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Abstract: Ambient air pollution is projected to become a major environmental risk in sub-Saharan
Africa (SSA). Research into its health impacts is hindered by limited data. We aimed to investigate
the cross-sectional relationship between particulate matter with a diameter ≤ 2.5 µm (PM2.5) and
prevalence of cough or acute lower respiratory infection (ALRI) among children under five in SSA.
Data were collected from 31 Demographic and Health Surveys (DHS) in 21 SSA countries between
2005–2018. Prior-month average PM2.5 preceding the survey date was assessed based on satellite
measurements and a chemical transport model. Cough and ALRI in the past two weeks were derived
from questionnaires. Associations were analysed using conditional logistic regression within each
survey cluster, adjusting for child’s age, sex, birth size, household wealth, maternal education,
maternal age and month of the interview. Survey-specific odds ratios (ORs) were pooled using
random-effect meta-analysis. Included were 368,366 and 109,664 children for the analysis of cough
and ALRI, respectively. On average, 20.5% children had reported a cough, 6.4% reported ALRI, and
32% of children lived in urban areas. Prior-month average PM2.5 ranged from 8.9 to 64.6 µg/m3.
Pooling all surveys, no associations were observed with either outcome in the overall populations.
Among countries with medium-to-high Human Development Index, positive associations were
observed with both cough (pooled OR: 1.022, 95%CI: 0.982–1.064) and ALRI (pooled OR: 1.018,
95%CI: 0.975–1.064) for 1 µg/m3 higher of PM2.5. This explorative study found no associations
between short-term ambient PM2.5 and respiratory health among young SSA children, necessitating
future analyses using better-defined exposure and health metrics to study this important link.

Keywords: outdoor air pollution; fine particles; lung health; children; Africa

1. Introduction

Air pollution disproportionately affects populations residing in low and middle
income countries (LMICs). In 2015, 89% of deaths due to ambient (outdoor) air pollution oc-
curred in LMICs, mainly in Asia and Africa [1]. Africa has the highest excess mortality from
ambient air pollution among children under five years of age (under five, 0–59 months), to
which acute lower respiratory infection (ALRI) was suggested as a potential contributor [2].

ALRI, including infections of both alveoli (e.g., pneumonia) and airways (e.g., bron-
chiolitis and bronchitis), is the most common cause of illness among young children
worldwide; in sub-Saharan Africa (SSA), it is a major cause of death in children under
five [3]. While ALRI is caused by infective agents (either bacterial or viral), there is a
wide range of risk factors that are associated with it. These factors include child’s age,
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socio-economic status, underlying health conditions, immunisation, access to health care
and household air pollution [4].

Associations between long- or short-term ambient air pollution and childhood pneu-
monia or hospitalisation for ALRI have been consistently reported in North America [5,6],
Europe [7] and recently in Asia [8–11]. Urban particulate matter (PM) and its compositions
(e.g., heavy metals) seem to be particularly harmful for acute respiratory events among
young children [12,13]. However, there is a dearth of data for such associations in the SSA
region [14]. Among the limited number of studies in Africa, most have used crude proxies
of ambient air pollution (e.g., residential proximity to industrial areas, heavy-traffic roads
or mine dumps) instead of individual air pollutants [15,16]. This has largely explained
the inconsistent findings across the studies and also inhibited comparisons with studies
in which individual air pollutants were investigated. For most SSA countries, a lack of
ambient air quality monitoring, together with inadequate capacity for collecting population
health data, has hindered the progress in conducting ambient air pollution research on
population health [17].

Remote-sensed technology is increasingly used to predict ground-level air pollutant
concentrations, providing an opportunity to conduct air pollution health research in the
SSA region by linking publicly available health surveys. In this study, we combined
standardised data of the Demographic and Health Surveys (DHS) from 21 SSA countries
with satellite-derived PM2.5 (PM with a diameter less than or equal to 2.5 micrometres)
concentrations. We aimed to analyse the cross-sectional associations between short-term
exposure to ambient PM2.5 and self-reported ALRI or cough among children under five
in SSA.

