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Abstract: Cardiorespiratory interactions (CRIs) reflect the mutual tuning of two important organismic
oscillators—the heartbeat and respiration. These interactions can be used as a powerful tool to
characterize the self-organizational and recreational quality of sleep. In this randomized, blinded and
cross-over design study, we investigated CRIs in 15 subjects over a total of 253 nights who slept in
beds made from different materials. One type of bed, used as control, was made of melamine faced
chipboard with a wood-like appearance, while the other type was made of solid wood from stone
pine (Pinus cembra). We observed a significant increase of vagal activity (measured by respiratory
sinus arrhythmia), a decrease in the heart rate (as an indicator of energy consumption during sleep)
and an improvement in CRIs, especially during the first hours of sleep in the stone pine beds as
compared to the chipboard beds. Subjective assessments of study participants’ well-being in the
morning and sub-scalar assessments of their intrapsychic stability were significantly better after they
slept in the stone pine bed than after they slept in the chipboard bed. Our observations suggest
that CRIs are sensitive to detectable differences in indoor settings that are relevant to human health.
Our results are in agreement with those of other studies that have reported that exposure to volatile
phytochemical ingredients of stone pine (α-pinene, limonene, bornyl acetate) lead to an improvement
in vagal activity and studies that show a reduction in stress parameters upon contact with solid
wood surfaces.

Keywords: Pinus cembra; wood; sleep; autonomic nervous system; vagal activity; healing environment

1. Introduction

Humans perceive wood as being practical, aesthetic and climate friendly. Psycholog-
ically, wood is also considered to be warmer, more comforting, relaxing and inviting as
compared to wood laminate by both expert and non-expert subjects [1,2]. In contrast to
earlier views, newer studies have shown that wood surfaces suppress microbial activity
better than plastic surfaces [3] due to their inherent antiviral, antifungal, antibacterial [4,5]
and antistatic qualities [6]. Therefore, wood can even be used safely in a hospital environ-
ment [4,7–9].

A growing body of scientific evidence points to the potential health effects of natural
environments that have the potential to modulate, for example, immunological responses,
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such as those caused by biogenic volatile organic compounds (BVOCs) [10,11]. The positive
effects of contact with nature and green spaces range from indirect effects (e.g., increased
physical activity) to direct psychological and physiological effects and longer life expectancies.

Stone pine (Pinus cembra) is a needle-leaved tree in the pine family (Pinaceae) with
yellow–red heartwood and a characteristic fragrant smell. Traditionally, its wood has been
used in certain regions of Austria (Tyrol), North Italy, South Germany and Switzerland
as a preferred material for making beds, cradles and interior wall paneling in in living
rooms. Volatile components of conifer resins, such as α-pinene and limonene, have been
reported to stimulate vagal activity [12]. Touching conifer wood (e.g., the Hinoki cypress
(Chamaecyparis obtusa)) with the palms [13] or the soles of the feet [14] results in similar
effects. Furthermore, relaxing effects as well as reductions in an aroused state have been
seen using another component of pine resin, bornyl acetate [15]. For instance, 80% of the
subjects in a study showed increased vagal activity in a forest surrounding as compared to
in an urban surrounding with similar physical characteristics [16].

Cardiorespiratory interactions (CRIs) result from the optimization and cooperation of
two important organismic oscillators: cardiac and respiratory cycles. Whereas the heartbeat
is generated autonomously via the atrial sinus node, its rate is modulated by autonomous
influences from circulatory centers in the brain. In contrast, the onset of inspiration and
expiration is controlled directly by gating from respiratory centers in the brainstem [17]
and is weakly coupled to the cardiac cycle [18]. Both oscillators are connected via brainstem
neurons and interact mainly during periods of rest, and especially during non-REM sleep.
During work and daily activity, the cooperation between the oscillators is reduced and
less coordination is seen [19]. Similar reductions in numbers of interactions are also
seen in depressed subjects, even at rest [20]. Several studies show why mutually tuning
the heartbeat and respiration is energy-efficient and evolutionarily beneficial [21]. This
cooperation between heartbeat and respiration can be observed and quantified, e.g., by
examining the amount of phase coupling or coherence [22], the respiratory modulation of
the heartbeat intervals (respiratory sinus arrhythmia) [23], or the quotient of the heart rate
and respiratory rate (pulse–respiration quotient, Qpr) [24].

In this study, we address different aspects of CRIs to investigate the possible influence
of different bed materials, such as chipboard or coniferous solid wood (stone pine (Pinus
cembra)), on the quality of sleep. As mentioned above, sleep is the preferred state during
which CRIs occur. Although they are not yet used in traditional sleep staging, CRIs could
be used to assess sleep quality in the future. Several studies suggest that a high level of
vagal activity, which is visible as a strong respiratory sinus arrhythmia, is an indicator of a
highly recreational sleep [25]. Vagal activity also has been found to influence inflammation
and to control inflammatory processes in humans [26], which, in turn, can support good
sleep [27,28]. Moreover, a strong respiratory sinus arrhythmia is linked with increased
post-myocardial infarction survival [29] and with reduced cardiac mortality and even
all-cause mortality [23].

In this randomized, blinded and cross-over design study, we investigated the possibil-
ity to use CRIs as a measure to describe the quality of sleep. In addition, we investigated
whether the bed material promotes a different quality of sleep as estimated by assessments
of psychometric and autonomic parameters (i.e., heart rate variability).

