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Abstract: The reduction of population concentration in some urban land uses is one way to prevent
and reduce the spread of COVID-19 disease. Therefore, the objective of this study is to prepare
the risk mapping of COVID-19 in Tehran, Iran, using machine learning algorithms according to
socio-economic criteria of land use. Initially, a spatial database was created using 2282 locations of
patients with COVID-19 from 2 February 2020 to 21 March 2020 and eight socio-economic land uses
affecting the disease—public transport stations, supermarkets, banks, automated teller machines
(ATMs), bakeries, pharmacies, fuel stations, and hospitals. The modeling was performed using
three machine learning algorithms that included random forest (RF), adaptive neuro-fuzzy inference
system (ANFIS), and logistic regression (LR). Feature selection was performed using the OneR
method, and the correlation between land uses was obtained using the Pearson coefficient. We
deployed 70% and 30% of COVID-19 patient locations for modeling and validation, respectively.
The results of the receiver operating characteristic (ROC) curve and the area under the curve (AUC)
showed that the RF algorithm, which had a value of 0.803, had the highest modeling accuracy, which
was followed by the ANFIS algorithm with a value of 0.758 and the LR algorithm with a value of
0.747. The results showed that the central and the eastern regions of Tehran are more at risk. Public
transportation stations and pharmacies were the most correlated with the location of COVID-19
patients in Tehran, according to the results of the OneR technique, RF, and LR algorithms. The
results of the Pearson correlation showed that pharmacies and banks are the most incompatible in
distribution, and the density of these land uses in Tehran has caused the prevalence of COVID-19.

Keywords: COVID-19 crisis; data-driven algorithms; geographic information system (GIS); spatial
modeling; health geography

1. Introduction

In December 2019, an acute respiratory syndrome was reported in Wuhan, Hubei
Province, China, due to the release of a new unknown virus called COVID-19. Very
soon after this, new cases were identified all over China and around the world. COVID-
19 spreads relatively rapidly compared to SARS-CoV in 2002–2003 and MERS-CoV in
2012–2014. While the number of patients with MERS reached 1000 in about 30 months and
the number of patients with SARS reached 1000 in approximately months, the number
of COVID-19 patients reached 1000 in only 48 days [1]. COVID-19 spreads so fast that
it was alarmingly declared a global epidemic by the World Health Organization (WHO)
on 11 March 2020 [2]. As of 4 May 2020, more than 3,435,894 people have been infected
worldwide, and it can be concluded that COVID-19 has spread all around the world [3].

COVID-19 is a new virus, and little is known about it [4]; additionally, the transmission
of the virus is a complex process. For this process, algorithms can be developed to predict
the outbreak of infectious disease using an analysis of how infectious disease spreads [5].
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COVID-19 is highly contagious, and since no specific treatment has been developed yet for
it [6], using modeling tools to identify the virus-infected areas can help prevent its spread.
However, there have been few risk maps of the virus-infected urban areas to prevent travel
to risky places.

Many factors influence the transmission of a virus [7]. Since the spread of epidemic
urban diseases is strongly affected by urban activities [8], identifying the relationships
between the different urban land uses and the transmission of COVID-19 is an effective
tool to prevent its spread across the city. Geographic information system (GIS) has long
been considered by health experts to be an important tool in the prevention and control
of infectious diseases. With the invention of computerized GIS, its use with analyzing,
visualizing, and the discovery of disease-spreading patterns has increased significantly [1].
Therefore, using GIS, the distribution of urban land uses and the relationship between the
distribution of these land uses and high-risk areas of the disease can be determined.

