Interaction of Beneficial Microorganisms in Plants: Mycorrhizae, Trichoderma Spp. and Pseudomonas Spp. Rev. UDCA Actual. Divulg. Científica 2011, 14, 15–31. [Google Scholar] [CrossRef]
- Palomino, M.R.; García, J.L.; Ramos, B.; Manero, F.G.; Probanza, A. Seasonal Diversity Changes in Alder (Alnus glutinosa) Culturable Rhizobacterial Communities throughout a Phenological Cycle. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2005, 29, 215–224. [Google Scholar] [CrossRef]
- Zerrouk, I.Z.; Rahmoune, B.; Auer, S.; Rößler, S.; Lin, T.; Baluska, F.; Dobrev, P.I.; Motyka, V.; Ludwig-Müller, J. Growth and Aluminum Tolerance of Maize Roots Mediated by Auxin-and Cytokinin-Producing Bacillus Toyonensis Requires Polar Auxin Transport. Environ. Exp. Bot. 2020, 176, 104064. [Google Scholar] [CrossRef]
- Khezrinejad, N.; Khodakaramian, G.; Shahryari, F. Characterization of Potential Plant Growth-Promoting Rhizobacteria Isolated from Sunflower (Helianthus annuus L.) in Iran. Biol. Futur. 2019, 70, 268–277. [Google Scholar] [CrossRef]
- Lopez, J.R.; Dieguez, A.L.; Doce, A.; De la Roca, E.; De la Herran, R.; Navas, J.I.; Toranzo, A.E.; Romalde, J.L. Pseudomonas Baetica Sp. Nov., a Fish Pathogen Isolated from Wedge Sole, Dicologlossa cuneata (Moreau). Int. J. Syst. Evol. Microbiol. 2012, 62, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Tvrzova, L.; Schumann, P.; Spröer, C.; Sedláček, I.; Páčová, Z.; Šedo, O.; Zdráhal, Z.; Steffen, M.; Lang, E. Pseudomonas Moraviensis Sp. Nov. and Pseudomonas vranovensis Sp. Nov., Soil Bacteria Isolated on Nitroaromatic Compounds, and Emended Description of Pseudomonas asplenii. Int. J. Syst. Evol. Microbiol. 2006, 56, 2657–2663. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.T.; Fuller, D.; Couger, M.; Bagazinski, M.; Boyne, P.; Devor, R.C.; Hanafy, R.A.; Budd, C.; French, D.P.; Hoff, W.D. Draft Genome Sequence of Pseudomonas moraviensis Strain Devor Implicates Metabolic Versatility and Bioremediation Potential. Genom. Data 2016, 9, 154–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, P.; Rahi, P.; Gulati, A. Stress Tolerance and Genetic Variability of Phosphate-Solubilizing Fluorescent Pseudomonas from the Cold Deserts of the Trans-Himalayas. Microb. Ecol. 2009, 58, 425–434. [Google Scholar] [CrossRef] [PubMed]
Strain | 1 | 9 | 10 | 11 | 18 | 20 | 21 | 23 | 31 | 35 | 37 | 43 | 48 | 50 |
BMRSI | 6.68 | 6.56 | 7.42 | 7.69 | 7.88 | 7.56 | 7.21 | 6.97 | 7.40 | 5.02 | 7.07 | 7.69 | 6.62 | 7.09 |
Strain | 55 | 56 | 57 | 58 | 69-I | 69-II | 70 | 74 | 75 | 76 | 79 | 80 | 95 | 98 |
BMRSI | 7.23 | 6.43 | 7.26 | 6.46 | 7.86 | 8.51 | 6.35 | 8.07 | 6.30 | 7.04 | 7.55 | 8.42 | 7.57 | 7.05 |
Strain | 114 | 122 | 130 | 146 | 149 | 160 | 173 | 175 | 204 | 211 | 211-I | 214 | 114 | 122 |
BMRSI | 7.67 | 6.59 | 8.01 | 7.99 | 6.26 | 6.32 | 6.60 | 7.08 | 6.80 | 7.74 | 7.64 | 5.40 | 7.67 | 6.59 |
Strain | Identification | IAA (μg/mL) | PO43− | ACCd | MBC (μg/mL) | BMRSI |
---|---|---|---|---|---|---|
9 | Bacillus toyonensis | 6.16 | 0 | 1 | 140 | 7.30 |
21 | Pseudomonas moraviensis | 7.06 | 0 | 0 | 140 | 7.20 |
98 | Pseudomonas baetica | 6.76 | 0 | 0 | 160 | 6.92 |
95 | Brevibacterium frigoritolerans | 6.40 | 0 | 0 | 140 | 6.54 |
