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Abstract: Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide
and the most common cause of cancer-related death. To date, it is still a challenge to estimate the
magnitude of the clinical impact of physical activity (PA) on those parameters producing significative
changes in future BC risk and disease progression. However, studies conducted in recent years
highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but,
more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional
therapies. In this review, we focused our attention on data obtained from human studies analyzing,
at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive
impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses.
Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in
this subtype of BC, an overview of their role will also be made throughout this review.

Keywords: breast cancer; physical activity; body composition; risk factors; cancer prevention

1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer among women in 140
of 184 countries worldwide, and it is the most common cause of cancer-related death in
103 countries [1]. To date, it is considered curable in ~70–80% of patients with early-stage,
non-metastatic disease [2].

BC is known to be a hormone-dependent disease characterized by molecular mecha-
nisms involving activation of human epidermal growth factor receptor 2 (HER2, encoded
by ERBB2), hormone receptors (estrogen receptor and progesterone receptor) and/or BRCA
mutations [2]. Most BCs (70–80%) express a significant amount of estrogen receptors (ER)
and/or progesterone receptors (PR), which are considered biomarkers of a favourable
prognosis [3].

Although BC is defined as a malignant tumor that affects the breast, there are recogniz-
able different types on the base of specific breast cells involved. The following classification
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is made according to the stage of the tumor and where it takes place. In particular, it
is possible to distinguish the ductal carcinoma in situ (DCIS), which is considered non-
invasive or pre-invasive, whose cells have become cancerous but have not yet invaded the
surrounding tissues, and nonobligate precursors of invasive BC (20% of screen detected),
as well as the invasive BC whose cancerous cells have reached the surrounding tissues [1,4].
It is estimated that about 50% of DCIS patients will progress to invasive cancer [4].

Another classification is made according to the molecular subtype, determined by
the analysis of the gene expression of HER2, and by quantitative hormone receptor (HR)
analysis [5], which so far has identified four main subtypes: (1) Luminal A (HR+/HER2−),
the most common type that tends to be slower growing and less aggressive with the
most favourable prognosis; (2) Luminal B (HR+/HER2+), which results in HR+ and
is highly positive for Ki97 and/or HER2 protein with poorer outcomes; (3) Basal-like
(HR−/HER2−), also called triple-negative because of ER−, PR− and HER2−, with the
worst prognosis of all other subtypes and a very low survival expectancy; (4) the HER2-
enriched (HR−/HER2+) [6] (Table 1).

Table 1. Molecular subtypes of breast cancer.

Subtypes Molecular Signatures % Incidence

Luminal A ER+, PR±, HER2−, Low Ki67 ≈70%
Luminal B ER+, PR±, HER2±, High Ki67 10–20%

Triple Negative ER−, PR−, HER2− 15–20%
HER2 ER−, PR−, HER+ 5–15%

To date, women with a history of BC represent the largest group of cancer survivors
in high-income countries [7]; thus, it becomes a category of patients who require an
increasingly demanding management.

The implementation of an effective intervention plan is necessary at each level, from
the origins of the cause to the management of disease; therefore, it is a priority to under-
stand the risk factors leading to the development of disease and possible interventional
approaches.

In this narrative review, we focused our attention on data obtained from human
studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and
quaternary), the positive impact of physical activity (PA)/exercise in sedentary/non-active
subjects (<2 h × week) with ER+ BC, a subtype representing approximately 70% of all
BC diagnoses. Moreover, given the importance of ER and body composition (i.e., adipose
tissue) in this subtype of BC [8], throughout this review an overview of their role will also
be made.

2. Estrogen Receptors in Breast Cancer and Their Clinical Implications

Some of the features of human BC (e.g., initiation and progression) are derived from a
deregulation of estrogen-dependent and ER signaling pathways [9] (Figure 1).

It is known that the effects of estrogen are mediated by three different ERs: (1) the
nuclear receptor ERα, which drives almost ∼75% of BCs [10]; (2) nuclear receptor ERβ;
(3) the cytoplasmic G protein-coupled estrogen receptor 1 (GPER) [11–14].

ERα and ERβ share common structural characteristics with five different domains,
named A/B, C, D, E and F, with similar mechanism of action [14,15]. Generally, estrogens
move the cell passively by diffusion through the cellular membrane, bind ERs in the
cytoplasm and are transported to the nucleus [16]. The interaction receptor-ligand induces
conformational change of the receptors, whereby the ERs form dimers, bind DNA and
initiate gene transcription [14]. In this case, ERs regulate transcriptional processes by
nuclear translocation and binding to specific response elements, which act on the regulation
of gene expression [17].



Int. J. Environ. Res. Public Health 2021, 18, 9834 3 of 23

Int. J. Environ. Res. Public Health 2021, 18, x 4 of 24 
 

 

can also be induced by inflammatory molecules and adypokines as leptin, TNF-alpha, IL6 
and IL1-beta, produced by different cell types involved in cancer progression [37]. The 
cytokine-induced phosphorylation is mediated by the inhibition of nuclear factor κB 
kinase subunit β (IKKβ), rather than PKA or Pak1, and it is involved in cell extravasation, 
an important part of the metastatic process [37]. Once ER binds chromatin, other tran-
scription factors can redirect the binding on DNA, reprogramming the transcriptional ac-
tivity of ER to other target genes. These factors include FOXA1 [38], PBX1 [31], the tran-
scription factor AP-2γ [39], and GATA-binding protein 3 (GATA3) [40]. Therefore, differ-
ent pathways triggered by molecules, produced by the tumor microenvironment, can im-
pact ER function and influence endocrine resistance. This highlights the need to under-
stand as much as possible the molecular mechanisms related to factors involved in ER+ 
BC. 

To date, few studies performed in rat models following physical training analyzed 
the expression of ER in BC cells. In these studies, authors demonstrated an effect of PA in 
increasing the ratio of ERβ /ERα, and a reduction in the sensitivity of BC cells to the pro-
proliferative and antiapoptotic effects of estrogen, leading to apoptotic cell death [41]. 

However, further studies in human and in disease-applicable preclinical models 
could be useful to validate these mechanisms and determine if these pathways may pro-
vide molecular tools for therapeutic application. 

 
Figure 1. The estrogen signaling pathway. The estrogen signaling mainly includes activation of 
intracellular estrogen receptor (ER) that, upon ligand binding and dimerization, translocates to the 
nucleus, where it directly binds responsive elements of target genes involved in the cell growth, 
inflammation, proliferation, survival, and protein synthesis. Differently, estrogens mediate non-ge-
nomic effects and activate intracellular signaling through the binding of the plasma membrane re-
ceptors, ER variants and the G protein-coupled receptor (GPR30). This binding induces the rapid 
activation of protein kinases, phosphatidylinositol-3-kinase (PI3K), renin-angiotensin system (Ras) 
and rapidly accelerated fibrosarcoma (Raf), as well as the transcription factors nuclear factor kappa-
light-chain-enhancer of activated B cells (NFκB) and mitogen-activated protein kinase (MAPK), 
which regulate the gene expression of estrogen target genes. 