With the ability to quickly analyze big data and understanding the epidemic rules,
GIS supports preventive decisions and actions [9]. So far, GIS-based studies have been
conducted to spatial analyze COVID-19. In the continental United States, Mollalo et al. [10]
examined GIS-based spatial modeling of the COVID-19 incident rate using a geographi-
cally weighted regression (GWR) model. Kanga et al. [11] assessed the risk of COVID-19
contagion using remote sensing and GIS analysis. Urban et al. [12] used GIS-based spa-
tial modeling of COVID-19 deaths in Sao Paulo, Brazil, using the GWR model. Through
Bayesian probabilistic modeling and the GIS-based Voronoi method, Bherwani et al. [13]
investigated the understanding of COVID-19 transmission. In this study, the relationship
between the population in each polygon and the COVID-19 prevalence rate was inves-
tigated. Bag et al. [14] examined the understanding of the spatio-temporal pattern of
COVID-19 prevalence in India using GIS and the Moran spatial autocorrelation index.
Silalahi et al. [15] examined GIS-based approaches to referral hospital access using network
analysis and the spatial distribution model of COVID-19 disease spread in Jakarta, In-
donesia. Rahman et al. [16] investigated GIS-based spatial modeling to identify the factors
influencing the incidence of COVID-19 in Bangladesh using a spatial regression algorithm.
Razavi-Termeh et al. [17] examined Iran’s vulnerability to COVID-19 using four criteria:
population density, percentage of elderly people, temperature, and humidity.

Research on the spatial analysis of COVID-19 disease has so far made little mention of
urban land uses and their role in the spread of the COVID-19. The density of urban land
uses and incompatibility in them can lead to population density and greater prevalence of
COVID-19. Therefore, one of the objectives of this study was to investigate the correlation
and relationship between land uses with COVID-19 and their use in preparing a risk
map. Owing to the nature of the data, machine learning algorithms were used to prepare
the COVID-19 risk map. Relationships in the real world are nonlinear, which has led to
the widespread use of machine learning algorithms in various sciences that examine the
nonlinear and complex relationships between observations and prediction variables [18].
Machine learning algorithms enable the analysis of big data. In addition, they usually
allow easier, more accurate outcomes to predict. A core element of spatial analysis in GIS
is machine learning [19]. Since the purpose of this study is to predict COVID-19 risk with
respect to urban land uses, the regression algorithm of machine learning algorithms was
used. To predict the COVID-19 risk among machine learning algorithms, three categories
of machine learning regression algorithms, including neural networks (adaptive neuro-
fuzzy inference system (ANFIS) algorithm), decision trees (random forest (RF) algorithm),
and generalized linear algorithms (logistic regression (LR) algorithm), were used. These
three algorithms have shown their ability in GIS-based environmental modeling [20–24].
Although useful studies have been performed on the spatial analysis of COVID-19 using
GIS, few studies have prepared a COVID-19 risk map in urban environments using machine
learning algorithms. To the best of the authors’ knowledge, the impact of socio-economic
land uses on the modeling of COVID-19 has not been used so far, and this study offers an
approach to reduce population density in socio-economic land uses.
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2. Materials and Methods
2.1. Methodology

In Figure 1, the research framework is shown and contains the following steps:
Int. J. Environ. Res. Public Health 2021, 18, x 4 of 21 
 

 

 
Figure 1. Research framework. Figure 1. Research framework.

Step1: Creating a spatial database including the location of patients with COVID-19
and urban land use.

Step 2: Modeling of COVID-19 disease risk areas using machine learning algorithms
(RF, ANFIS, and LR algorithms) in the MATLAB R2017b software (Mathworks, Natick
Massachusetts, United States) and determining the importance of variables using the
OneR technique.
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Step 3: Mapping the high-risk areas of COVID-19 disease and evaluating the results.
Step 4: Provision of solutions to determine management policies and decision makers

in the control of COVID-19 disease.

2.2. Study Area

Tehran is the capital of Iran, which has an approximate area of 730 km2. The Tehran city
is located between the latitude of 51◦6′ to 51◦38′ N and the longitude of 35◦34′ to 35◦51′ E.
The population of Tehran is 8,693,706, and Tehran is the largest and most populous city in
Iran, according to the most current official statistics from the Statistics Center of Iran in 2016.
Additionally, more than 10% of Iran’s population lives in this city. On 21 February 2020,
the first patient with the virus was identified in Tehran, and the number of patients in
this city reached 2282 by 21 March 2020 according to the Ministry of Health and Medical
Education of Iran, which showed that Tehran is the most infected city in Iran with COVID-
19. In order to model the COVID-19 risk, the patients’ residential addresses were used,
and this information was converted into point data. Figure 2 shows the distribution map
of COVID-19 patients in Tehran by 21 March 2020. In order to perform better with the
modeling, the same number of COVID-19 non-occurrence data (value 0) was randomly
generated in addition to the COVID-19 related training data (value 1) (2282 points).
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Figure 2. Distribution of COVID-19 in Tehran.