2. Methods
2.1. Subjects

Fifteen healthy subjects (8 female), aged 17–45 years, from a small town (Weiz) in
southeast Austria (12,000 inhabitants) were recruited for the study via public notices and
an information session. The average body mass index (BMI) was 22.4 ± 2.5 (19 to 27)
kg/m2. All subjects were free of medication and reported to be physically fit. The study
participants were verbally questioned about subjective somatic complaints at baseline
(exclusion criterion: chronic diseases or taking medication) and confirmed by the results of
the questionnaires used [30–33] and the 24 h ECG measurements at baseline (Figure 1).
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Figure 1. Measure protocol and study design. *. Scales (questionnaires; quest.): PSQI [30], SRSHRI [32],
BBS [31] and RSTQ-Basic-24 [33,34].

The subjects used their own mattresses and bedding material (cotton) on all nights of
the study under all experimental conditions.

2.2. Ethics

The study uses data from healthy subjects for purposes that do not include medical
diagnoses, interventions, or treatment. According to Austrian law, an approval from an
ethics committee is not mandatory in this context. For the retrospective analysis of the
study data, the Carinthian Ethics Commission issued a positive vote on 8 July 2020 (EC
number S2020-26). Subjects had given their informed written consent to participate in the
study before the first measurements were made and received feedback on their results
after completing the study. For participants under the age of 18, the informed consent of a
parent and/or legal guardian was obtained. The study protocol adhered to the guidelines
of “good clinical practice” (ICH-GCP), followed the Declaration of Helsinki and complied
with the regulations of the National Data Protection Act (Section 14 Abs. 1, DSG 2000). The
subjects received a financial compensation (€200) for their participation.

2.3. Experimental Design

In a cross-over randomized design study (Figure 1), after undergoing two weeks
of measurements in their own beds, the study subjects’ beds were exchanged in their
bedrooms either for a melamine-faced chipboard bed (control condition, Figure 2a) or for a
wood bed made from solid stone pine wood (Figure 2b). All other bed components such as
the mattress and bedding remained unchanged. After three more weeks, during which
measurements were performed twice a week, the subjects’ own beds were brought back for
4–6 weeks (washout period). The beds were again alternated to the other condition (stone
pine or control bed) for three more weeks, with six measurements performed in total. A
final follow-up measurement was performed after the subject slept in their own bed again.
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To achieve the best blinding and to avoid a placebo effect, the subjects were informed
before the study that the research question would be asked to differentiate between sleep
in their own bed and sleep in a new bed. However, no mention of the materials used
was made. After completing the study, the real intention of the study was revealed to
the participants.

The number of subjects necessary (15) was selected by calculating the expected
medium statistical effect size. To increase the accuracy of the measurements, each subject
was measured six times over three weeks before, during and after sleeping in each bed.

Measurements were performed twice a week during the weeks of the study, during
which the subjects slept either in the chipboard or the solid wood bed, with measurements
taken at the same time of day and on the same days of the week to avoid the confounding
“Monday” or “Friday” effects that have been demonstrated in other studies [35]. Under
each study condition, six 24-h measurements of heart rate variability were performed with
the 15 subjects, resulting in a dataset of measurements over 88 nights for each type of bed
(two nights were lost under each condition due to a technical failure).

2.4. Material

Both bed types were made by the same experienced carpenter (Erich Binder, Weiz,
Austria). Material used to make the 12 beds for the study was either low-emission class E1
melamine faced chipboard (MFC, the most widespread material used for furniture sold
in Austria, with a global market of 33 billion USD/year) as a control condition or solid
stone pine wood, which is traditionally used in some regions of Austria (e.g., Tyrol) and
Switzerland. The melamine surface of the control beds was printed with a pattern to make
it look like the solid wood beds in terms of its color and surface structure (Figure 2).

2.5. Physiological Variables

Physiological parameters were measured over a 24-h period (HR and HRV parame-
ters) [23,36–38], during the time scheduled for measurements, and the psychometric parame-
ters were measured in the evening and morning (see Figure 1 and ‘Statistical Evaluation’).

The beat-to-beat heart rate was measured precisely (4000 samples/s, 16-bit) with a
miniature Holter-ECG device (ChronoCord, Human Research Institute, Weiz, Austria) for a
24-h period from noon to noon, yielding approx. 106,000 heartbeats for each measurement.
Each heart rate time series was inspected by experienced scientists to identify missing data
and ectopic beats, which were then removed before further data processing. From the RR
time series, heart rate variability measures such as low frequency (LF), high frequency (HF)
and very low frequency (VLF) variability measures were computed according to the Task
Force recommendations [36]. The autonomic quotient (LF/HF) was computed from LF and
HF results. LogRSA, a robust, time domain measure which is especially suitable for the
estimation of the respiratory component of HRV and, hence, vagal activity [20,23,39–41],
was used to calculate vagal activity every five minutes at two-minute increments.

By analyzing the beat-to-beat changes of the RR interval, it is possible to obtain
a clinically reliable respiration frequency from the respiratory sinus arrhythmia (RSA)
during resting periods. Additionally, as a consequence of respiration-induced diaphragm
movements, changes in the electrical axis of the heart can be used to derive the respiration
frequency from the ECG [42–44]. The pulse–respiration quotient (Qpr) [24] was computed
from the respiratory and heartbeat frequencies as described in [42] and [18]. It represents
the number of heartbeats in each respiratory cycle.