3. The Role of Adipose Tissue 
According to the anatomical location and to the main cell component, adipose tissue 

can be divided in three different types: white adipose tissue (WAT), which represents 
more than 95% of the fat mass, brown adipose tissue (BAT), which constitutes 1% to 2% 
of fat, and the most recently discovered beige adipose tissue [42]. 

Figure 1. The estrogen signaling pathway. The estrogen signaling mainly includes activation of
intracellular estrogen receptor (ER) that, upon ligand binding and dimerization, translocates to the
nucleus, where it directly binds responsive elements of target genes involved in the cell growth,
inflammation, proliferation, survival, and protein synthesis. Differently, estrogens mediate non-
genomic effects and activate intracellular signaling through the binding of the plasma membrane
receptors, ER variants and the G protein-coupled receptor (GPR30). This binding induces the rapid
activation of protein kinases, phosphatidylinositol-3-kinase (PI3K), renin-angiotensin system (Ras)
and rapidly accelerated fibrosarcoma (Raf), as well as the transcription factors nuclear factor kappa-
light-chain-enhancer of activated B cells (NFκB) and mitogen-activated protein kinase (MAPK),
which regulate the gene expression of estrogen target genes.

Three ERα isoforms have been identified in mammals: full-length ERα, and two
truncated isoforms, ERα36 and ERα46, respectively. ERα36 expression has been particularly
detected in BC, as well as in endometrial, colorectal, gastric and hepatic cancers [14,18].

ERα and ERβ are distributed differently in human breast tissues: ERα expression is
mainly limited to the nuclei of epithelial cells present in the lobules and ducts of the healthy
breast. Differently, ERβ is also expressed in normal breast tissue, where it is detectable in
myoepithelial cells as well as in surrounding stromal and endothelial cells [14,19,20].

BCs not expressing ERα were tested positively for ERβ expression. It has been demon-
strated that ERβ possesses a weaker activity than ERα, able to repress the transcriptional
activity of ERα, although this mechanism remains to be investigated [14,19,21]. A com-
prehensive clarification about the role of ERβ in BC is hampered by the presence of five
different isoforms of ERβ (ERβ, β2, β3, β4, and β5). However, although more investiga-
tions are needed, the general consensus is its suppressor role in BC, since it is able to reduce
growth, proliferation and cancer cell migration and invasion mediated by ERα, [14,22–24].
Besides its genomic actions, ER mediates non-genomic effects towards the transmembrane
protein, GPER, commonly accepted as being responsible for the extra-nuclear, non-genomic
effects of estrogens [14,25].

Multiple ER-targeting drugs are used routinely in the clinical practice to treat ER+ BC
patients; however, initial or acquired resistance to these therapies frequently occurs, with
recurrence of metastatic tumors [9]. Therefore, understanding the mechanisms leading
to drug resistance becomes extremely important. In normal conditions, the activity of ER
is controlled mainly by the availability of estrogens, which bind the ER-ligand-binding
domain and mediate receptor dimerization, nuclear translocation and the binding to estro-
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gen response elements (EREs), located close the promoters of target genes [21]. Different
studies demonstrate that growth factors, hormones and cytokines produced by the tumor
microenvironment play pivotal roles in the progression of ER+ BC, and many of these
signaling pathways can directly affect the transcriptional activity and function of ER, inde-
pendently by the classical estrogenic ligands. In particular, the ER phosphorylation may
have a key role in the receptor activation in a ligand-independent manner [26].

Phosphorylation of Ser118 (S118) is one of the most well-characterized systems of ER
activation independently of estrogens and can be induced by epidermal growth factor (EGF)
and mitogen-activated protein kinase (MAPK) [27–29]. This EGF-induced phosphorylation
has been demonstrated to be involved in increasing cell proliferation in tumorigenic cells,
favouring the binding of ER to chromatin through cooperation with several transcription
factor complexes, such as AP-1 transcription factors and early B-cell leukaemia transcription
factor 1 (PBX1) [30,31]. To be noted, the Y537 and D538 ER BC mutants are constitutively
phosphorylated on S118 in an estrogen-independent manner [32,33], highlighting the
importance of this phosphorylation event for ER activity and suggesting the S118 as a
fundamental regulatory site in the drug-resistant metastatic disease. Phosphorylation
of S305 appears to be important for this estrogen-independent activation of ER as well.
This event is mediated by the protein kinase-A (PKA) [34] and Pak1 [35] in the absence of
estradiol and drives receptor activity that is refractory to tamoxifen inhibition [34].

Particularly, PKA-mediated ER phosphorylation induces receptor binding to non-
classic regulatory sites that differ from those typically bound by ER after estradiol-induced
activation. It was suggested that this mechanism induces the expression of the oncogene
c-MYC responsible of tamoxifen resistance [36]. The phosphorylation on S305 can also
be induced by inflammatory molecules and adypokines as leptin, TNF-alpha, IL6 and
IL1-beta, produced by different cell types involved in cancer progression [37]. The cytokine-
induced phosphorylation is mediated by the inhibition of nuclear factor κB kinase subunit
β (IKKβ), rather than PKA or Pak1, and it is involved in cell extravasation, an important
part of the metastatic process [37]. Once ER binds chromatin, other transcription factors
can redirect the binding on DNA, reprogramming the transcriptional activity of ER to
other target genes. These factors include FOXA1 [38], PBX1 [31], the transcription factor
AP-2γ [39], and GATA-binding protein 3 (GATA3) [40]. Therefore, different pathways
triggered by molecules, produced by the tumor microenvironment, can impact ER function
and influence endocrine resistance. This highlights the need to understand as much as
possible the molecular mechanisms related to factors involved in ER+ BC.

To date, few studies performed in rat models following physical training analyzed
the expression of ER in BC cells. In these studies, authors demonstrated an effect of PA
in increasing the ratio of ERβ/ERα, and a reduction in the sensitivity of BC cells to the
pro-proliferative and antiapoptotic effects of estrogen, leading to apoptotic cell death [41].

However, further studies in human and in disease-applicable preclinical models could
be useful to validate these mechanisms and determine if these pathways may provide
molecular tools for therapeutic application.

3. The Role of Adipose Tissue

According to the anatomical location and to the main cell component, adipose tissue
can be divided in three different types: white adipose tissue (WAT), which represents more
than 95% of the fat mass, brown adipose tissue (BAT), which constitutes 1% to 2% of fat,
and the most recently discovered beige adipose tissue [42].

This tissue derives from WAT by a conversion process called the browning of adipose
tissue but resembles BAT in morphology and role. The formation of beige adipocytes is
reversible and is generally a consequence of adrenergic stimulation, cold exposure, diet
and exercise [43–45].

The WAT is the main storage site for energy deposition, and it is composed of mature
adipocytes capable of storing energy in the form of triacylglycerol (TAGs) in lipid droplets.
Only 20–30% of adipose tissue is made up of mature adipocytes; the remaining 70–80% is
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composed of the stromal vascular fraction (SVF) [46,47], connective tissue matrix, as well as
vascular and neural tissues. The non-adipocyte cellular component includes various types
of immune cells such as macrophages, neutrophils, eosinophils, mast cells, lymphocyte T
cells and B cells, as well as preadipocytes and fibroblasts [48,49].