2. Materials and Methods
2.1. Data Source and Study Population

DHS collect nationally representative health and sociodemographic data every few
years in over 90 countries globally (https://dhsprogram.com/, accessed on 14 September
2021). A two-stage sampling strategy is adopted, in which surveyed clusters are randomly
drawn from census files and then households are randomly selected within each surveyed
cluster. Data are collected from all members in each selected household via standardised
questionnaires and physical examinations (i.e., anthropometric data) by trained field
staff. Standard DHS surveys conducted between 2000s and 2018 with available, and
valid geolocations of the survey clusters were included in this study. This study focused
on children under five, who are either a member of the surveyed household or stayed
overnight at the household before the staff’s visit. DHS survey protocols have been ethically
reviewed and informed consent was obtained orally from participants.

2.2. Outcomes and Covariates

As with a previous study [18], outcomes were derived from answers to the two
questionnaire items reported by mothers or other caregivers: (1) “Has the child had an illness
with a cough at any time in the last two weeks?” and (2) “Has the child had fast, short, rapid
breaths or difficulty breathing at any time in the last two weeks?” ALRI was defined if answers
were positive to both questions, whilst cough was defined if the answer was positive to the
first question only.

Based on the current knowledge [4] and data availability, covariates to be adjusted
for in the statistical analyses were selected a priori. These include child’s sex, child’s age
in months, size at birth (very large, larger than average, average, smaller than average,
and very small), calendar month of the interview, household wealth index, maternal age,
maternal education (no formal education, primary school level, and secondary school
or above), ownership of a health card (yes/no), child stunting (yes/no) and types of
cooking fuel (electricity/gas vs. wood/coal/others). Most of all these covariates were
directly obtained through the questionnaire. Household wealth index (poorest, poorer,
average, wealthier, wealthiest) was subsequently constructed in quintiles by DHS through
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a principal component analysis based on collected data on household asset ownership,
access to utilities and housing construction materials [19]. Stunting status was defined by
DHS as height-for-age z-score two or more standard deviations below the reference median.

2.3. Ambient PM2.5 Data

A state-of-the-art global annual surface PM2.5 concentration for 1998–2018 (V4.GL.03)
was estimated by the Atmospheric Composition Analysis Group. The data are publicly
available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=140#V4.GL.03 (accessed on
14 September 2021) [20]. Based on the satellite-retrieved aerosol optical depth (AOD), sur-
face concentrations of PM2.5 were estimated using geophysical relationships between AOD
and surface PM2.5 in a chemical transport model. The estimated surface concentrations
of PM2.5 were subsequently calibrated globally via Geographically Weighted Regression
(GWR) using ground-level monitored PM2.5 datasets compiled by the World Health Orga-
nization (WHO). The predicted annual surface PM2.5 concentrations were in a resolution
of 0.01◦ × 0.01◦ (~1.11 km) and highly consistent with monitored PM2.5 around the globe
(r = 0.92, year 2015).

To better temporally align ambient PM2.5 exposure with the self-reported respiratory
outcomes in the past two weeks from the interview date of the DHS survey, we downscaled
the aforementioned annual surface PM2.5 to a monthly surface. To enable this conversion,
we used monthly concentrations of PM2.5 in a resolution of 0.5◦ × 0.625◦ from the Modern-
Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) [21], freely
provided by the United States National Aeronautics and Space Administration. Details of
the conversion are described in Supplementary Text S1.

For every DHS surveyed household, based on their aggregated survey cluster’s
latitude/longitude and the interview date, we assigned average PM2.5 estimates for each
of the 12 months preceding the interview. The 15th of the month was used as the reference
date for allocation of household to the reference month. For example, any household
interviewed between the 15 July 2001 and 14 August 2001 (inclusive) would be counted
as “July 2001” and would receive average PM2.5 data of July 2001 for month 0 (i.e., Lag0,
concurrent month), June 2001 for month 1 (i.e., Lag1, previous month), through to August
2000 for month 12 (i.e., Lag12).

2.4. Statistical Analyses

As with previous studies [18,22], a survey was excluded from the analysis if missing-
ness was greater than 10% for any variable including the study outcomes, PM2.5 exposure
and covariates adjusted in the main model. For each included survey, the association
between PM2.5 concentration and the odds of prevalent cough or ALRI was modelled,
adjusting for an a priori set of main covariates. Consistent with the DHS survey de-
sign, a conditional logistic regression model was applied with consideration of sampling
weights in each survey. Associations were only to be estimated within the same geo-
graphic survey cluster, an approach minimising inter-cluster confounding factors such as
healthcare resources.