2.3. The Effective Criteria

Social activity has a direct effect on the spread of COVID-19, and the transmission of
this virus is still ongoing until all its activity is reduced [25]. Quarantine on a personal and
social level is effective in controlling COVID-19 [26]. Urban quarantine and restrictions on
urban activities have been shown to be successful in decreasing the spread of COVID-19 [27].
However, even during the quarantine period, all urban activities did not stop completely,
and some activities continued. In this research, eight public urban land uses were selected
that continued to work during the quarantine as effective sites for the COVID-19 outbreak,
which included automated teller machines (ATMs), bakeries, banks, fuel stations, hospitals,
pharmacies, public transportation stations, and supermarkets. Open Street Map (OSM)
(https://www.openstreetmap.org/, accessed on 2 February 2020) data was used to prepare
the spatial data set of the effective criteria in Tehran. The numbers of land uses in the study
area are presented in Table 1. Figure 3 shows the distribution map of each criterion. Land

https://www.openstreetmap.org/
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use density was obtained using kernel density analysis in ArcGIS 10.3 (ESRI, Redlands, CA,
USA) to analyze the impact of each land use on COVID-19 modeling. Using Equation (1),
the kernel density was calculated [28]:

Density =
1

(radius)2

n

∑
i=1

[
3
π

popi(1− (
disti

radius
)

2
)

2]
(1)

where i = 1, . . . , n are the input points, popi is the population field value of point i, and disti
is the distance between point i and the (x, y) location. During the day, ATMs are touched
by many people, which makes these devices much polluted [29]. Iranians consume an
average of five times more bread than Europeans per day [30]. Therefore, bakeries are
one of the busiest places in Iran. Since the main method of COVID-19 transmission is
human-to-human transmission [31] and the prevalence of this virus in crowded places is
significantly high [32], bakeries can be considered as the centers of COVID-19 outbreak in
Iran. Banks, which include both a place to exchange and hold cash and a busy public place,
are at high risk for the COVID-19 outbreak [29]. With regard to hospitals, human-to-human
hospital-associated transmission of COVID-19 is the cause of the infection of a significant
percentage of the patients. After the virus spread, they have become known as a potential
source of COVID-19 transmission through contact with contaminated surfaces [33]. The
direct connection of infected people with pharmacies has made them one of the most
dangerous places to the extent that various protocols have been proposed by the relevant
organizations in order to increase the safety of the pharmacy staff [34]. Public transport
stations: there is a significant relationship between the use of public transport and the
spread of COVID-19, so much so that the ban of its use was considered as a quick policy to
prevent the further spread of the virus [35]. Finally, supermarkets are among the busiest
places during the virus outbreak, and several clusters of supermarket workers can be seen
among the infected for this reason [36].

Table 1. Number of land uses.

Land Use Number of Land Uses Format

ATM 1084 Point
Bank 2378 Point

Bakery 900 Point
Fuel station 102 Point

Hospital 196 Point
Pharmacy 661 Point

Supermarket 443 Point
Public transportation station 2113 Point
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Figure 3. Location map of the public urban land uses in Tehran: (a) supermarket, (b) pharmacy, (c) hospital, (d) fuel station, (e) bakery,
(f) ATM, (g) bank, and (h) public transportation station.

In the first step, the density map of each socio-economic criterion was prepared and
in order to eliminate the uncertainty. All the density maps were fuzzy using the linear
membership function. The fuzzy maps for the socio-economic criteria and the training data
related to the COVID-19 were used for the modeling. For this purpose, all points 1 and 0
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were extracted from the values of fuzzy maps and considered as input. From the data, 70%
were used as training data and 30% as test data, randomly.