This cellular heterogeneity clearly demonstrates that adipose tissue is a complex organ
with different functions, regulating the metabolism of the whole body [47]. In particular,
it is considered an endocrine organ releasing numerous substances, such as adipokines
(i.e., adiponectin, leptin and resistin), hormones, as well as cytokines (i.e., TNF-α, IL-6,
IL-1, IL-8) [50]. This explains the excess adipose tissue in the body, which contributes to
the onset of a pathological state of many organs and systems [51]. Among the different
types of adipose tissue, WAT is responsible for the inflammation process. This means that
the inflammation grade increases with the progression of obesity, and the results strongly
associated with an increase in adipocytes size and a systemic insulin resistance (IR) state.

Numerous preclinical and clinical studies demonstrated that chronic low-grade in-
flammation of adipose tissue, also called “metaflammation”, is strongly and consistently
associated with excess body fat mass and metabolic disease onset and progression. This
mechanism is initiated and sustained over time by adipocyte dysfunction, which releases
inflammatory adipokines, and by the infiltration/activation of numerous immune cells (i.e.,
pro-inflammatory M1 macrophages, dendritic cells, mast cells, neutrophils, B cells, and
T cells), which amplify the inflammatory response through the production/secretion of
proinflammatory cytokines and chemokines [52,53]. Differently from the acute inflamma-
tion, metaflammtation is characterized by chronic low-grade inflammation, since cytokine
release and immune cell infiltration come out gradually and remain unresolved over
time [52,53].

Besides adipokines and inflammatory mediators, adipose tissue is responsible for es-
trogen production. Especially in postmenopausal woman, the increase in BMI is associated
with a high release of estrone, estradiol and free estradiol, as well as a high expression
of the enzyme aromatase. These abnormal changes lead to excessive, 10-fold estrogen
secretion in the breast and therefore to a higher risk of developing BC [54,55].

As shown in Figure 2 adipocyte hypertrophy leads to “unhealthy” adipocytes char-
acterized by mitochondria dysfunction, which produces reactive oxygen species (ROS),
lipolysis and insulin resistance. The inability of insulin to suppress lipolysis increases free
fatty acid (FFA) mobilization. In the absence of FFA utilization, they can trigger adipocyte
inflammation and increase inflammatory macrophages (M1), which also produce TNF-α, a
cytokine able to induce a supra-physiological production of ROS through the inhibition of
insulin signaling and mitochondrial function.

Exercise training has been shown to have a multitude of health benefits, including
those at a metabolic, antioxidant, and anti-inflammatory level [56–60]. For instance, resis-
tance training positively affects WAT metabolism. Indeed, exercise decreases blood glucose
levels and increases the activity of different hormones, including glucagon, catecholamines
(epinephrine and norepinephrine), growth hormone (GH), atrial natriuretic peptide (ANP),
brain natriuretic peptide (BNP) and cortisol. These molecules act as lipolytic hormones
and regulate the release of FFA and glucagone, providing energy substrates for skeletal
muscle cells [61–63]. By creating a negative energy balance, fat loss is facilitated, which
occurs as a first adaptation with the reduction in the adipocytes size, which becomes more
insulin-sensitive, a mechanism by which the inflammation of the WAT and the dysregu-
lated lipolysis are reduced. Moreover, the stimulation of lipolysis and insulin sensitivity
following exercise training is correlated with increased FFA oxidation and lower lipid
storage in WAT.

Other important effects related to training concern inflammation of the adipose tissue
and mitochondrial function. In fact, the adaptation process involves not only the mito-
chondria in skeletal muscle, but also those present in adipose tissue. A higher density of
mitochondria is characteristic within BAT, but mitochondrial biogenesis can be induced
by exercise training, improving the brown adipocyte-specific gene expression and the
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phenotypic switching from WAT to BAT. This framework of training-induced adaptation
clarifies not only the importance of weight loss, but also better adipose tissue function
through increased mitochondrial activity and a reduced inflammation level. This makes
the fat cells “fit”, which can be used in favour of a healthy body [64].
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Figure 2. Adipose-related factors engaged to the initiation and progression of breast cancer. Normal
adipose tissue, generally existing in “normal weight” (NW) subjects (%BF cutoff values between 8
and 20% for men and 14 and 23% for women), is characterized by smaller and less adipocyte cells and
M2-polarized macrophages that release anti-inflammatory cytokines and adiponectin that contribute
to normal breast cell development. In overweight (OW) and obese condition (OB), adipose tissue is
characterized by larger size and more abundant adipocytes, releasing pro-inflammatory cytokines,
M1-polarized macrophages, leptin, free fatty acids (FFAs), and estrogens, synthesized by aromatase
enzyme. These factors act as mutagens stimulating the growth of tumor cells. A tumor environment
produces more reactive oxygen species (ROS), which generate DNA damage, amplify and induce
mutagenesis, tumor growth and progression. Therefore, the OW/OB condition provides a favorable
microenvironment for adipose tissue to induce tumor establishment and progression.

4. Physical Activity and Physical Exercise in Breast Cancer Prevention

Since the interchangeable use of exercise and PA in research literature, Dasso [65]
tried to clarify the differences. The author reported the Center for Disease Control and
Prevention definition of exercise, which is a subcategory of PA, intended as a planned,
structured, repetitive, and purposive activity so that the improvement or maintenance
of one or more functional parameters can be objectively quantified. Instead, as reported
by the World Health Organization [66], PA consists in any bodily movement produced
by skeletal muscles that result in energy expenditure. According to the author, a clear
definition of exercise allows health care providers to speak to patients about improving
their PA.

However, regardless of the definitions, it is known that both PA and exercise play a pivotal
role on health status, helping to prevent different diseases, including cancer [56,57,67–81].

To date, five levels of disease prevention are recognized [82]:

1. Primordial prevention—It consists in programs and campaigns, usually addressed
to the younger population, aimed at promoting a healthy lifestyle and avoiding the
incurrence of risk factors;

2. Primary prevention—It consists in measures, addressed to a susceptible but healthy
population, aimed at preventing a disease through specific activities that limit risk
exposure or increase the immunity;

3. Secondary prevention—It consists in procedures that increase the early disease de-
tection, and its target is healthy-appearing individuals with subclinical forms of the
disease, and often occurs in the form of screenings. The objective is the early iden-
tification of sick or high-risk subjects to achieve healing or prevent the onset and
progression of the disease;
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4. Tertiary prevention—It targets both clinical and outcome stages of a disease, with the
aim to reduce the severity of the disease as well as of any associated consequences,
and to reduce the effects of the disease once established in an individual, through a
tailored rehabilitation program;

5. Quaternary prevention—It consist in practice able to protect patients from medical
interventions that cause more harm than benefits, due to the over-treatment condition
or final-stage of the disease.

Epidemiological studies have highlighted a variety of modifiable and non-modifiable
BC risk factors [83], also known as host and environmental factors [84,85].