2.6. Psychometric Variables

For each 24 h measurement, the subjects had to keep an activity log and to fill out
questionnaires at (pre-) defined times: Before they went to bed, they had to evaluate
their stress levels for the previous three days with the RESTQ instrument [33,34] (Pearson,
Frankfurt, Germany). In the morning, immediately after getting up, the subjects had
to fill in a sleep questionnaire (Sleep Recovery Scale, SRSHRI [32]) and to assess their
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current feeling of well-being (Basler well-being score [31]). At the end of each three-week
experimental sequence, the habitual sleep quality was assessed with the Pittsburgh Sleep
Quality Index (PSQI [30]).

2.7. Statistical Evaluation

General linear models (GLMs) were used to perform a per-protocol analysis with
repeated measures ANOVA (Tables 1–3). The within-subject factor was the “treatment
(bed)” (stone pine vs. chipboard) at different times of the day (sleep vs. wake; sleep epochs)
or scales of the questionnaires, which were aggregated for six repeated measurements
for each subject and treatment. The calculation of the ‘sleep’ and ‘wake’ periods used
was performed on the basis of the activity protocols of the subjects, which were visually
checked for their plausibility, whereby transitions between wake and sleep (i.e., the first
and last 30 min of each activity period) were not taken into account. In addition to the
p-values, the effect size, partial Eta2 (η2) was calculated. An η2 of 0.01–0.06 corresponds to
a small effect. Occurrences of 0.06–0.14 correspond to a medium effect, and values > 0.14,
to a large effect [45]. For the purposes of statistical analysis, missing or invalid values
of HRV parameters were replaced by interpolated means of adjacent data points in 4.4%
(24 h-HRV) and 9.7% (sleep-HRV) of all cases. Calculations were performed with IBM®

SPSS® Statistics (Version 22) (IBM Corporation, Armonk, NY, USA).

Table 1. Heart rate, cardiorespiratory interaction (CRIs) and autonomic measures—24 h, awake and asleep in different types
of beds.

Heart Rate
Variability (HRV)

(n = 15) *

P. Cembra
(24 h; 6×)

Chipboard
(24 h; 6×)

Sleep
(Mean; 6×)

Wake
(Mean; 6×)

Bed Effect (2 × 2 ANOVA)
(P. Cembra vs. Chipboard)

Unit Mean SD Mean SD P.
Cembra

Chip-
Board

P.
Cembra

Chip-
Board F P Part.

Eta2

Heart rate (HR) bpm 74.09 ± 7.42 76.61 ± 7.39 60.91 63.76 79.97 82.18 9.56 0.008 ** 0.41
Standard

deviation of RR
(SDNN)

ms 73.50 ± 22.04 70.23 ± 20.03 77.12 71.91 71.81 69.01 3.01 0.105 0.18

Vagal tone
(logRSArr)

log(ms) 1.31 ± 0.18 1.27 ± 0.16 1.50 1.45 1.23 1.20 4.32 0.057 * 0.24

Total variability
power (lnTOTrr)

ln(ms2) 8.14 ± 0.58 8.07 ± 0.53 8.14 8.01 8.15 8.08 2.65 0.126 0.16

Low frequency
power (lnLFrr)

ln(ms2) 6.77 ± 0.68 6.72 ± 0.62 6.72 6.59 6.81 6.77 1.75 0.207 0.11

High frequency
power (lnHFrr)

ms2 5.87 ± 0.81 5.78 ± 0.75 6.51 6.34 5.60 5.54 2.10 0.169 0.13

Very low
frequency power

(lnVLFrr)
ms2 7.39 ± 0.51 7.30 ± 0.47 7.14 7.01 7.50 7.41 3.18 0.096 0.19

Ratio LF/HF [ ] 0.89 ± 0.47 0.93 ± 0.47 0.21 0.25 1.21 1.23 0.46 0.509 0.03
Pulse-respiration

quotient (Qpr) bpc 5.03 ± 0.89 5.29 ± 0.91 4.09 4.27 5.45 5.72 5.30 0.037 * 0.28

Respiratory rate
(ATMFrsa) fpm 15.60 ± 2.05 15.42 ± 2.01 15.10 15.13 15.84 15.56 0.45 0.514 0.03

*. Missing = 4.44% . . . . out of overall 15 × 6 × 2 = 180 × 24 h HRV-measurements, ** multivariate significant difference.
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Table 2. HRV—core sleep in different bed materials.

Heart Rate
Variability (HRV)

(n = 15; Sleep
Measurements = 180

with Each 6 Epochs) *

P. Cembra
(Sleep Mean 30 min Epochs)

P. Cembra
(Core Sleep; 3 h)

Chipboard
(Sleep Mean 30 min Epochs)

Chipboard
(Core Sleep; 3 h)

Mean Difference
(P. Cembra -
Chipboard)

Bed Effect (2[×6] ANOVA)
(P. Cembra vs. Chipboard)

unit 1 2 3 4 5 6 Mean SD 1 2 3 4 5 6 Mean SD Mean SE F P Part.
Eta2

Heart rate (HR) bpm 64.04 62.74 63.30 63.04 61.77 61.47 62.73 8.47 67.01 66.00 67.11 65.52 64.43 64.07 65.69 7.28 −2.96 1.03 8.33 0.012* 0.37
Standard deviation

of RR (SDNN) ms 74.87 68.25 71.51 68.12 71.71 72.38 71.14 25.83 62.57 57.86 62.82 60.75 67.03 77.22 64.71 26.20 6.43 3.67 3.07 0.102 0.18