2.4. Methods
2.4.1. The RF Algorithm

The RF is one of the algorithms for supervised machine learning that utilizes a group
of decision trees to predict a sample [37]. A large number of decision trees are created in
this algorithm, and the algorithm selects the decisions with the most votes. The bagging
process in this algorithm is considered to generalize the results. To create each tree in this
algorithm, a different set of existing patterns is determined by considering the replacement
of each selected pattern. Independently of the previous random vectors, a random vector
(socio-economic land uses) is generated in the RF algorithm and distributed to all trees.
Each tree is initially randomly selected using only some data points, then in each division,
only a random selection of possible variables is considered. The RF consists of two trees
(two classes) in this research (COVID-19 and non-COVID-19 locations), and each was
created using eight random features (socio-economic land uses) [38]. To increase the
predictive power of this algorithm, the correlation between the trees should be reduced,
and the strength of trees should be increased [39].

2.4.2. The LR Algorithm

LR is one of the multivariate mathematical methods of regression. In this mathematical
model, the independent variables (socio-economic land uses) are used to predict the
probability of the bivariate dependent variables (COVID-19) [40]. LR tries to obtain the
best fitting model for the COVID-19 risk map to describe the relationship between the
COVID-19 and socio-economic land uses [41]. The LR algorithm can be defined as the
following Equation (2):

p =
1

1 + e−z (2)

p ∈ [0, 1] and z ∈ (−∞,+∞)

In Equation (2), p is the probability of an event occurring. The z parameter, which is
calculated according to Equation (3), is a linear set of constant values [41].

z = β0 + β1x1 + β2x2 + β3x3 + . . . + βnxn (3)

where β0 has a constant value, β1 . . . βn are regression coefficients, and X1 . . . Xn are
independent variables.

2.4.3. The ANFIS Algorithm

To build the ANFIS algorithm, artificial neural networks (ANN) and fuzzy logic (FL)
are combined. The purpose of this combination is that ANFIS uses the benefits of both
ANN and FL in one framework [42]. Even though fuzzy algorithms can describe complex
processes using IF-THEN rules, they are not capable of automatic training. Additionally, it
becomes very difficult to select the appropriate membership functions and the if-then rules
for the fuzzy model as the number of input variables of a problem increases. In contrast,
even though the ANN algorithms can automate training, they cannot describe the system
and how to achieve the results [43].

The ANFIS algorithm consists of 5 layers (Figure 4), which are as follows [44]:
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All the input nodes in the first layer are the adaptive nodes Equations (4) and (5):

O1, i = µAi(x) (4)

O1, i = µBi(y) (5)

In Equations (4) and (5), A and B are the linguistic variables, and µAi(x) and µBi(y) are
the membership functions of the input nodes x and y.

Layer 2 has constant nodes as π. Every node with the role as a fuzzy AND action
is used for the firing strength computation of the rules as the output layer. All the input
signals to a node produce the output of each node Equation (6):

O2, i = Wi = µAi(x) µBi(y), i = 1, 2 (6)

where Wi is the output of each node.
Layer 3 consists of a set of fixed nodes with the symbol N. The nodes in this layer

are normalized to the firing strength from the second layer, which is known as the normal
firing power Equation (7):

O3, i = Wl =
wi

w1 + w2
, i = 1, 2 (7)

Each node in the fourth layer is linked to a node function Equation (8):

O4, i = Wl fi = Wl(pix + qiy + ri), i = 1, 2 (8)

where Wl is the normalized firepower of the third layer, and pi, qi, and ri are the linear parameters.
Layer 5 is the output layer, and it contains a single node with the symbol ∑. This layer

is the sum of all the inputs from layer 4 and is equal to the final result of the algorithm
Equation (9):

O5, i = ∑ Wl fi = ∑ wi fi/ ∑ wi, i = 1, 2 (9)

2.4.4. Feature Selection Using OneR Technique

In this study, the OneR technique was used to investigate the importance of variables
in modeling. This method examines the correlation between patients’ geographical location
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and variables and assigns importance to each variable based on the weight of the correlation
obtained. This method is also used to check whether all variables can participate in
modeling. The OneR approach is a one-tier decision tree that includes a series of rules
in the dataset that all evaluate a particular property. The OneR approach is simple and
also offers good rules for data structures to be characterized. To obtain the weight of each
effective criterion, the OneR strategy uses the computational error ratio and other rules [45].