Among the non-modifiable risk factors, there are: family history of the cancer, BRCA1
and/or BRCA2 mutations, reproductive factors that influence endogenous estrogen expo-
sure (nulliparity, early age at menarche, later menopause, and later age at first full-term
pregnancy), race and ethnicity.

Differently, the modifiable risk factors include alcohol drinking, physical inactivity,
excess body weight, as well as the use of exogenous hormones (oral contraceptives and
menopausal hormone replacement therapy), and smoking [83].

BC is considered a heterogeneous disease with 30% of cases recognized as familial
BC (which reveals the association with number of high-, moderate-, and low-penetrance
susceptibility genes) compared to 70% of cases of BC presenting as sporadic [86]. These
data highlight the importance to modify those risk factors correlated with the lifestyle to
potentially reduce the disease incidence [87].

Particularly interesting are the results of several studies, which found a strong correla-
tion between adipose inflammation and an alteration in estrogen biosynthesis/signaling
pathways in obese patients. The excessive chronic exposure to estrogens increases the risk
of developing BC [11,88,89]. This led to the recognition of obesity as a risk factor for the
hormone-dependent subtype of BC, especially in postmenopausal women [15].

PA has been demonstrated to positively impact specific biomarkers related to physio-
logical and pathological condition [56,57,75,76,90–97] or to reduce the incidence of cardio-
vascular and metabolic diseases in broad populations of individuals, including women,
older individuals, patients with coronary heart diseases [98], as well as those with dia-
betes [77,97,99] and heart failure [98]. Moreover, numerous research studies have identified
the PA as an important factor in the primary prevention of BC able to ameliorate the
patient conditions in the different stages of the disease, either after the diagnosis of BC
or in the early post-surgery steps improving survival outcomes [67,68,70–73,100]. Indeed,
the authors have been demonstrated positive effects of well-structured aerobic or strength
training protocols on Quality of Life (QoL), fatigue, aerobic fitness, and muscular strength
in BC survivors during and after treatments [101–103]. Moreover, it is known that the
beneficial association between PA and BC survival are partially related to biological and
biochemical changes capable of influencing several hormones (i.e., sex hormones, insulin,
IGF-1) and DNA methylation levels of specific tumor suppressor genes, which appear to
be directly involved in the progression of this disease [104].

5. Physical Activity and Exercise as Fundamental Approaches within ER-Positive
Breast Cancer at Each Disease Prevention Level

The strong association between PA/exercise and BC risk is widely recognized, report-
ing beneficial effects on tumor number sites, growth, metastasis and incidence [105,106].
The mechanisms involved in these processes are complex and multifaceted and may be
mediated, at least in part, by a reduction in inflammation markers, particularly MCP-1
and IL-6 [105], and the reduced expression of the transcription factor NF-κB [107]. To date,
most of the main findings regarding the molecular mechanisms involving physical exercise
and tumorigenesis were obtained in preclinical models available elsewhere [108–112].

In the next paragraphs, we have reported data from human studies related to the
impact of PA on BC at each level of disease prevention: primary, secondary, tertiary and
quaternary. In particular, we focused on studies analyzing whether or not the amount of
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exercise prescribed influences BC biomarker levels in patients with a sedentary lifestyle
(<120 min/week of moderate-to-vigorous PA) [113].

Unfortunately, no studies are still conducted on the possible role of physical exercise
as “primordial” BC intervention.

5.1. Primary Prevention

The American Cancer Society (ACS) and the American Institute for Cancer Re-
search/World Research Fund (AICR/WCRF) publish PA guidelines for cancer prevention.
For an adult, the ACS guideline recommended 150 min/week of moderate activity or
75 min/week of vigorous activity throughout the week [114]. The AICR/WCRF recom-
mends 30 min/day of moderate activity increasing to 60 min/day of moderate activity or
30 min/day of vigorous activity as fitness improves [115]. However, to date, questions
remain about the applicability of these guidelines with respect to reductions in BC risk.

Furthermore, even if an exercise intervention achieves these targets, it is unknown
what the long-term implications are for postmenopausal BC risk.

Previous randomized controlled trials [116–129] have highlighted several plausible
biological mechanisms whereby PA can reduce postmenopausal BC risk (Table 2).

Table 2. Exercise and physical activity in primary prevention of breast cancer in overweight/obese postmenopausal women.

REF. GROUPS EXERCISE CHARACTERISTICS MAIN OUTCOMES

[128]

(n = 173)
age 50 to 79 years

BMI ≥ 25 kg/m2 (mean 30.4 ± 4.1)
Groups:

AG (n = 84)
CG (n = 86)

12 months
AG: endurance exercise, 5 d/w

progressively increase to 45 min at
60–75% HRmax;

CG: no interventions

↓ Fat mass
↓ Testosterone and free

testosterone
= DHEA, DHEA-S
=androstenedione

[129]

(n = 169)
age 50 to 75 years
BMI ≥ 25 kg/m2

(mean 30.4 ± 4.1)
Groups:

AG (n = 84)
CG (n = 85)

12 months
AG: endurance exercise, 5 d/w

progressively increase to 45 min at
60–75% HRmax;

CG: no interventions

↓ Fat mass
↓ Estrone

↓ Estradiol and free estradiol
Ô SHBG

[127]

(n = 189)
age 50 to 69 years

BMI 22–40 kg/m2 (mean 27.3 ± 3.6)
Groups:

AG (n = 96)
CG (n = 93)

12 months
AG: 3 d/w of combined endurance +

strength program (from 60–85% HRmax)
(2.5 h/w)

CG: no interventions

↓ Fat mass
=estrogen levels
=androgen levels

=SHBG

[116]

(n = 320)
age 50–74 years

BMI 22–40 kg/m2 (mean 29.1 ± 4.5)
Groups:

AG (n = 160)
CG (n = 160)

12 months
AG: 225 min/w (average of 3.6 d/w for

178 min/w) at 70% to 80% HRR
CG: no interventions

↓ Estradiol and free estradiol

Ô SHBG
↓ Body weight

= estrone, androstenedione and
testosterone

[119]

(n = 439)
age 50–75 years

BMI ≥ 25 kg/m2

(mean 30.9)
Groups:

DG (n = 118)
AG (n = 117)

DAG (n = 117)
CG (n = 87)

12 months;
DG: daily energy intake of 1200 to

2000 kcal/d based on baseline weight;
AG: ≥45 min MVPA (70% to 85% heart

rate max), 5 d/w;
DAG: both interventions;

CG: no interventions

↓ Fat mass in all groups vs. CG
↓ Insulin in DG and DAG
↓ hs-CRP in DG and DAG
↓ Leptin in all groups vs. CG

Ô Adiponectin in DG and DAG
↓ Estron, estradiol, free estradiol,
and free testosterone in all in all

intervention groups vs. CG
↓ Total testosterone in DAG

Ô SHBG in DG and DAG
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Table 2. Cont.