The main exposure of interest was average PM2.5 concentration in the previous month
(i.e., Lag1_PM2.5) prior to the DHS survey. The main model was adjusted for child’s
sex, child’s age in months, size at birth, month of the interview, household wealth index,
maternal age, and maternal education. Month of the interview was included to account for
local seasonality of both air quality and respiratory symptoms. Based on the main model,
three sensitivity analyses were performed. First, ownership of a health card, as a proxy of
vaccination records, was further adjusted. Second, type of cooking fuel, which is generally
seen as an indicator of household air pollution, was further adjusted. Third, child stunting
as a marker of long-term malnutrition was further adjusted.

Subgroup analyses were conducted by factors that are expected to impact respiratory
symptoms and/or PM2.5 exposure; these factors include urban/rural cluster, sex, age
(0–24 months vs. 25–59 months), stunting status, household wealth index (poorer/poorest
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versus average and above), west Africa/rest of Africa, and the surveyed country’s human
development index (HDI) (medium-to-high (HDI ≥ 0.55 vs. low (HDI < 0.55)). HDI is
an index that measures three key dimensions (life expectancy, access to education and
standard of living) in every country of the world and is updated on a yearly basis. For this
study, HDI data for each respective survey year in each country were downloaded from a
public database [23].

The investigated associations in each included survey were individually analysed and
then the survey-specific odd ratios (OR) were pooled via random-effect meta-analyses with
the DerSimonian and Laird method [24]. The heterogeneity of the survey-specific ORs was
assessed using the I2 index and p-value. Analyses were conducted in Stata 16 (StataCorp,
College Station, TX, USA).

3. Results

Data from 31 standard DHS surveys conducted in 21 SSA countries were included
in this study. Complete data of the outcome, PM2.5 exposure and variables in the main
model were available for 368,366 and 109,664 children for the analysis of cough and
ALRI, respectively.

Across the 31 surveys, prevalence of cough ranged from 7.1% to 39.3%, with an
average of 20.5% (Table 1). Eighteen surveys were excluded from the analysis on ALRI
due to missing data which was over 10% in each survey. In the remaining 13 surveys,
prevalence of ALRI ranged from 2.1% to 14.4%, with an average of 6.4%. On average, 32.4%
of the surveyed clusters were in urban areas, 16.8% children had smaller birth size than
average, 43.6% of children came from a household with a wealth index below the average of
all surveyed households, and 35.8% of mothers had never received any formal education.

Mean PM2.5 concentration in the month preceding the interview date (e.g., Lag1)
ranged from 6.4 to 64.6 µg/m3 while annual mean PM2.5 concentration across the sur-
vey clusters ranged from 8.5 to 78.8 µg/m3 (Table 2). West SSA countries (Burkina Faso,
Cameroon, Ghana, Guinea, Mali, Nigeria, Senegal, Togo) had a higher mean PM2.5 con-
centration than the rest of SSA (40.8 vs. 17.1 µg/m3 for previous-month mean PM2.5 while
53.4 vs. 16.9 µg/m3 for annual mean PM2.5).

Pooling all individual surveys, no associations were observed between previous-
month mean PM2.5 concentration and either prevalence of cough (pooled OR: 1.000, 95%CI:
0.981–1.009) or ALRI (pooled OR: 0.975, 95%CI: 0.941–1.010) in the overall population
(Table 3), with significant heterogeneity observed among surveys. Sensitivity analyses
did not substantially change the main results (Supplementary Table S1). Similarly, no
associations were seen for any subgroup analyses by pooling all individual surveys. For
the prevalence of cough, positive associations were seen among children from poorer
households, from west African countries or from the countries with medium-to-high HDI
index. While for the prevalence of ALRI, the association was positive (pooled OR: 1.018,
95%CI: 0.975–1.064) by pooling surveys with a medium-to-high HDI index.
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Table 1. Characteristics of study participants.