37 | Pseudomonas fluorescens | 6.08 | 0 | 0 | 140 | 6.22 |
56 | Pseudomonas brassicacearum subsp. brassicacearum | 6.05 | 0 | 0 | 160 | 6.21 |
58 | Pseudomonas brassicacearum subsp. brassicacearum | 4.70 | 0 | 1 | 160 | 5.86 |
31 | Pseudomonas brassicacearum subsp. brassicacearum | 5.67 | 0 | 0 | 140 | 5.81 |
122 | Brevibacterium frigoritolerans | 4.37 | 0 | 1 | 160 | 5.53 |
50 | Bacillus toyonensis | 4.15 | 1 | 0 | 350 | 5.50 |
173 | Bacillus toyonensis | 3.93 | 0 | 1 | 180 | 5.11 |
48 | ND | 3.91 | 0 | 1 | 140 | 5.05 |
57 | Pseudomonas corrugata | 3.61 | 1 | 0 | 350 | 4.96 |
55 | Pseudomonas syringae pv. phaseolicola | 4.80 | 0 | 0 | 140 | 4.94 |
69-II | Pseudomonas sp. | 3.77 | 1 | 0 | 160 | 4.93 |
70 | Pseudomonas corrugata | 4.51 | 0 | 0 | 350 | 4.86 |
69-I | Pseudomonas syringae pv. phaseolicola | 4.67 | 0 | 0 | 160 | 4.83 |
43 | Bacillus toyonensis | 4.59 | 0 | 0 | 160 | 4.75 |
1 | Pseudomonas migulae | 4.59 | 0 | 0 | 140 | 4.73 |
23 | Pseudomonas moraviensis | 4.42 | 0 | 0 | 140 | 4.56 |
76 | ND | 4.10 | 0 | 0 | 140 | 4.24 |
204 | Brevibacterium frigoritolerans | 4.04 | 0 | 0 | 160 | 4.20 |
149 | Pseudomonas syringae pv. phaseolicola | 4.02 | 0 | 0 | 140 | 4.16 |
211 | Bacillus dendretensis | 3.85 | 0 | 0 | 200 | 4.05 |
114 | Pseudomonas syringae pv. phaseolicola | 3.80 | 0 | 0 | 140 | 3.94 |
75 | Pseudomonas syringae pv. phaseolicola | 3.74 | 0 | 0 | 160 | 3.90 |
79 | Pseudomonas syringae pv. phaseolicola | 3.66 | 0 | 0 | 140 | 3.80 |
74 | Xanthomonas oryzae pv. oryzae | 3.66 | 0 | 0 | 140 | 3.80 |
35 | Pseudomonas baetica | 3.64 | 0 | 0 | 140 | 3.78 |
20 | Pseudomonas fluorescens | 3.64 | 0 | 0 | 140 | 3.78 |
175 | ND | 3.50 | 0 | 0 | 140 | 3.64 |
130 | Pseudomonas corrugata | 3.47 | 0 | 0 | 140 | 3.61 |
18 | Bacillus toyonensis | 3.45 | 0 | 0 | 140 | 3.59 |
11 | Pseudomonas corrugata | 3.34 | 0 | 0 | 200 | 3.54 |
146 | Pseudomonas fluorescens | 3.20 | 0 | 0 | 180 | 3.38 |
10 | ND | 3.09 | 0 | 0 | 140 | 3.23 |
160 | Bacillus circulans | 3.09 | 0 | 0 | 140 | 3.23 |
211 | Bacillus dendretensis | 2.88 | 0 | 0 | 200 | 3.08 |
214 | Bacillus niacini | 2.82 | 0 | 0 | 200 | 3.02 |
80 | Pseudomonas syringae pv. phaseolicola | 2.85 | 0 | 0 | 140 | 2.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, D.; Robas, M.; Probanza, A.; Jiménez, P.A. Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes. Int. J. Environ. Res. Public Health 2021, 18, 9867. https://doi.org/10.3390/ijerph18189867
González D, Robas M, Probanza A, Jiménez PA. Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes. International Journal of Environmental Research and Public Health. 2021; 18(18):9867. https://doi.org/10.3390/ijerph18189867
Chicago/Turabian StyleGonzález, Daniel, Marina Robas, Agustín Probanza, and Pedro A. Jiménez. 2021. "Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes" International Journal of Environmental Research and Public Health 18, no. 18: 9867. https://doi.org/10.3390/ijerph18189867
APA StyleGonzález, D., Robas, M., Probanza, A., & Jiménez, P. A. (2021). Selection of Mercury-Resistant PGPR Strains Using the BMRSI for Bioremediation Purposes. International Journal of Environmental Research and Public Health, 18(18), 9867. https://doi.org/10.3390/ijerph18189867