REF. GROUPS EXERCISE CHARACTERISTICS MAIN OUTCOMES

[126]

(n = 439)
aged 50–75 years
BMI ≥ 25 kg/m2

(mean 30.9)
Groups:

DG (n = 118)
AG (n = 117)

DAG (n = 117)
CG (n = 87)

12 months;
DG: daily energy intake of
1200–2000 kcal/d based on

baseline weight;
AG: ≥45 min of MVPA (70–85% heart

rate max), 5 d/w (225 min/w).
DAG: both interventions (diet + exercise)

CG: no interventions

↓ Fat mass in all intervention
groups vs. CG;

↓Waist circumference in all
intervention groups vs. CG;

[117]

(n = 382)
age 50–74 years

BMI 22–40 kg/m2 (mean 29.4 ± 4.4)
Groups:

COG (n = 193)
MVG (n = 189)

12 months of endurance activity (5 d/w,
3 supervised, 2 unsupervised);

COG: 60 min/session, 60–80% HRR
MVG: 30 min/session, 60–80% HRR

↓ Fat mass depending on exercise
volume (high or moderate);

=sex hormone levels between
groups

[120]

(n = 243)
age 50–69 years

BMI 25–35 kg/m2

(mean 29.5 ± 2.6)
Groups:

DG (n = 97)
COG (n = 98)
CG (n = 48)

16 weeks;
DG: caloric deficit of 3500 kcal/w with

habitual physical activity level;
COG: 4 h/w of combined endurance
(from 60% to 90% HRR) and strength

program with an average energy
expenditure of 2530 kcal/week;

CG: habitual physical activity level +
standardized diet

↓ Fat mass in DG and COG
↓ hs-CRP in DG and COG;

=IL6 in all groups;
↓ Adiponectin in COG;
↓ Leptin in DG and COG

[121]

(n = 41)
age 50–74 years

BMI 23.8–32.9 kg/m2

(mean 28.2 ± 3.4)
Groups:

AG (n = 22)
CG (n = 19)

6 months;
AG: 3 d/w progressively increase to

50 min at 70–80% HRmax;
CG: no interventions

=Leptin
=Resistin
=Fat mass

Ô Aerobic Fitness level
↓ BMI

[122]

(n = 306)
age 50–74 years

BMI 22–40 kg/m2

(mean 29.0)
Groups:

AG (n = 153)
CG (n = 154)

12 months;
AG: 45 min/d, 5 d/w (70% to 80% HRR);

CG: no interventions

↓ Total estradiol
=estrogen metabolites and

metabolic pathways

[123]

(n = 439)
age 50–75 years

BMI ≥ 25 kg/m2

(mean 30.0 ± 3.7)
Groups:

DG (n = 118)
AG (n = 117)

DAG (n = 117)
CG (n = 87)

12 months + 18 months follow-up (FU);
DG: daily energy intake of
1200–2000 kcal/d based on

baseline weight;
AG: ≥45 min of MVPA (70–85% heart

rate max), 5 d/w (225 min/w);
DAG: both interventions (diet + exercise);

CG: no interventions

Ô SHBG in DAG;
=SHBG in DG and AG;

Participants who reported weight
loss had statistically greater

decreases in free estradiol, free
testosterone, and increases in

SHBG
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Table 2. Cont.

REF. GROUPS EXERCISE CHARACTERISTICS MAIN OUTCOMES

[118]

(n = 333)
age 50–74 years

BMI 22–40 kg/m2

(mean 28.9 ± 4.4)
Groups:

COG (n = 168)
MVG (n = 165)

12 months of endurance activity (5 d/w,
3 supervised, 2 unsupervised) +

12 months follow-up (FU);
COG: 60 min/session, 65% to 75% HRR;
MVG: 30 min/session, 65% to 75% HRR

↓ Fat mass depending on exercise
volume (high or moderate);
↓ hs-CRP, insulin, glucose,

HOMA-IR, estrone, estradiol,
free estradiol at 12 months;

SHBG at 12 months;
↓ Glucose, insulin, HOMA-IR,

estrone at FU;

Ô hs-CRP, free estradiol, estradiol
at FU;

↓ SHBG at FU
=biomarker changes over the time

between groups.

[124]

(n = 35)
age 50–65 years

BMI ≥ 25 kg/m2

(mean 33.2 ± 1.4)
Groups:

AG (n = 10)
COG (n = 13)
CG (n = 12)

12 weeks, 3 d/w;
AG: 60 min/session of endurance

exercise, 55–75% of HRR;
COG: 40 mn resistance (6 exercises, 3 sets

of 8–12 repetition at 65% of 1RM) +
20 min endurance exercise;

CG: no interventions

↓ Fat mass in AG and COG;
↓ Lean body mass in the COG;
↓ DHEA-S (−13%), total (−40%)

and free testosterone (−41%)
in AG;

↓ Total (25%) and free testosterone
(21%) in COG;

=estrogen levels in both groups.
The decrease in fat mass and
DHEA-S correlates with an

increase in circulating SHBG.

Legend: AG, aerobic group; DG, diet group; DAG, diet + aerobic group; CG, control group; COG, combined group (diet + exercise); HVG,
high volume group; MVG, moderate volume group; MVPA, moderate to vigorous physical activity; HRR, heart rate reserve; HRmax,
maximal heart rate; FU, follow-up; w, week; d, days, HOMA-IR, fasting glucose (mmol/L) x fasting insulin (mIU/mL)/22.5; hs-CRP,
high-sensitivity C-reactive protein; SHBG, sex-hormone-binding globulin; DHEA-S, dehydroepiandrosterone sulfate; 1RM, one-rep
maximum; BMI, body mass index. The Red color indicates reported parameters worsened during experimental trails.

These studies presented in Table 2 highlight how PA/exercise interventions contribute
to the modulation of adiposity, endogenous sex and metabolic hormones, and inflammatory
markers. A careful analysis of the research papers showed that these effects, especially those
on sex hormones, were dependent on the characteristics of exercise (i.e., type, intensity,
duration and frequency) and on the homogeneity of the subjects recruited in terms of BMI.
In particular, it was evident that 12 months of training (5 d/w, 45 min at 60–85% HRmax),
mainly of endurance activity, in subjects with a narrow range of BMI between overweight
and obesity, showed a significant decrease in fat mass, free and total testosterone, estrone,
free and total estradiol, as well as an increase in SHBG [117,119,126,129].

These results seem to be achieved when people also followed a healthy dietary lifestyle
combined with training, evidencing a decrease in insulin, adiponectin, leptin and hsCRCP
levels, likely associated with a lower BC risk [119–121,123]. A change of exercise charac-
teristics such as type and frequency, as well as the choice of a non-homogeneous sample,
was sufficient to determine a lower impact of PA [116,122,127]. A minor impact of PA was
observed when the training period was shortened, and the subjects recruited had a wider
range of BMI [121].