Country, Year No. of Under-
5 Children

No. of
Under-5 Children

with Data on
Cough

% with
Cough

No. of
Under-5 Children

with Data on ALRI

% with
ALRI *

% Urban
Clusters

Mean Child’s
Age in Months % Girl

% with
Smaller Birth

Size than
Average *

% Poorer &
Poorest

Households

Mean
Maternal Age

in Years

% No. Formal
Education

Angola, 2016 17,367 16,409 10.5 16,374 4.1 55.3 29.6 50.7 9.7 47.7 28.0 35.0
Burkina Faso, 2010 17,249 15,628 10.8 1680 - 27.3 42.7 49.5 13.0 37.1 29.3 80.4
Burundi, 2017 16,949 16,074 37.7 16,072 12.2 18.9 30.4 49.7 16.1 43.8 30.5 42.7
Burundi, 2010 9403 8737 37.6 3280 - 19.6 42.8 48.9 16.7 37.5 30.3 47.9
Cameroon, 2018 13,102 12,250 18.6 12,225 3.8 52.4 30.2 50.2 13.5 36.1 28.5 19.8
CDR, 2014 20,309 18,470 30.4 5591 - 29.7 44.0 50.3 12.1 49.0 29.1 21.0
Ethiopia, 2016 18,324 17,353 15.5 17,331 7.2 31.0 30.3 48.4 25.6 49.6 29.2 54.0
Ethiopia, 2005 15,033 13,681 15.1 2048 - 26.5 37.6 48.2 27.5 38.0 28.9 67.9
Ghana, 2014 12,934 12,149 13.8 1615 - 50.2 44.2 48.4 17.6 42.8 30.7 27.9
Ghana, 2008 12,233 11,313 21.4 2420 - 43.9 41.9 51.3 14.7 41.2 30.2 28.7
Guinea, 2018 9170 8361 12.3 8356 4.6 31.3 29.1 48.8 11.1 45.1 29.2 75.5
Kenya, 2014 39,985 38,108 36.3 13,782 - 38.6 44.2 49.7 - 46.3 28.6 16.2
Kenya, 2008 10,174 9486 23.2 2185 - 32.5 42.0 50.0 16.1 35.2 28.6 15.7
Malawi, 2016 27,594 25,933 23.6 25,879 10.1 18.8 30.7 50.7 15.1 44.3 28.0 11.7
Malawi, 2010 27,516 25,189 28.0 7027 - 11.5 42.6 50.6 14.8 43.9 28.3 15.8
Mali, 2018 11,269 10,470 9.0 10,468 3.1 28.6 29.6 48.7 14.6 43.1 28.6 73.2
Mali, 2012 11,723 10,787 8.0 850 - 26.6 43.6 48.7 14.0 38.1 28.4 81.5
Mozambique, 2011 14,510 13,322 10.9 1434 - 35.8 43.1 50.0 13.6 34.5 28.3 32.3
Nigeria, 2018 46,230 42,199 15.5 42,196 4.9 39.0 30.8 49.1 12.5 37.9 29.9 36.2
Rwanda, 2015 12,834 12,213 25.2 3074 - 23.0 44.4 48.0 15.0 44.2 30.2 14.2
Rwanda, 2010 12,897 12,029 23.3 2800 - 15.9 42.8 47.8 16.3 43.3 30.7 18.0
Senegal, 2014 7063 6515 7.1 466 - 31.7 44.2 50.4 32.7 60.1 29.5 70.7
Senegal, 2015 7286 6679 10.9 727 - 29.6 44.6 50.0 31.8 56.7 29.5 69.0
Senegal, 2016 7147 6610 9.6 634 - 30.0 45.0 48.2 30.9 61.0 29.5 67.8
South Africa, 2016 13,792 12,854 25.3 12,800 4.6 60.0 32.0 45.4 13.8 41.5 28.9 1.0
Tanzania, 2016 14,449 13,405 16.7 13,388 4.9 27.9 29.6 49.0 10.2 37.1 29.2 19.2
Togo, 2014 10,384 9626 24.7 2381 - 37.0 44.0 50.1 16.4 41.1 30.2 39.6
Uganda, 2016 21,356 19,957 39.3 19,930 14.4 22.8 30.7 48.9 19.5 42.7 28.7 12.0
Zambia, 2018 13,905 12,983 20.8 12,981 2.1 35.6 29.4 50.0 12.0 46.6 28.4 9.5
Zimbabwe, 2015 11,202 10,512 35.7 10,461 7.8 41.2 30.7 48.5 14.1 44.8 28.6 1.2
Zimbabwe, 2005 10,784 9725 18.2 1763 - 32.0 40.8 50.5 14.2 40.2 27.8 4.0
Average - - 20.5 - 6.4 32.4 37.7 49.3 16.3 43.6 29.1 35.8

No., number; ALRI, acute lower respiratory tract infection. * Prevalence was not computed if missingness of data are >10%.
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Table 2. Distributions of PM2.5 concentration (µg/m3) across the surveys.