Vagal tone
(logRSArr)

log(ms) 1.51 1.53 1.48 1.47 1.46 1.46 1.49 0.24 1.43 1.43 1.37 1.39 1.45 1.43 1.42 0.21 0.07 0.03 5.03 0.042* 0.26

Total variability
power (lnTOTrr)

ln(ms2) 8.73 8.53 8.59 8.59 8.65 8.64 8.62 0.75 8.40 8.18 8.44 8.34 8.50 8.77 8.44 0.70 0.18 0.10 3.18 0.096 0.19

Low frequency
power (lnLFrr)

ln(ms2) 7.32 7.13 7.18 7.20 7.26 7.24 7.22 0.89 7.01 6.77 7.14 7.00 7.13 7.33 7.06 0.84 0.16 0.11 2.19 0.161 0.14

High frequency
power (lnHFrr)

ms2 7.24 7.18 7.02 6.97 6.99 6.95 7.06 1.01 6.93 6.81 6.66 6.73 6.91 6.94 6.83 0.88 0.23 0.13 3.14 0.098 0.18

Very low frequency
power (lnVLFrr)

ms2 7.62 7.30 7.49 7.54 7.59 7.66 7.53 0.68 7.23 6.93 7.45 7.26 7.40 7.85 7.35 0.67 0.18 0.09 3.80 0.072 0.21

Ratio LF/HF [ ] 0.08 −0.05 0.17 0.23 0.27 0.30 0.17 0.75 0.07 −0.04 0.48 0.27 0.22 0.39 0.23 0.73 −0.07 0.06 1.17 0.298 0.08
Pulse-respiration

quotient (Qpr) bpc 4.16 4.04 4.08 4.06 4.09 4.03 4.08 0.50 4.32 4.21 4.33 4.25 4.18 4.21 4.25 0.40 −0.17 0.07 6.13 0.027* 0.30

Respiratory rate
(ATMFrsa) fpm 15.76 15.83 15.77 15.69 15.26 15.48 15.63 1.86 15.78 15.93 15.77 15.57 15.69 15.40 15.69 1.70 −0.06 0.14 0.16 0.694 0.01

*. Missing = 9.67% . . . out of overall 1080 sleep epochs.

Table 3. Questionnaire responses—psychometric characteristics (traits and states) in different beds.

Scale
(n = 15; Surveys = [30 to] 180) * [Unit]; Frequency

P. Cembra
(3 Weeks)

Chipboard
(3 Weeks)

Mean Difference
P. Cembra - Chipboard

Bed Effect (2 Groups Design)
(P. Cembra vs. Chipboard)

Mean SD Mean SD Mean SE F P Part. Eta2

PSQI (n = 12) [ ]; 2× 4.25 ± 2.34 3.83 ± 2.32 0.42 0.63 0.43 0.524 0.04
Sleep Recovery Scale (SRSHRI, main factor; n = 14)

[z], 12× (6 times
each)

0.06 ± 0.54 −0.07 ± 0.63 0.13 0.23 0.33 0.575 0.03
sleep characteristics (SRS, Factor [F]1) 0.05 ± 0.54 0.00 ± 0.63 0.04 0.17 0.07 0.795 0.01

sleep quality (F2) 0.01 ± 0.62 −0.04 ± 0.64 0.04 0.22 0.04 0.850 0.00
sleep time (F3) 0.08 ± 0.69 −0.11 ± 0.61 0.19 0.24 0.63 0.440 0.05

Well-being/mood (BBS, total; n = 14)

[z], 12× (6 times
each)

0.16 ± 0.74 −0.18 ± 0.78 0.34 0.13 7.01 0.020 * 0.35
intrapsychic stability 0.16 ± 0.51 −0.25 ± 0.89 0.40 0.16 6.64 0.023 * 0.34

vitality 0.12 ± 0.70 −0.10 ± 0.78 0.23 0.16 1.96 0.185 0.13
social extraversion 0.19 ± 0.86 −0.19 ± 0.65 0.38 0.18 4.63 0.051 * 0.26

vigility 0.06 ± 0.78 −0.09 ± 0.80 0.15 0.09 2.70 0.125 0.17
Recovery-Stress Q. (RSTQ-Basic-24, multivariat, n = 15) [z], 12× (6 times

each)

0.20 0.826 0.03
stress scales −0.04 ± 0.84 −0.04 ± 0.83 0.01 0.08 0.01 0.946 0.00

recovery scales −0.02 ± 0.90 0.08 ± 0.69 −0.10 0.16 0.39 0.540 0.03

*. Missing: 13.33% PSQI (out of 30 measures); 17.78% SRS, 23.33% BBS, 7.22% RSTQ . . . . out of overall 180 surveys. Scales (questionnaires): PSQI [30], SRSHRI [32], BBS [31] & RSTQ-Basic-24 [33,34].
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3. Results
3.1. Heart Rate and Vagal Activity

The subjects’ heart rate was found to be reduced when sleeping as compared to in the
daytime, and this reduction was larger if the same subject slept in a bed made out of stone
pine wood than if they slept in one made out of chipboard (Figure 3) or in their own bed
(data not shown). The greatest changes and differences between the two bed types were
found in the first two hours of sleep.
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Figure 3. Heart rate over 24 h when the subjects slept in the stone pine wood beds (blue) or in or in
the chipboard beds (red). Each curve represents the average of nearly 90 days of measurements for
15 subjects. The strongest difference in the heart rate was found during the first phase of sleep.