Interestingly, in 2019, both Duggan et al. [123] and Friedenrich et al. [118] demon-
strated that most of the beneficial effects of PA were maintained even after 18 months of
follow-up. Still, the caloric restriction combined with exercise seems to be most beneficial
for lowering sex hormone levels [119,123]. Comparing the combination of exercise and
caloric restriction with caloric restriction only, all results favored the combination, even
when weight loss between the groups was comparable. An additional important advantage
of combining caloric restriction with adequate protein intake and regular physical activity
is the preservation of as much muscle mass, and thereby muscle strength, physical function
and cardiovascular fitness, as possible [130–132].
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Finally, Gonzalo-Encabo et al. [124] and van Gemert et al. [120] demonstrated that a
combined exercise (i.e., resistance and endurance activity), adapted from the American
College of Sports Medicine’s guidelines [133], improves body composition and sex hormone
profile in postmenopausal women, known to be important risk factors for ER+ BC.

5.2. Secondary and Tertiary Prevention

The latest evidence supports the role of exercise prescription to reduce morbidity,
improves function and quality of life, and potentially improves survival, with very low
risk of harm [67,134,135]. As suggested by Schmitz [136], on the basis of other diseases’
rehabilitation programs, a model to integrate exercise prescription into cancer clinical
care is needed to reduce the risk of mortality and recurrence, through improvements in
functional capacity, body composition and other several factors [137].

To date, numerous side effects related to adjuvant hormone therapy were reported,
such as biological (dyslipidemia), physical (weight gain, hot flashes, vaginal dryness,
sexual disorders with low libido, musculoskeletal alterations), and psychosocial (anxious-
depressive disorders, poor body image, difficulties of professional reintegration) [138,139].

More specifically, the aromatase inhibitor, a drug commonly prescribed for post-
menopausal ER+ BC, has been shown to induce an increase in body fat and a reduction
in insulin sensitivity [140–142], as well as long-term cardiotoxicity [143–145], osteoporo-
sis [146–148], and arthralgia [149–151].

In this section, we included trials proposing exercise and PA protocols for BC patients
(from I to III stage) before, during, or after the classic pharmacological treatments, when
they reported the ER + or the aromatase inhibitors in the patient characteristics (Table 3).

Table 3. Exercise and physical activity as secondary and tertiary prevention among ER+ breast cancer survivors before and
during pharmacological treatments.

REF. GROUPS EXERCISE CHARACTERISTICS MAIN OUTCOMES

[152]

(n = 85)
age 52–62 years

IRG (n = 42)
DRG (n = 42)

6 months (after treatment) 2 d/w
IRG and DRG: 3 set 12 repetition (13 w

supervised + 13 w no-supervised)

↓ Body fat and IGF-II in IRG

Ô IGFBP-3 in IRG

[153]

(n = 66)
age 46–58 years
HAG (n = 22)
HRG (n = 21)
CG (n = 23)

6 months (before and during adjuvant CH) 4 d/w
HAG: 15–30 min

HRG: 2 sets 10 repetitions
CG: no intervention

Ô Aerobic capacity (25%) in HAG and
(4%) in HRG

↓ BMD (6.2%) in CG, (4.9%) in HRG
and (0.7%) in HAG

↓ Aerobic capacity (10%) in CG

[154]

(n = 101)
Age

HARG (n = 51)
CG (n = 50)

16 weeks (after CH, RT, during HT) 2 d/w
HARG: 50-min supervised strength + 90 min

unsupervised aerobic
CG: no intervention

↓ Fast insulin and hip circumference
in HARG

= insulin resistance, fasting glucose
and BMI

[155]

(n = 90)
age 41–48 years

DG (n = 29)
DHARG (n = 29)

DHARG + FVLF (32)

6 months 5 d/w
DG: Calcium reach Diet

DHARG: Calcium Diet + 150 min of MVPA
AT + RT

DHARG + FVLF: Calcium Diet + exercise + FVLF

↓Waist circumference and % body fat
in DHARG + FVLF

= insulin, proinsulin, IGF-1, CRP,
cholesterol, SHBG, IL-1B, and

TNFR2 in all groups

Ô In QoL in all groups

[156]

(n = 75)
age 55–64 years

AG + HAG (n = 37)
CG (n = 38)

6 months (after CH) 5 d/w
AG + HAG: 3 d/w 150 min/week of supervised
gym- and 2 d/w home-based moderate-intensity

aerobic exercise
CG: no intervention

↓ FAT in AG + HAG

Ô LM in AG + HAG
↓ FAT, LM and BMD in CG

[157]

(n = 26)
Age 40–60 years

AG (n = 16)
CG (n = 10)

8 weeks
AG: moderate intensity

CG: no intervention

↓Waist circumference in AG

Ô PA level
= blood pressure, HDL, insulin

resistance and CRP
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Table 3. Cont.

REF. GROUPS EXERCISE CHARACTERISTICS MAIN OUTCOMES

[158]

(n = 90)
age 55–65 years
DARG (n = 47)

CG (n = 43)

6 months (duirng and after CH) 3 d/w
DARG: 30 min 65–80% predicted HRmax +

10–15 min resistance band exercise + total daily
caloric intake 600 kcal below their requirements

CG: no intervenation

↓ Central adiposity, WHR, total
cholesterol and leptin in DARG

Ô Predicted VO2max in DARG

[159]

(n = 28)
age 56–66 years

ARG (n = 15)
CG (n = 13)

12 weeks, supervised 6 wks, unsupervised 6 wks
ARG:, 150 min/wk aerobic moderate intensity +

resistance exercise, 2 d/wk
CG: no intervention

Ô IL6 and predicted O2 in ARG
↓ IL-10, adiponectin, fatigue and

sleep disturbance in ARG

[160]

(n = 46)
age 30–70 years

ARG (n = 22)
CG (n = 24)

12 weeks 5 d/w
ARG: 160 min/wk at 48–52% of heart rate reserve

+resistance exercise
CG: no intervention

↓ %BF, IL10, anxiety, sleep
dysfunction, exercise social support

in ARG

Ô VO2max in ARG

[161]

(n = 242)
age ≥ 18 years

AG (n = 78)
RG (n = 82)
CG (n = 82)

3 d/w during CH
AG: 45 min at 80% VO2max

RG: two sets of 8–12 at 60–70% of estimated 1-RM
GC: no intervention

Ô DFS and RFI in AG and RG

[162]
(n = 165)

DG (n = 83)
DRG (n = 82)

12 months (after CH, during antiestrogenic
treatment) 7 d/w

DG: food naturally high in proteins, calcium,
probiotics and prebiotics

DRG: diet + 4 reps of 1 isometric exercise

↓Weight and fat in DG and DRG
↓ Visceral fat in DRG

[163]

(n = 36)
age 63–75 years

ARG (n = 18)
CG (n = 18)

9 months (during AI) 3 d/w
ARG: 30 min at 75/80% HRmax + 3 sets 8–10 reps

at 75% 1RM
CG: no intervention

Ô Osteocalcin in ARG
↓ Total mass, total fat and HDL in

ARG

[164]

(n = 240)
age 52–64 years

ARG-HIIT (n = 79)
AG-HIIT (n = 80)

CG (n = 81)

16 weeks 2 d/w + 12 months FU (during and
after CH)