2.4.5. Pearson Correlation Technique

A measure of the linear dependence between two random variables is the Pearson
correlation coefficient. Pearson correlation coefficient between two variables is calculated
by dividing their covariance by standard deviations. Pearson correlation between x and y
variables was calculated using Equation (10) [46].

rxy =
∑(xi − x)∑(yi − y)√

∑(xi − x)2
√

∑(yi − y)2
(10)

where x denotes the mean of x, y denotes the mean of y, and rxy is the Pearson coefficient.

2.4.6. Validation

To test the modeling, the ROC curve was used. There are sensitivity axes (x-axis) and
a transparency axis (y-axis) in the ROC curve. The x-axis and the y-axis for the ROC curve
are calculated using Equations (11) and (12) [47,48].

X = 1−
[

TN
TN + FP

]
(11)

Y =

[
TP

TP + FN

]
(12)

The area under the ROC curve, known as the AUC, describes the importance of the pre-
diction of a system by defining its capacities to correctly forecast the occurrence of an event
and its non-occurrence [42]. The root mean square error (RMSE) and the mean absolute
error (MAE) indices were used to calculate the prediction error Equations (12) and (13).

RMSE =

√
∑n

i=1(Y− Y′)2

n
(13)

MAE =
1
n

n

∑
i=1
|Y− Y′| (14)

Y is the real value, Y′ is the predicted value, and n is the number of samples [48].

3. Results
3.1. Feature Selection

Feature selection results using the OneR method are shown in Figure 5. This finding
reveals that in the COVID-19 risk mapping, all eight parameters have significance (average
merit (AM) > 0). On the basis of the OneR technique performance, criteria of public
transportation station (67.18), pharmacy (62.53), bakery (59.27), supermarket (57.7), hospital
(55.58), bank (54.01), ATM (51.08), and fuel station (49.71) are the most important on COVID-
19 risk modeling. The results show that all variables can participate in modeling.
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3.2. Correlation between COVID-19 and Land Use

The results of the Pearson correlation between COVID-19 and land uses are shown
in Figure 6. According to the results, COVID-19 have the highest correlation with public
transport stations (0.56) and pharmacies (0.61). According to the results, the land uses of the
public transport stations (0.65), pharmacies (0.75), hospitals (0.77), and fuel stations (0.43)
are most correlated with the land use of the bank. Additionally, land uses of supermarkets
(0.64), bakeries (0.56), and ATMs (0.47) are most correlated with the land use of pharmacies.
The results showed that the density of bank and pharmacy land uses is most correlated
with other land uses in the prevalence of COVID-19.
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3.3. COVID-19 Modeling Process

The spatial database used as input to the machine learning algorithms included
dependent data (COVID-19 patient’s location (1) and COVID-19 patient’s non-location
(0)) and independent data (land use fuzzy maps (Figure 7)). The input matrix of machine
learning algorithms consists of nine columns (eight columns equal to land uses and the last
column of the target (values 0 and 1)) and 4564 rows (2282 rows of COVID-19 patients and
2282 rows of patients without COVID-19).
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The results of the ability to predict the three algorithms and the modeling output
on the training and the validation data are shown in Figure 8. The results for the RMSE
and MAE values of all three algorithms for the training data and the validation data are
presented in Table 2.
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Table 2. The results of the RMSE and the MAE indices.

RF ANFIS LR

Train Test Train Test Train Test

RMSE 0.1963 0.549 0.277 0.557 0.365 0.571
MAE 0.176 0.511 0.2511 0.520 0.33 0.526

According to the results of the training and validation data, the lowest value for the
RMSE is related to the RF (0.1963 and 0.549), ANFIS (0.277 and 0.557), and LR (0.365 and
0.571) algorithms. The findings of the MAE index showed that RF (0.176 and 0.511), ANFIS
(0.2511 and 0.52), and LR algorithms (0.33 and 0.526) were the lowest values for this index.