Country, Year Number of
Under-5 Children

Number with
Data on PM2.5

Previous-Month PM2.5 Annual-PM2.5
Spearman R *

Mean (SD) IQR Range Mean (SD) IQR Range

Angola, 2016 17,367 16,363 15.5 (8.7) 9.4 (5.7–42.5) 18.6 (5.1) 5.9 (10.8–36.2) 0.31
Burkina Faso, 2010 17,249 16,238 38.9 (23.6) 23.4 (14.8–147.5) 61.0 (5.6) 8.9 (48.4–72.6) 0.49
Burundi, 2017 16,949 16,497 21.2 (6.3) 8.3 (11.8–46.9) 24.4 (2.8) 3.3 (19.3–35.2) 0.27
Burundi, 2010 9403 9138 25.7 (7.5) 11.7 (10.1–42.8) 20.0 (3.0) 3.6 (15.2–30.6) 0.09
Cameroon, 2018 13,102 12,937 19.5 (9.7) 13.8 (6.0–65.7) 45.3 (8.8) 11.6 (24.5–70.2) 0.48
CDR, 2014 20,309 18,442 21.2 (15.4) 7.3 (7.1–70.1) 34.0 (7.4) 9.2 (14.5–51.3) 0.22
Ethiopia, 2016 18,324 17,720 23.0 (6.2) 6.6 (5.6–43.3) 22.1 (4.6) 4.3 (9.3–34.4) 0.53
Ethiopia, 2005 15,033 14,830 19.3 (7.1) 8.0 (4.7–42.6) 15.9 (3.9) 5.9 (6.0–25.3) 0.81
Ghana, 2014 12,934 12,180 19.5 (6.5) 7.1 (9.9–37.8) 46.1 (2.7) 3.7 (39.1–54.7) 0.23
Ghana, 2008 12,233 11,543 21.6 (7.5) 5.4 (12.3–58.9) 73.9 (6.2) 7.1 (58.5–86.9) −0.04
Guinea, 2018 9170 8647 56.1 (4.9) 5.8 (43.4–77.4) 49.7 (3.6) 5.1 (43.0–60.5) 0.48
Kenya, 2014 39,985 38,935 10.1 (3.4) 5.2 (3.9–34.8) 13.1 (2.1) 2.9 (7.3–18.3) 0.45
Kenya, 2008 10,174 9871 8.9 (3.3) 3.7 (3.7–21.6) 8.9 (2.4) 3.9 (5.8–16.0) 0.67
Malawi, 2016 27,594 26,243 21.9 (8.4) 15.3 (8.2–42.3) 13.7 (1.1) 1.3 (11.4–17.4) 0.37
Malawi, 2010 27,516 26,381 6.4 (1.9) 1.2 (2.7–14.3) 11.9 (0.6) 0.8 (10.2–13.7) −0.03
Mali, 2018 11,269 10,665 33.6 (11.3) 14.3 (13.5–74.5) 59.4 (3.6) 5.1 (52.6–68.5) 0.42
Mali, 2012 11,723 11,723 44.5 (15.0) 8.2 (20.9–91.9) 59.9 (4.3) 5.8 (50.4–72.4) 0.31
Mozambique, 2011 14,510 13,715 9.9 (6.2) 6.2 (3.5–35.6) 9.7 (2.8) 4.1 (4.4–16.9) 0.67
Nigeria, 2018 46,230 44,896 32.0 (12.7) 18.9 (11.4–104.5) 78.8 (9.9) 15.9 (47.0–101.0) 0.27
Rwanda, 2015 12,834 12,339 25.8 (9.5) 12.7 (12.4–46.6) 23.8 (2.1) 2.7 (17.4–28.6) 0.14
Rwanda, 2010 12,897 12,402 25.8 (9.4) 12.5 (12.4–46.6) 23.8 (2.1) 2.7 (17.4–28.6) 0.14
Senegal, 2014 7063 6715 49.2 (17.0) 25.3 (17.0–90.7) 42.3 (3.1) 4.6 (36.1–51.4) 0.04
Senegal, 2015 7286 6939 61.5 (27.5) 52.6 (16.6–112.9) 51.4 (4.6) 6.8 (39.2–61.7) −0.13
Senegal, 2016 7147 6788 48.4 (26.1) 45.2 (16.8–107.1) 53.6 (4.4) 6.2 (42.7–64.3) 0.49
South Africa, 2016 13,792 13,712 11.2 (4.5) 7.5 (2.3–33.6) 11.2 (3.8) 6.0 (3.4–21.5) 0.94
Tanzania, 2016 14,449 13,549 13.2 (6.6) 5.6 (5.8–43.2) 13.6 (3.7) 4.9 (7.9–27.3) 0.73
Togo, 2014 10,384 10,204 64.6 (30.8) 54.3 (21.0–132.2) 52.7 (5.6) 9.7 (42.9–76.2) −0.25
Uganda, 2016 21,356 20,112 19.8 (7.3) 7.6 (10.3–43.9) 24.9 (7.0) 11.7 (12.5–39.9) 0.71
Zambia, 2018 13,905 13,229 18.6 (11.8) 21.1 (4.0–52.4) 12.6 (2.1) 3.1 (8.7–20.1) 0.25
Zimbabwe, 2015 11,202 11,174 15.6 (7.2) 14.1 (5.2–35.9) 11.4 (1.4) 2.5 (8.8–15.6) 0.37
Zimbabwe, 2005 10,784 10,728 11.9 (7.5) 11.6 (3.3–35.8) 8.5 (0.9) 1.1 (6.7–12.4) 0.38