ARG-HIIT: 3 sets 10 rep at 70–80% 1RM + 3 ×
3-min bouts on cycle ergometer, 1 min of recovery
AG-HIIT: from 20 min MACT to aerobic part of

ARG-HIIT
CG: no intervention

Ô Role functioning in RG-HIIT and
AG-HIIT

↓ Total cancer-related fatigue in
RG-HIIT and AG-HIIT

Ô Pain in CG

[69]

(n = 23)
age 51–63 years

ARG-HIIT (n = 8)
AG-HIIT (n = 9)

CG (n = 13)

16 weeks 2 d/w + 12 months FU (during and
after CH)

ARG-HIIT: 3 sets 10 rep at 70–80% 1RM + 3 ×
3-min bouts on cycle ergometer, 1 min of recovery
AG-HIIT: from 20 min MACT to aerobic part of

ARG-HIIT
CG: no intervention

Ô Muscle fiber CSA and SC count per
fiber in ARG-HIIT

↓ Symptoms and displayed gains in
lower limb in ARG-HIIT and

AG-HIIT

Ô Number of capillaries per fiber in
AG-HIIT

↓MHC isoform type I and protein
levels of PINK1 in CG

Ô SOD2 level in CG

Legend: CH, chemotherapy; RT, radiotherapy; HT, hormonal therapy; AI, aromatase inhibitor; AG, aerobic group; RG, resistance group;
HAG, home-based aerobic group; ARG, aerobic + resistance group; HARG, home-based aerobic + resistance group; DG, diet group; DRG,
diet + resistance group; DARG, diet + aerobic + resistance group; IRG, immediate resistance group; DRG, delayed resistance group;
CG, control group; FVLF, fruit and vegetable, low-fat diet; MVPA, moderate to vigorous physical activity; MACT = moderate aerobic
continuous training; VO2max, maximal oxygen consumption; 1RM, one-rep maximum BMI, body mass index; Fat, body fat mass; LM, lean
mass; ACSM, American College of Sport Medicine; HRmax, maximal heart rate; FU, follow-up; min, minutes; DFS, disease-free survival;
RFI, recurrence-free interval; IGFBP-3, insulin-like growth-factor-binding protein 3; IGF-1, insulin-like growth factor; CRP = C-reactive
protein; SHBG, sex-hormone-binding globulin; SOD, superoxide dismutase; MHC, myosin heavy chain; CSA, cross-sectional area; SC,
satellite cells; FACT-B, the functional assessment of cancer therapy—breast; FACT-G, the functional assessment of cancer therapy—general;
SF-36, short form health survey; TNFR2, tumor necrosis factor receptor 2; IL-1B, interleukin 1 beta; HDL, high-density lipoprotein; BSAP,
bone-specific alkaline phosphatase; PA, physical activity.
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Shmitz et al. [152] evidenced that weight exercise protocols can be performed safely
and without contraindications immediately after the traditional cancer treatments, increas-
ing muscle mass, as well as decreasing body fat % and IGF-II levels. During recent years,
literature showed the effectiveness of training, not only after the treatment, but also during
radiotherapy and chemotherapy [157,165,166]. One of the first studies on ER+ patients
compared aerobic and strength protocols performed at home [167], with a no intervention
group; data reported a most evident increase in aerobic capacity and a reduction in body
mineral density (BDM) decline in the aerobic group compared to the others, suggesting
that home-based aerobic protocol may prevent or at least minimize bone loss observed
during chemotherapy, counteracting the long-term side effects. Similarly, Ligibel and
colleagues [154] highlighted, in BC patients undergoing hormonal therapy (HT), the effects
of a combined protocol, unsupervised aerobic and supervised strength training, on fast
insulin levels and hip circumference, despite no insulin resistance, fasting glucose or body
mass index (BMI) modification being reported. These results support the relationship
between PA and BC prognosis through the modulation of insulin levels and/or body fat
or fat deposition. A similar type of protocol, supervised + unsupervised aerobic activity,
was proposed to BC after CH [156], and the results confirm that a moderate-intensity
aerobic exercise can induce favorable changes in body composition improving the disease
prognosis. Moreover, in recent years, studies have focused their attention on the effect of
exercise on C-reactive protein (CRP) and interleukins in BC patients [157,159,160,167]. The
aerobic protocol proposed by Guinan et al. [157] showed a decrease in waist circumference,
but no changes were evidenced in CRP, blood pressure, high-density lipoprotein (HDL),
and insulin resistance, probably because 8 weeks are not enough to produce these types of
modulations. On the other hand, Rogers et al. [160] proposed a combined protocol, unsu-
pervised aerobic and supervised strength, to 15 BC patients to evaluate the effects on the
inflammatory system. The results showed an improvement in predicted oxygen consump-
tion and sleep latency, but, contrary to the hypothesis, an increase in IL-6 and a decrease in
IL-10 and adiponectin, probably due to the small sample size or to the differences between
the group baseline characteristics. The following year, the same authors [159] confirmed
the previous results on IL-10, sleep dysfunction and VO2max, showing a decrease in % of
body fat in the active group. They also revealed that the increase in fatigue intensity seems
to be mediated by interleukin IL-6 and IL-10; instead, the decrease in fatigue interference
could be mediated by sleep dysfunction. Moreover, the reduction in general fatigue could
be mediated by minutes of PA, sleep dysfunction, and PA enjoyment. These results add
significant data about the importance of biobehavioral factors as mediators of fatigue
management in BC patients. According to de Paulo et al. [163], 9 months of supervised
high-intensity combined training performed three times per week can increase those pa-
rameters, such as total and fat mass, HDL and osteocalcin levels, decreasing the side effects
of aromatase inhibitors in old BC patients. In 2018 and 2019, Mijwel et al. [69,100] proposed
two different types of high-intensity interval training (HIIT), as well as a combined and
aerobic protocol, to BC patients during and after treatment. The first study evidenced a
decrease in fatigue sensation in both active groups and a decrease in pain perception in the
control group [164]. The second study [69] confirmed those results and showed an increase
in muscle fiber cross-sectional area and satellite cell count per fiber in the combined HIIT
group, an increase in the number of capillaries per fiber in the aerobic HIIT group and a
decrease in MHC isoform type I and protein levels of PINK1 in the control group. These re-
sults illustrate the importance of exercise in patients undergoing chemotherapy to prevent
the negative side effects of treatment and inactivity through preserving skeletal muscle
mass and function. In conclusion, supervised aerobic and strength training performed
during chemotherapy seems to be one of the best adjuvant treatments able to improve
survivorship in ER+ BC patients [161]. Moreover, the combination between exercise and
diet seems to be a new effective strategy to counteract the treatment side effect of the
disease and treatments [155,158,162]. According to Demark-Wahnefried et al. [155], the
combination of a calcium diet, 6 months of exercise and a fruit and vegetable, low-fat diet
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can decrease waist circumference and % body fat despite no change in insulin, proinsulin,
IGF-1, CRP, cholesterol, SHBG, IL-1B, and TNFR2 levels being detected. As reported by
Scott et al. [158], an aerobic and strength protocol combined with a daily caloric reduction
of 600 kcal below the patient’s requirement produces a decrease in central adiposity, waist
to hip ratio (WHR), total cholesterol and leptin levels as well as an increase in predicted
VO2max. These findings suggest that a well-tailored protocol combined with a hypocaloric
diet positively impact on long-term prognosis in overweight BC patients undergoing treat-
ments. Indeed, as reported by Artene et al. [162], diet is effective for ER+/PR±/HER2-
BC patients on anti-estrogenic medication, but adding at least a minimal exercise protocol
improves patients’ chances of counteracting sarcopenic obesity, fatigue, and other negative
cancer-related effects.