Vagal activity (logRSA) was found to be increased when sleeping as compared to
in the daytime, and this increase was larger if the same subject slept in a bed made out
of stone pine wood than if they slept in one made out of chipboard (Figure 4) or in their
own bed (data not shown). As with heart rate changes, the largest differences were found
during the first hours of sleep.

Table 1 shows an overview of the heart rates, CRIs (logRSA, pulse–respiration quotient)
and other autonomic parameters for the two bed types for waking and sleeping periods, as
well as over 24 h.

The heart rate (stone pine vs. chipboard: 74.09 vs. 76.61 bpm, p = 0.008; Table 1), vagal
tone (1.31 vs. 1.27 log(ms), trend: p = 0.057) and pulse–respiration quotient (5.03 vs. 5.29 beats
per respiratory cycle, p = 0.037) show multivariate significant differences between the two
bed conditions, which are strongest during sleep (Table 2). These differences can be also
observed over the 24 h and wake periods as well. In addition, a trend towards higher
total heart rate variability (SDNN: 73.50 vs. 70.23 ms, ns.; total variability power 8.14 vs.
8.07 ln(ms2), ns.) in the stone pine bed condition can be observed. The autonomic quotient
(LF/HF: 0.89 vs. 0.93, ns.) and low frequency power (6.77 vs. 6.72 ln(ms2), ns.) are both
lower but not significantly lower between the experimental conditions, indicating a shift
from sympathetic towards parasympathetic predominance. The pulse–respiration quotient
is significantly lower and closer to 4:1 in the stone pine bed.
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Figure 4. Vagal activity as computed from the respiratory component of HRV (logRSA), when
the subjects slept in the stone pine wood beds (blue) and in the chipboard beds (red). Each curve
represents the average of nearly 90 nights of measurements for 15 subjects. Like in the heart rate, the
strongest difference in vagal activity was found during the first hours of sleep.

During the core sleeping period (Table 2), i.e., the first three hours of sleep in each
subject, the heart rate (stone pine vs. chipboard: 62.73 vs. 65.69 bpm, p = 0.012), vagal
tone (1.49 vs. 1.42 log(ms), p = 0.042) and pulse–respiration quotient (4.08 vs. 4.25 beats
per respiratory cycle, p = 0.027) show stronger and significant differences between the
two bed conditions. During this core sleep, an even stronger trend towards higher total
heart rate variability can be observed (SDNN: 71.14 vs. 64.71 ms, ns.; total variability
power 8.62 vs. 8.44 ln(ms2), ns.) in the stone pine bed. The autonomic quotient (LF/HF:
0.17 vs. 0.23, ns.) and low frequency power (7.22 vs. 7.06 ln(ms2), ns.) are both lower but
not significantly lower between the experimental conditions, indicating a shift towards
parasympathetic predominance. The pulse–respiration quotient is significantly lower and
closer to 4:1 in the stone pine bed.

3.2. Psychometric Results

No differences were observed in the frequency of stress and recovery-related activities
and states (RESTQ) between the sleeping periods in the two bed types (p > 0.50), indicat-
ing that the subjects experienced similar levels of stress during the periods under both
experimental conditions. Other than in the physiological results, no significant difference
was detected in subjective sleep quality and with the sleep recovery scale, but the subjects
experienced significantly better feelings of subjective well-being as measured with the
BBS (Basler–Befindlichkeits-Skala) overall scale (0.16 vs. −0.18 units, p = 0.020) and the
interpsychic stability subscale (0.16 vs. −0.25 units, p = 0.023) in the morning after sleeping
in the stone pine bed than after sleeping in the chipboard bed. An almost significant trend
towards higher social extraversion as measured by BBS was also detected after subjects
slept in the stone pine bed (0.19 vs. −0.19 units, p = 0.051).
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3.3. Pulse–Respiration Quotient

The pulse–respiration quotient (Qpr) was closer to 4:1 and lower during sleep than in
the daytime, and these effects were larger if the same subject slept in a bed made from stone
pine wood than if they slept in either the chipboard bed (Figure 5). This reduction in the
Qpr after sleeping in the stone pine bed also persisted in the morning until the following
noon (see also ‘autonomic quotient interaction’).
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Figure 5. Pulse–respiration quotient (Qpr) as computed from the Holter ECG recordings, when the
subjects slept in the solid wood beds (blue) and in the chipboard beds (red). Each curve represents
the average of 90 nights of measurements for 15 subjects. The Qpr is higher during the day and
approaches a relation of four heartbeats per respiratory cycle during the night. If the subjects slept in
the stone pine bed, 4:1 was reached about two hours earlier than if they slept in the control bed. As
seen for the heart rate and the vagal activity, the strongest difference in the pulse–respiration quotient
was found during the first phase of sleep. The effect of lower Qpr also persists in the morning after
the waking.

3.4. Autonomic Quotient Interaction

The autonomic quotient (LF/HF) changed during the diurnal cycle, from higher and
more distributed values during the day to lower and less distributed during the night
(Figure 6). When a pulse–respiration quotient around whole number ratios (especially
4:1) is present, indicating transient phase coupling between pulse and respiration, the
autonomic quotient becomes especially low, indicating vagal predominance (dark blue
areas). The 4:1 period of Qpr with stronger vagal predominance lasts 2 h longer in the
stone pine bed (Figure 6b).