SD, standard deviation; IQR, interquartile range. * Correlation ratio between the month of PM2.5 exposure preceding the survey interview and the annual PM2.5 exposure.
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Table 3. Associations between prior-month PM2.5 exposure (per 1 µg/m3 higher) and prevalence of cough or ALRI in the past two weeks across Demographic and Health Surveys (DHS)
in sub-Saharan Africa.

Variable
Cough ALRI

N OR [95%CI] I2 (%) Phet N OR [95%CI] I2 (%) Phet

All 368,366 1.000 [0.981, 1.009] 50.4 0.001 109,644 0.975 [0.941, 1.010] 67.4 <0.001
Cluster type

Urban 111,729 0.999 [0.980, 1.018] 71.3 <0.001 30,582 0.971 [0.910, 1.037] 62.5 0.001
Rural 256,637 0.999 [0.987,1.011] 67.9 <0.001 76,612 0.975 [0.957,0.993] 43.6 0.053

Wealth index
Q1–Q2 93,114 1.006 [0.987, 1.024] 65.0 <0.001 23,461 0.940 [0.913, 0.969] 16.1 0.291
Q3–Q5 101,236 0.991 [0.975, 1.008] 59.1 <0.001 23,611 0.974 [0.939, 1.011] 48.7 0.034

Stunting
Stunted 44,197 0.991 [0.972, 1.012] 40.0 0.015 9249 0.966 [0.851, 1.096] 79.1 <0.001
Non-stunted 280,787 1.001 [0.992, 1.011] 45.8 0.003 73,734 0.993 [0.963, 1.025] 57.6 0.009

Sex
Boys 159,179 1.000 [0.988, 1.013] 53.0 <0.001 38,660 0.983 [0.934, 1.036] 58.2 0.008
Girls 156,223 1.001 [0.993, 1.008] 26.9 0.086 36,517 0.976 [0.942, 1.010] 12.6 0.327

Age
<24 months 60,622 0.996 [0.964, 1.029] 54.4 0.010 32,020 0.976 [0.935, 1.018] 46.1 0.046
24–59 months 88,685 0.993 [0.977, 1.010] 4.4 0.403 43,220 0.987 [0.947, 1.029] 54.3 0.016

Location
West Africa 115,221 1.002 [0.989, 1.015] 65.4 0.001 30,493 0.945 [0.861, 1.037] 80.6 0.001
Rest of Africa 253,145 0.996 [0.989, 1.004] 33.0 0.082 79,151 0.983 [0.946, 1.021] 59.4 0.012

HDI index
Medium-to-high 81,517 1.022 [0.982, 1.064] 63.3 0.018 17,201 1.018 [0.975, 1.064] 0 0.609
low 286,849 0.998 [0.989, 1.006] 45.4 0.008 92,443 0.958 [0.915, 1.002] 75.3 <0.001