5.3. Quaternary Prevention

The role of physical exercise is as essential in the quaternary prevention phase as
it is in the secondary and tertiary prevention phases. It seems that, in patients with
advanced cancer, exercise provides the maintenance and improvement of fitness and
physical function and may diminish fatigue sensation, improving quality of life (QoL). It
should be considered as an intervention to prevent further health complications [168,169].
Few studies investigated these effects related to specific types of cancer, which are often
poorly described. Thus, in this section, the feasibility and the effect of exercise in patients
at the terminal stage of BC are evidenced in the presence of metastases, under treatment,
with a life expectancy of at least 4 months (Table 4).

Table 4. Exercise and physical activity as quaternary prevention in advanced-stage breast cancer patients.

REF. GROUPS EXERCISE CHARACTERISTICS MAIN OUTCOMES

[170]

(n = 13)
Life expectancy ≥ 6 months

age 44–75 years
YG (n = 13)

YG: 8 weekly group session (during CH) ↓ Pain, fatigue distress
Ô Relaxation, invigoration

[171]

(n = 101)
Life expectancy ≥ 12 months

age 59–59 years
AG (n = 48)
CG (n = 53)

16 weeks (during CH)
AG: 150 min MVPA per week

CG: no intervention

=min/w exercise and physical
functioning in AG

[172]

(n = 65)
age 62–72 years

AG (n = 33)
CG (n = 32)

12 weeks 3 d/w (during CH)
AG: 55–80 % VO2peak on treadmill

CG: no intervention

Ô VO2peak and functional capacity in
AG.

Attendance rate 63%, permanent
discontinuation 27%, dose modification
49%, acceptable tolerability 42% in AG.

[173]

(n = 14)
Life expectancy at least 4 months

age ≥ 18 years
HARG (n = 8)

CG (n = 6)

8 weeks 2 d/w (during CH and HT)
HARG: supervised RT 2 sets of 12 repetitions 1 min

recovery, intensity 6–7 Adult OMNI Scale
+ unsupervised 10–15 min walking

CG: no intervention

Ô FACIT-F score, VO2max and
six-minute walking test in HARG.
Adherence 100% in RT and 25% in

walking.

[174]

(n = 48)
Life expectancy ≥ 9 months

age 56–67 years
YG (n = 30)
CG (n = 18)

8 week 5–6 d/w (undergoing treatments)
YG: meditation, gentle postures, breathing techniques,
presentations on yogic principles for optimal coping.

15–30 min/d
CG: Discussion about several topic related to the

disease concerns

↓ Pain levels in YG and CG
Dose–response relationship between

YG, duration and daily pain.

[175]
(n = 49)

age 55–65 years
HPA (n = 49)

6 months (during CH, RT, HT, TT)
HPA: reach 10,000 steps per day.

Ô HPA increases 6-MWT, quadriceps
strength
↓ BMI

=muscle CSA, skeletal muscle
radiodensity, LM.

Legend: CH, chemotherapy; RT, radiotherapy; HT, hormonal therapy; TT, targeted therapy; AG, aerobic group; HARG, home-based
aerobic + resistance group; YG, yoga group; HPA, home physical activity; CG, control group; MVPA, moderate to vigorous physical
activity; BMI, body mass index; VO2peak, peak oxygen uptake; FACIT-F, functional assessment of chronic illness therapy—fatigue; CSA,
cross-sectional area; LM, lean body mass; 6MWT, 6 min walking test; min = minutes.
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According to the studies, the training protocols feasibility and effect on the metastatic
BC patient undergoing treatments are still controversial [171–173,175]. It seems that an
aerobic exercise, supervised or unsupervised, that reaches 150 min of moderate-intensity
aerobic training per week is safe but not feasible [170], and it did not show significant
improvements in physical functioning in a heterogeneous group of women living with
advanced BC [171]. On the contrary, 8-week home-based supervised resistance training
combined with an unsupervised walking program seems to be feasible, improving fatigue
sensation, VO2max and functional capacity [173]. These data suggest that further studies
are needed to explore alternative interventions to determine whether exercise could help
women with metastatic disease to live more fully with fewer symptoms from disease and
treatment. As highlighted by Carson et al. [170,174], PA such as yoga could be useful for the
treatment of side effects. In particular, 8 weeks of meditation, gentle postures and breathing
techniques seems to reduce the daily pain and fatigue distress, increasing relaxation and
invigorating the patients.

Our analysis of the literature is synthesized in Figure 3, highlighting that the most
beneficial effects of exercise for primary prevention of ER+ BC were found with both an
endurance activity (e.g., 5 d/w, 45 min at 60–85% HR max) and a combined activity (i.e.,
4 h/w endurance at 60–90% HR max, and strength at 65% of 1RM); regarding secondary
and tertiary prevention, the combination between endurance and strength training (i.e.,
3 d/w, 60 min endurance at 80% VO2max, and strength at 70% of 1RM) can affect the tumor
development and progression during and after treatments; finally, for the quaternary
prevention, 150 min per week of aerobic activity (e.g., yoga or walking activity) seems
feasible and increases QoL in BC patients.
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6. Conclusions

BC is one of the most common cancers in the world, but cancer survivors in high-
income countries have also grown thanks to medical advances. Most BCs express ER and/or
PR. Among the modifiable risk factors involved in excessive estrogen exposure, body fat
was identified to be responsible for estrogen biosynthesis and their signaling pathways.
Indeed, during the last decade, an increased prevalence of female obesity characterized
by an unhealthy body composition was reported worldwide. It is precisely this group of
women who are considered to be at a high risk of developing this BC subgroup.

To date, it is still a challenge to estimate the magnitude of the clinical impact of
PA on the observed levels of sex hormones, since there are no absolute cut-off values
defined that correspond with a certain change in future BC risk and disease progression.
However, besides an important effect on circulating sex hormone levels, it should also
be considered that different studies on pre-clinical BC animal models demonstrate an
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important effect of PA to increase the ERβ/ERα ratio, as well as an increase in mammary
gland cell apoptosis [41,176,177].

Furthermore, studies conducted in recent years highlight the role of PA not only as a
protective factor for the development of ER+ BC but also as a useful tool in the management
of BC treatment as an adjuvant to traditional therapies.

In the future, it is a priority to introduce PA in health care paths as well as to improve
our knowledge with studies based on exercise-related health promotion. We also hope to
focus on the primordial prevention of BC to avoid, where possible, the development of risk
factors in the first place.
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