3.5. Sleep Architecture

Sleep architecture, as seen in the individual time course of the autonomic quotient
over the different measured nights, was found to be more qualitatively, regular during
the periods of sleeping in the Stone pine beds than when sleeping in the chipboard beds
(example, see Figure 7). In the former cases, the basal rest and activity cycles (duration 1.5
to 2 h) seem to be more dominant and regular in subjects who slept in the stone pine beds.
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A stronger oscillation between vagal and sympathetic predominance with stronger vagal
phases (blue) was also present in the subjects who slept in the Pinus cembra beds.

Both the decrease in the heart rate (Figure 3) and the increase in the vagal activity
(Figure 4) were significantly stronger when the subjects slept in the stone pine bed than
when they slept in the chipboard bed. This indicates an improvement in CRIs, and espe-
cially in respiratory sinus arrythmia, which positively correlates with the use of stone pine
wood in the bed. To illustrate the timing of the observed effects, we plotted the difference
between the stone pine and control conditions, using the values in the control bed as a
zero reference (Figure 8). In fact, the difference in the heart rate (Figure 8a) and vagal tone
(Figure 8b) became obvious only after 8 p.m., when the subjects entered the bedroom, and
lasted until noon the next day.
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Figure 6. Average of autonomic quotient (LF/HF, colour coded: red = sympathetic predominance, blue = vagal predomi-
nance) over the time of day (abscissa) and pulse–respiration quotient (Qpr, ordinate), when the subjects slept in the stone
pine wood beds (b) and in the chipboard beds (a). The Qpr is higher during the day and approaches a relation of four
heartbeats per respiratory cycle during the night. A whole number Qpr of 4:1 and 3:1 is coincident with an especially low
autonomic quotient (coded in blue), indicating strong vagal predominance. The 4:1 period of Qpr with stronger vagal
predominance lasts two hours longer during and after sleeping in the stone pine bed (b), indicating a longer period of phase
coupling for cardiorespiratory interactions (CRIs) in this type of bed.
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their own bed, six measurements over three weeks were made in the stone pine bed. Two measure-
ments were then made over the six-week washout period in their own bed, then another six meas-
urements over three weeks were performed in the control bed (chipboard). The last measurement 
was made in the subject’s own bed again. Sympathetic predominance is shown in red, and vagal 
predominance, in blue. Especially during the period in the stone pine bed, the first non-REM (core 
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Figure 7. Example of the circadian and ultradian changes in the autonomic quotient over all measured
nights for one subject (Number 12) during the study. After two measurements were made in their
own bed, six measurements over three weeks were made in the stone pine bed. Two measurements
were then made over the six-week washout period in their own bed, then another six measurements
over three weeks were performed in the control bed (chipboard). The last measurement was made in
the subject’s own bed again. Sympathetic predominance is shown in red, and vagal predominance,
in blue. Especially during the period in the stone pine bed, the first non-REM (core sleep) phases are
more rhythmic and more vagal (blue) than under the control (chipboard) bed conditions.
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Figure 8. (a) Time course of heart rate differences between sleeping in the stone pine (Pinus cembra)
bed and sleep and the control condition (chipboard bed). Blue indicates lower heart rate in the stone
pine bed and red, the lower heart rate in control condition. (b) Differences in the vagal tone (logRSA).
Here, blue indicates a higher vagal tone in the stone pine bed and red, under the control condition.

4. Discussion

The materials used indoors interact with the environment in which the occupants live.
Human satisfaction and interactions with the built environment on cognitive functions,
well-being and health have become increasingly relevant [46–48]. Efforts have been made
to predict human well-being and physiological responses to better understand how the
physical environment directly impacts human well-being, health and productivity [49].
Recent studies have shown that the use of natural materials in indoor built environments
such as wood can improve human well-being.

4.1. Experimental Design

Findings from recreation research show that sustainable adjustments in the autonomic
system evolve over a period of several weeks [50]. Therefore, the intervention period was
selected to last for three weeks. Given this premise, a sleep study is practically feasible
only in a home setting; therefore, this setting was chosen.

4.2. Heart Rate and Autonomic Parameters

In this study, it was possible to use state-of-the-art, high-precision ECG devices to
record and detect R peaks as well as to compute the heart rate variability parameters. The
observed reduction in the heart rate during sleep indicates a reduction in metabolic activity
and a reduction in the heart’s workload during the night. This mirrors the increase in
vagal activity, indicated by an increased respiratory component of the heart rate variability
(logRSA). The heart rate is actually decreased by vagal activity, so the observed reduction
in the heart rate is believed to result from an increase in vagal activity. Both effects were
the most strongly pronounced during the first hours of sleep in the study beds, indicating
a mutual interdependence.

These results (e.g., Figure 8) indicate that the use of the stone pine wood may positively
contribute to the vagostimulant, and heart-rate-reducing effects observed in this study.
Other studies have found that vagal activity can be increased by volatiles exuded from
pinewood due to olfactory stimulation [12,51–54] as well as by physical contact with the
wood [13,14].