Odds ratios were adjusted for a priori defined covariates, including child’s sex, child’s age in months, size at birth, month of the interview, household wealth index, maternal age, and maternal education. Wealth
index Q1–Q2: quintile 1 to 2, corresponding to poorer households; Q3–Q5: quintile 3 to 5, corresponding to average or wealthier households. West Africa: Burkina Faso, Cameroon, Ghana, Guinea, Mali, Nigeria,
Senegal and Togo. HDI index: medium-to-high (≥0.55), low (<0.55). Phet: p-value for heterogeneity across surveys.
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Across each individual survey, a few statistically significant positive associations with
cough were seen (e.g., Zimbabwe 2005, Burkina Faso 2010, Ghana 2014, Angola 2016) in
the overall population, with the OR ranging from 1.016 to 1.130 per each µg/m3 higher
of PM2.5 (Figure 1). All these associations, except for Ghana 2014, were only found to
be significantly positive among urban clusters. In contrast, for Ghana 2014, a positive
association was only found among rural clusters (pooled OR: 1.178, 95%CI: 1.129–1.229).
Figures of survey-specific ORs for each association are listed in Supplementary Files
(Figures S1–S29).
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4. Discussion

To our knowledge, this is the first multi-country study investigating the associations
between short-term ambient PM2.5 exposure and respiratory health in children under five
across sub-Saharan Africa. Whilst we hypothesised that higher ambient PM2.5 exposure
is associated with higher odds of cough or ALRI among children under five, our pooled
analyses were unable to provide such evidence. Significant heterogeneity was observed
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for most pooled associations, highlighting the complexity in studying health impacts of
air pollution in a vast geographical region such as SAA with a diverse demographic and
socioeconomic context. Nonetheless, in some individual surveys, the association with
cough was positive and reached statistical significance.

The main strengths of our study include multi-country national surveys from 21 coun-
tries across SSA, pooled analyses of individual national surveys with a harmonised set
of major confounders at both household- and child-level, and adoption of a standardised
assessment of PM2.5 exposure which was estimated monthly prior to survey date.

This study has several key limitations that may in part explain the observed null
associations. First and foremost, self-reported data on cough and ALRI were non-specific
and subject to recall bias. This potential recall bias has led to a misclassification of outcomes
and/or masking of associations with more severe infections, thereby reducing the analysis
strength in each individual survey. It would be a highly valuable advantage if ALRI could
be laboratory-confirmed or clinician-diagnosed, but adoption of which would inevitably
preclude studies in many SSA countries as most still do not have adequate access to
diagnostic tools or formal healthcare [25]. Second, uncertainties of the global PM2.5 model
for the SSA region are likely high, as very few ground-level monitored PM2.5 data was
available in this region to validate the model [20]. In addition, the extent of exposure
misclassification for rural clusters are relatively larger as compared to urban clusters. The
chemical transport model in estimating PM2.5 exposure was based on emission inventories,
which have a higher degree of uncertainty in rural areas where biomass and crop residual
burning is highly prevalent in rural SSA [26]. This global PM2.5 model may also not
capture emissions associated with different types of cooking stoves or ventilations in most
surveyed households in our study. In our analysis, 68% of surveyed clusters were classified
as rural, therefore the uncertainty in exposure assessment is expected to be much higher
and may in part lead to the null findings. PM2.5 estimates were only assigned to each
child at cluster locations, coordinates of which were displaced by 2 to 10 km by DHS to
protect participants’ confidentiality. Without individual residential-based PM2.5 estimates,
together with time-activity data, a larger extent of exposure misclassification is expected to
attenuate associations towards null. Third, although our associations have been adjusted
for several major confounders, and robustly tested in different sensitivity analyses, it is
always probable there exists residual confounding. For instance, we did not have data
on comorbidities (HIV, malaria, etc.) that may increase a child’s vulnerability to adverse
effects of air pollution. We either did not have data on temperature and humidity which
are likely to affect both short-term air pollution and respiratory symptoms. Lastly, this
cross-sectional study is inherently exploratory and any observed statistically significant
associations do not imply causality.