In Figure 9, the significance of each of the effective parameters using the RF algorithm
is shown. According to the results, the most important are public transport stations (0.43),
supermarkets (0.38), pharmacies (0.34), hospitals (0.31), fuel stations (0.28), bakeries (0.27),
ATMs (0.26) and banks (0.25).
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The results of the LR algorithm are given in Table 3. According to the results, phar-
macies (0.899), public transport stations (0.794), fuel stations (0.747), hospitals (0.515),
supermarkets (0.499), bakeries (0.4), banks (0.075), and ATMs (0.057) are positively related
to the COVID-19 disease.

Table 3. The results of the LR algorithm.

Variable Coefficient Std. Error

Public transportation stations 0.794 0.434
Banks 0.075 0.42

Pharmacies 0.899 0.276
Fuel stations 0.747 0.214

Bakeries 0.4 0.397
Hospitals 0.515 0.413

ATMs 0.057 0.316
Supermarkets 0.499 0.352

Constant 0.586 -

After training the algorithms, the fitted model was generalized to the whole study area,
and the COVID-19 disease risk map in Tehran was prepared using the three algorithms
in ArcGIS 10.3 software. The classification of the maps was based on the natural break
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method and was divided into five categories, which included very low, low, medium, high,
and very high risk (Figure 10a–c). According to the results of the three algorithms, the
highest vulnerability is related to the central areas of Tehran. Vulnerability in the middle
areas of Tehran in the RF algorithm is more than the other two algorithms. In the RF and
LR algorithms, high-risk areas are less scattered than the ANFIS algorithm. In the LR
algorithm, the number of high-risk areas is lower than the other two algorithms. Areas
with high risk are shown in Figure 11 using the results of the three algorithms. According
to the results, the central and the eastern areas of Tehran have more vulnerabilities than the
other areas. The central areas of Tehran have a higher population density, and Tehran is
where the most important commercial and economic centers are located. Therefore, due to
the social interaction of most people in these areas, it is one of the high-risk areas for the
COVID-19 disease.
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3.4. Validation of COVID-19 Risk Maps

To evaluate the final risk maps, 30% of COVID-19 disease data (occurrence (value 1)
and non-occurrence (value 0)) were extracted from three risk maps. The validation results
from the ROC curve and the AUC are shown in Figure 12 and Table 4. The AUC value of
the prediction rate curve is 0.803, 0.758, and 0.747 for the RF, ANFIS, and LR algorithms,
respectively. The results showed that the RF algorithm had a higher accuracy than the
ANFIS and LR algorithms with COVID-19 risk mapping.

Table 4. Accuracy results of the three algorithms.

Algorithms AUC SE 95% CI

RF 0.803 0.0343 0.734–0.861
ANFIS 0.758 0.0381 0.685–0.821

LR 0.747 0.0381 0.673–0.812

To examine pairwise differences between the algorithms, the Wilcoxon signed-rank
test was used. When the p value is less than 0.05 and the Z value is more than −1.96 and
+1.96, the algorithms’ capacity is predicted to be significantly different [49]. The Z values
and p values for each pairwise comparison of RF-ANFIS, RF-LR, and LR-ANFIS exceeded
the critical thresholds of ± 1.96 and 0.05, indicating significant statistical differences among
the models employed in this study (Table 5).
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Table 5. Wilcoxon signed-rank test of the three algorithms.

Pair-Wise Algorithm Z Value p-Value Significant

RF-ANFIS 6.3 <0.0001 Yes
RF-LR 5.8 <0.0001 Yes

LR-ANFIS 3.7 <0.0001 Yes
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4. Discussion

The city of Tehran is one of the main centers of COVID-19 in Iran due to its high
population and the location of important economic, social, political, and other centers in
this city. In densely populated urban centers, some urban land features that citizens use
frequently can be a focal point for the spread of COVID-19. The purpose of this study is to
map the risk of the urban areas against COVID-19 according to the socio-economic land
uses and three machine learning algorithms, which include RF, ANFIS, and LR. According
to the ROC results, the RF algorithm had a higher accuracy with COVID-19 risk mapping
than the other two algorithms. The RF algorithm works well in a data set with missing
data [21]. On the other hand, with increased training data in the ANFIS algorithm, the
performance of the algorithm improves, but it cannot act effectively like the RF algorithm
for low volume data [50]. With regard to the disadvantages of the LR algorithm compared
to the RF algorithm, the LR algorithm requires processing with more data volume and
inflexibility with a high-level database [51]. Therefore, the use of this algorithm can be
effective to prepare the risk map of COVID-19 due to the advantages that are mentioned
above in relation to the RF algorithm compared to the other two algorithms.