4.3. Possible Health Consequences

The immune system issues a “license to kill” when inflammatory processes are trig-
gered in reaction to infections and dangerous cell mutations that might cause cancer [55].
Although this response is a live-saving measure under normal conditions, inflammation
can become chronic even in the absence of infectious agents for reasons that are still un-
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known. This state is known as “silent inflammation” and is present in the onset of many
chronic diseases, including atherosclerosis [56], depression and Parkinson’s disease [57]
and even cancer [58]. This trend is so worrying that Nature first issued a Special Issue in
2002 to illustrate these connections [59], which promoted by many other medical studies
on the topic. Vagal activity has been also related to inflammatory control, and studies
have been carried out to elucidate interaction pathways between sensory and motor va-
gal neurons and immune cells [26]. In a control loop termed the “vagal inflammatory
reflex” [26], macrophages in the inflamed tissue produce inflammation signals such as
TNF-alpha and interleukin 1 [60] which attract other monocytes from nearby blood vessels.
Vagal afferents carry receptors for these signals and communicate with certain stem brain
areas, transmitting information about the location and strength of the inflammation. Upon
processing this information, vagal efferents respond by locally releasing acetylcholine
within the inflamed tissue. Nicotinergic acetylcholine receptors have been identified on the
macrophage surfaces, which downregulate their cytokine production in response to the
cholinergic stimulation [61], thereby reducing the attraction of additional inflammatory
immune cells. This inflammatory reflex loop prevents the overstimulation of the immune
system, enabling the brain to locally control the immune activity. It also represents the “first
line” of inflammation control [26]. This information can be applied to better understand
the observation illustrated in Figure 6, which shows that the vagal stimulation effect is
especially strong at night, when the immune system is the most strongly active and vagal
inflammation control is most strongly needed. At this time, the pulse–respiration quotient
is at a whole number ratio, indicating the establishment of a stable phase relationship
between the cardiac and respiratory cycles. The findings of this study regarding the posi-
tive effects of sleeping in stone pine beds are supported by those of other studies, which
support the positive and anti-inflammatory health effects of olfactory contact with volatile
pine terpenes with [16,62–65]. These effects may also be due to their vagally stimulating
action: Pine terpenes have been shown to have a variety of effects, from simple stress relief
to reductions in cancer rates. The U.S. Department of Health itself has filed a patent with a
claim pine terpenes can be used to treat cancer [66].

Such studies, which highlight the importance of exposure to natural phytochemicals
in nature, also underline the importance of the preservation of urban green space, and
especially trees in these spaces, to support human health. This is a particularly exciting
emerging field of public health [67,68]. Access to trees in public areas has drawn large
amounts of attention in the recent past, when a study was carried out to investigate the
effects of this access on more than 46,000 subjects after adjusting for age, sex, income,
economic status, couple status and educational level. The findings indicated that subjects
who had access to areas with >30% tree canopy coverage, as compared with subjects who
only had access to areas with up to 9% tree canopy coverage, had a 31% lower incidence of
psychological distress. This effect, however, was not found with regard to the proximity to
lawns or shrubs [69]. Tree cover on campus that accounted for 13% of the variance could be
used to predict better mean student performance in another study [70]. Further, an increase
in the percentage of tree canopy coverage in a census block group was associated with a
lower risk of experiencing short sleep periods (<6 h) during weekdays (OR 0.76 [0.58–0.98])
and, hence, with better overall sleep quality [71].

In this study, although we have not investigated the effect of living trees on the
subjects, the volatile phytochemicals present in trees as well as in the solid wood from these
trees might at least contribute to the described health effects. One very interesting aspect
was added to the importance of green space, when a Lancet study of 360,000 British people
showed that populations exposed to the greenest environments also have the lowest levels
of health inequality with respect to income deprivation [72]. The same study showed that
especially the number of cardiovascular diseases suffered by members of lower income
classes were reduced by green space access. As vagal activity obviously protects the heart
from arterial fibrillation, these findings support the observed vagal effects of access to
green space and maybe to indoor built environments that include natural materials [23].
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To investigate the possible amount of improvement that could be attained by reducing
the heart rate by 2.52 beats per min (average 24-h-HR = 76.61 vs. 74.09 in our study),
we searched for studies that associated the heart rate with specific mortality rates. In a
study with nearly 240,000 patients, Archangelidi et al. [73] found that men with a resting
heart rate of 70–79 bpm (29.1% of all men) had a higher risk of heart failure (hazard ratio
(HR) 1.65, 95% confidence interval (CI) 1.26–2.16), unheralded coronary death (HR 1.65,
95% CI 1.13–2.41), total cardiovascular events (HR 1.22, 95% CI 1.15–1.28) and even all-
cause mortality (HR 1.39, 95% CI 1.22–1.58) than men with a resting heart rate of less
than 60 bpm. This connection between a low heart rate and lower mortality has been
confirmed by several other studies [74–76]. In a linear model, a reduction of the heart rate
by 2.52 beats per min actually would result in a reduction of mortality by approximately
10%. As we cannot be sure that the observed effect on heart rate will persist over a period
of several years, and more support is needed for a purely linear correlation (although some
support has been provided by the results of the 25-year Paris Prospective Study I with
6101 asymptomatic men aged 42 to 53 years [75]), these calculations might be premature.
However, these findings show the health potential of reducing the heart rate by promoting
the use of an indoor built environment with natural materials, such as the stone pine beds
used in this study.