There are several suggested pathways by which PM2.5 may lead to respiratory infec-
tion. Inhalable PM2.5 could serve as a carrier, and promote the growth of infectious agents
which increase the infection per se [27]. PM2.5 may also increase the host’s susceptibility to
respiratory pathogens via inflammation and oxidative stress, which disrupt the lung’s in-
nate immune system including impaired mucociliary clearance, macrophage function and
epithelial barrier [28]. Urban PM2.5 has been shown to increase adhesion of pneumococci,
a pathogen responsible for most bacterial pneumonia cases, into human airway epithelial
cells [29]. However, the interaction between respiratory syncytial virus (RSV), a major
cause of ALRI among young children, and PM-exposed airway cells remains unclear [30],
despite the fact that recent epidemiological evidence indicated an association between
PM2.5 and clinically proven RSV infection among children under two years of age [5].

Previously, a robust relationship was found between annual PM2.5 exposure and
infant mortality across SSA countries, with the risk increased by 9.2% with every 10 µg/m3

increase in ambient PM2.5 in the first 12 months of life [31]. The authors speculated that
ALRI could be one of the many mediators between ambient PM2.5 and infant mortality,
although our analysis did not provide such direct evidence. A very limited number of
African studies suggested that traffic- or industry-related air pollution [32–36], which most
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often occurs in urban areas, was associated with wheeze, cough, allergic rhinitis and phlegm
in children. However, most of these studies had only assessed residential proximity to main
road, industrial or mine areas rather than individual air pollutants [15,16]. More recently, a
study in the Western Cape province found that modelled-NO2, but not modelled-PM2.5,
was significantly associated with a new onset of asthma symptoms among school-aged
children residing in informal settlements [37].

Globally, the associations between daily mean PM2.5 and childhood pneumonia or
ALRI hospitalisation were observed in a wide range of PM2.5 exposure (range: 9.4 to
96.0 µg/m3), including that below the current WHO guideline (25 µg/m3 daily mean) [14].
In an analysis of 112,467 children aged 0–2 years in the Wasatch Front region of Utah
(largely urban/suburban), cumulative 28-day PM2.5 exposure (daily mean: ~10 µg/m3)
was significantly associated with clinically verified ALRI (OR: 1.15, 95%CI: 1.11–1.19, per
10 µg/m3 increase) [5]. Collectively, all these studies have strengthened the call to reduce
ambient air pollution, including PM2.5, as much as possible to protect health. In the
previous analysis of DHS survey data, it was estimated that 22% infant deaths (~449,000)
could be avoided should the annual average of PM2.5 was reduced to 2 µg/m3 in SSA [31].

Whilst overall our study did not suggest an association between ambient PM2.5 and
respiratory health in children under five across SSA, it did shed lights into some works
that should be urgently addressed. For example, positive associations with higher effect
sizes were observed with both cough and ALRI, albeit non-significant, when analysis
was restricted to countries with a medium-to-high HDI index. This may highlight the
potential harm of urbanisation, which acts partly via decreased air quality on human
health. Sub-Saharan Africa is urbanising at an unprecedented rate and is projected to
pass the 50% urban tipping point by 2035 [38]. This rapid urbanisation, together with
inadequate capacities in policy regulations and supporting infrastructure, are expected to
bring unfavourable changes in urban environment, including the air quality [39]. Some
African cities already reported that concentrations of air pollutants were higher in urban
business and high-density residential areas, where traffic and biomass use are the dominant
sources, than in peri-urban or rural areas where traffic is considerably less [40–42]. Traffic-
related air pollution from both formal and informal transport sectors is becoming a major
health concern in urban SSA. Across SSA cities, whilst the overall number of new vehicles
is increasing over time, second-hand and diesel-powered vehicles are still imported; much
often the vehicle fleet is poorly maintained and emissions standards are either completely
lacking or not strictly enforced in most SSA countries [17]. There is already established
evidence from other global urban regions that diesel exhaust from traffic is particularly
harmful to a range of childhood respiratory diseases [43]. To safeguard public health from
air pollution, we echo with other reports that African cities should endeavour to establish
and maintain an air quality monitoring network [44], data of which has proven to be
extremely important for both policy-making and scientific research.

5. Conclusions

By pooling national survey data across SSA countries, this explorative study did not
observe an association between short-term ambient PM2.5 exposure and respiratory health
among young children. Future works are urgently needed in SSA to better characterise
concentrations, distributions and toxicity of ambient air pollution, as well as their impacts
on the developing lungs in children.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Table S1: Results of sensitivity analyses to the main model. Figures S1–S29: Associations between
short-term PM2.5 exposure and odds of self-reported ALRI and cough.
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