According to the results of the RF and the LR algorithms, COVID-19 had the greatest
impact on public transport stations and pharmacies in Tehran. Public transport stations
are known as one of the outbreak’s major centers for the disease due to the high passenger
traffic and overcrowding. This effect is much more noticeable with public transportation
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because the use of public transportation, such as subways and buses, increases communica-
tion and increases the risk of COVID-19. In Tehran, 15 million trips are made daily, nearly
7 million passengers use metro stations daily, and 3 million passengers use buses daily.
According to the results, it seems that the high density of the passengers in these stations,
the physical contact of the passengers, and the non-compliance with social distancing
are the main reasons for the outbreak of COVID-19 in Tehran. Another important center
for the spread of COVID-19 in Tehran are pharmacies. Some of the reasons for this are
the proximity of these centers to hospitals and the fact that people go to pharmacies to
buy masks and gloves, which increases the population density. According to the results,
another center that has an impact on the outbreak of COVID-19 are supermarkets, which
can affect the outbreak of COVID-19 due to the population of 8 million people in Tehran,
and the demand of people to buy food in these centers. The city of Tehran has almost
4 million cars and more than 3 million motorcycles, and the daily need of these devices is
fuel, which increases the population density at fuel stations and can be instrumental in the
spread of COVID-19.

If land uses are distributed in cities in a way that causes decentralization, the vulner-
ability to the disease can be expected to be greatly reduced. Two important concepts in
urban land use in relation to the disease include compatibility and proximity. In terms
of compatibility, the two land uses of banks and pharmacies were most correlated with
other land uses. It seems that these two land uses in the study area did not have good
distribution, and the interference of these two land uses was not compatible with other land
uses and caused the concentration of population in these land uses. Therefore, relocation of
these two land uses in high-risk areas of the disease can reduce the population and reduce
the spread of the virus. In such circumstances, the pattern of the normal distribution of
resources should be abandoned, and urban resources should be distributed in proportion
to the level of vulnerability of neighborhoods.

Therefore, risk maps prepared using GIS can significantly help officials and individuals
make special arrangements in regard to high-risk areas, and they can reduce the outbreak
of COVID-19 in these areas while maintaining social distancing.

One of the disadvantages of this study was the lack of access to accurate polygon
data of land use. Other urban land uses, such as commercial, parks, industrial, and
administrative centers, can also be utilized to investigate more comprehensively and
obtain higher modeling accuracy. Owing to the fact that population density varies at
different times of the day, it is suggested that spatio-temporal modeling be used in future
research. Additionally, due to the large volume of data, it is suggested to use deep learning
algorithms for modeling in future research.

5. Conclusions

This study examined an approach that combined machine learning, GIS, and urban
land use to prepare a COVID-19 risk map. The results showed that the machine learning
algorithms had good accuracy in preparing the COVID-19 risk map, while the RF algorithm
had a higher accuracy. The results showed that the urban land use of public transportation
stations, pharmacies, and supermarkets had a greater effect on the prevalence of COVID-
19 in Tehran. It seems that due to the high use of these land uses and the increase in
population density in them, the prevalence of COVID-19 in these areas is higher. COVID-19
risk maps in Tehran showed that the central and eastern regions are more vulnerable due
to population density and land use density in these areas. According to the results, the
distribution of the two land uses of pharmacies and banks causes incompatibility with other
land uses, increases the concentration of the population in these land uses, and increases
the spread of the virus. The map of the high-risk areas can help people and managers to
manage and reduce the population density in order to reduce the outbreak of COVID-19
in these areas. High-risk area maps can help managers assess land use distribution in
critical situations.
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