4.4. Pulse–Respiration Quotient

The pulse–respiration quotient (Qpr), the number of heartbeats per respiratory cycle, has
been identified as a powerful but rarely used parameter in the field of physiology [18,24,43].
In some diseases, such as myocardial infarction and hyperthyroidism [24], an increased Qpr
and a reduced circadian variation have been documented. In normal subjects, the Qpr is
higher when they are in the upright, rather than in the supine, position [24], which explains
the circadian time course illustrated in Figure 5. This figure also shows that sleeping
in a stone pine bed obviously leads to an earlier fall in Qpr as compared to sleeping in
the chipboard beds. This lowering effect of this wood persists until the following noon,
resulting in significant all-over lowering effect on Qpr (Table 1).

4.5. Relation of Autonomic Quotient to Daytime and the Pulse–Respiration Quotient

The change in the autonomic quotient (LF/HF) that naturally occurs during the
circadian cycle, ranging from higher and more evenly distributed values during the day
to lower and less evenly distributed values during the night (Figure 6), could also be
documented in this study. Whole number ratios (especially 4:1) arise when phase coupling
between the cardiac cycle and the respiratory phase occurs, as the cardiac phase may trigger
the onset of inspiration [18]. If this is repeatedly the case, the heart rate becomes a whole-
number multiple of the inspiratory cycle. Studies have shown that this phase coupling is
especially strong during periods of relaxation and sleep. Under stress and in psychiatric
diseases like depression, phase coupling might even disappear [77,78]. Obviously, the
autonomic quotient drops especially low when this phase coupling arises, indicating a
strong vagal predominance, shown as blue areas that surround the 4:1 Qpr in Figure 6.
This ‘blue area’ lasted about two hours longer in subjects who slept in the stone pine bed
(Figure 6b) than in subjects who slept in the chipboard bed (Figure 6a).

4.6. Autonomic Sleep Architecture

Over a period of 24 h, the autonomic quotient (LF/HF) does not only change according
to a circadian cycle, but also shows a ultradian pattern (period length 1.5–2 h) [79], which
corresponds to the BRAC (basic rest and activity cycle) as documented in sleep research [80].
This pattern also can be observed in persons experiencing healthy sleep and is an indicator
of a sleep architecture that characterizes good sleep [81]. As such, it can be used as a
qualitative measure of (autonomic) sleep quality. When we plotted the autonomic quotient
time series of each subject and categorized the data by the different type of bed, we realized
that subjects who slept in the stone pine beds usually experienced more structured sleep and
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showed a more pronounced sleep architecture than those who slept in the chipboard beds.
An example of this observation is shown in Figure 7, where a stronger vagal predominance
during all of the first sleep phases in the stone pine bed is also present. Although we did
not test this difference statistically, it could be considered as an indication of qualitative
improvement in the sleep architecture of those subjects who slept in the stone pine bed.

4.7. Limitations

In addition to the small sample size, one limitation of this study might be the lack of
knowledge about the volatile organic compound (VOCs) compositions and concentrations
in the bedrooms of the study participants, as the most likely factor influencing the observed
effects. As this study was intended to investigate the overall effect of different indoor
settings under real-life conditions, only the bed material was changed in the everyday sleep-
ing conditions. Therefore, a within-subject design with numerous repeated (aggregated)
measurements was chosen to reduce the possible moderating factors of the individual sleep
environment, such as specific biogenic VOCs concentrations. In this setting, these are not as
crucial as would have been the case if a comparison had been carried out between different
subjects. Future studies may focus on the exact concentrations of any VOCs and singular
components when exposure occurs. Besides the exact concentrations of VOCs, the duration
of exposure, setting, individual baseline status, health-characteristics and lifestyle habits
may influence the impact of VOCs [11]. The potentially adverse effects of volatile biogenic
substances should also be taken into account [10]. Adverse effects were not observed in
our study and are not to be expected in contact with untreated natural substances, if they
occur in a similar composition and concentration as in natural environments.

Integration of polysomnography (PSG) as the gold standard of sleep medicine (central
nervous system modulation) would have been interesting, although in our opinion PSG
indices are not sensitive enough to enable the detection of the effects of environmental
conditions or of VOCs. Autonomic nervous system modulation such as CRIs and vagal
activity appear better suited to determining the environmental effects on the human
organism, which can be achieved by analyzing the heart rate variability (HRV) and which
mirrors autonomic activities generated in lower stem brain centers [82]. In addition, PSG
measurements would have been beyond the scope of the study, as they are technically
complex and costly and take place mainly under laboratory conditions. They also are
known to disturb the sleep (first night effect) due to the presence of several electrodes on
the scalp, which was not observed in our three-chest wall ECG electrode design.

5. Conclusions

In this study, we show that CRIs are a sensitive measure that can be used to describe
the effects of the indoor built environment on physiological responses of autonomic nervous
activity during sleep. The study subjects’ vagal activity increased, especially when sleeping,
whereas their heart rate and pulse–respiration quotient decreased, when they slept in a bed
made from stone pine (Pinus cembra) wood. CRIs increased and extended longer into the
morning, suggesting that better tuning between the two organismic oscillators of heartbeat
and respiration occurred when subjects slept in a stone pine bed. These findings offer new
insights into the topic of why a better built living environment should be created.

In the view of recent findings on the importance of low heart rate for life expectancies
and on the importance of high vagal activity with regard to inflammatory control and the
resolution of silent inflammation, the study results tentatively explain why stone pine wood
has been used traditionally and for many centuries as a preferred material for building
beds in areas where the tree is indigenous.
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