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Abstract: Bicycling is inexpensive, environmentally friendly, and healthful; however, bicyclist safety
is a rising concern. This study investigates bicycle crash-related key variables that might substantially
differ in terms of the party at fault and bicycle facility presence. Employing 5 year (2014-2018)
data from the Texas Crash Record and Information System database, the effect of these variables on
bicyclist injury severity was assessed for San Antonio, Texas, using bivariate analysis and binary
logistic regression. Severe injury risk based on the party at fault and bicycle facility presence varied
significantly for different crash-related variables. The strongest predictors of severe bicycle injury
include bicyclist age and ethnicity, lighting condition, road class, time of occurrence, and period of
week. Driver inattention and disregard of stop sign/light were the primary contributing factors to
bicycle-vehicle crashes. Crash density heatmap and hotspot analyses were used to identify high-risk
locations. The downtown area experienced the highest crash density, while severity hotspots were
located at intersections outside of the downtown area. This study recommends the introduction of
more dedicated/protected bicycle lanes, separation of bicycle lanes from the roadway, mandatory
helmet use ordinance, reduction in speed limit, prioritization of resources at high-risk locations, and
implementation of bike-activated signal detection at signalized intersections.

Keywords: bicycle; motor vehicle; bicycle facility; logistic regression; bivariate analysis

1. Introduction

In recent years, bicycle ridership has gradually become one of the most common
commuting means for the urban populace in the United States, as it is economical, energy-
saving, and environmentally friendly. Many cities across the world are currently developing
programs designed to promote bicycle riding as a means of reducing road congestions,
controlling air pollution, and promoting healthier and more sustainable transportation
alternatives [1,2]. Specific modifications of city bicycle infrastructure, including increasing
bicycle lane mileage [3,4], adding bicycle share programs [5], and improving signage and
street markings, are among the extensive integrated measures that proved to be most
effective in increasing bicycle use [6]. However, bicyclists have a higher risk of severe
crashes compared to vehicle drivers, which is a major deterrent to adopting bicycling as
the main mode of transportation by many people [7,8]. For example, bicycle crashes were
responsible for more than half million emergency visits to hospital in the United States in
2018 [9] and more than half million emergency department visits for traumatic brain injury
during 20092018 [10]. According to the National Highway Traffic Safety Administration
(NHTSA), the percentage of bicyclists in total fatalities has steadily increased from 1.8%
to 2.2% between 2004 and 2013 [11]. Thus, the safety challenges associated with bicyclists
remain a major concern in transportation planning. Several factors can contribute to
bicycle injuries /fatalities and can be broadly classified as roadway-related, person-related,
and environment-related. The common bicycle crash contributing factors include poor
compliance with traffic laws and improper use of facilities, speeding, inadequate separation,
crossing locations, inadequate conspicuity, and impairment and distraction [12].
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San Antonio (located in Bexar County, Texas) is one of the fastest growing cities
in United States and the seventh most populous with a population of 1.55 million [13].
In the year 2017, the population of San Antonio grew by 24,408 people, more than any
other city in the United States [14]. The population of San Antonio is expected to increase
by over one million by 2040 with a proportionate increase in the number of road users
including pedestrians, bicyclists, and motorists. With more pedestrians, bicycles, and
vehicles occupying the roads, conflicts on the road are also expected to increase. San
Antonio is one of the premier places for bicycling in the United States, and the city has been
enhancing its bicycle infrastructure by adding wider shoulders, multiuse paths, cycle tracks,
bicycle lanes, bicycle boulevards, better routes, and shared lane markings, all of which are
aimed at supporting bicycle traffic safety in the city [15]. In 2016, 62 bicyclists were killed
in motor vehicle crashes in Texas, which was a 17% increase from 2015. San Antonio, being
the second largest city in Texas, witnessed five deaths in 2016, a 25% increase from the
previous year [16].

Researchers have used several techniques in traffic safety analysis models in previous
studies including simultaneous equations [17], negative binomial [18-20], random effect
ordered logit [21], ordinal probit [22], random effect negative binomial [23], and Bayesian
hierarchical binomial and logistic models [24]. Logistic regression has also been widely
used, especially in predicting motor-vehicle crashes by young drivers [25], determining
the effect of age and/or gender on injury severity in head-on motor vehicle collisions [26],
analyzing circumstances of bicycle crashes and injury pattern of cyclist casualties [27],
improving motor vehicle/bicycle crash database [28], examining factors associated with
bicycle injuries [29], determining risk factors related to e-bike and bicycle crashes [30], and
determining the association of crash-related factors with mobile phone use for motorcyclists
and e-bikers [31].

The safety of bicyclists can be enhanced by reducing collision risk and/or reducing
the severity risk of a crash. Crash severity can be influenced by the behavior of the party at
fault in a crash [32-34]. Pedestrian crashes support the hypothesis that the crash severity
increases when the non-motorist is at fault, whereas bicycle crashes suggest otherwise [33].
Some studies also tried to determine the most suitable type of bicycle facility (e.g., on-street
facility /shared-use path/curb lane) for safety and mobility [35,36], as well as the effect of
specific roadway facilities [37,38]. However, studies focused on the effect of bicycle facilities
(e.g., bicycle lanes, curb lanes, shared lane arrows, and road signage), as well as the effect of
combination of these strategies, are still limited [6]. Previous studies found several factors
to be significantly affecting bicyclist injury severity resulting from bicycle-motor vehicle
crashes such as bicyclist race and gender, bicyclist old age, speeding, alcohol influence of
driver/bicyclist, use of helmet, lighting condition, day of week, road type, and presence of
intersection [12,33,39-44].

This study aims to contribute to a safer roadway for bicyclists by identifying high-risk
locations and analyzing the effect of contributing factors on bicycle crash severity. This will
assist the City of San Antonio, Texas Department of Transportation, and other traffic man-
agement stakeholders to prioritize allocation of available resources to high-risk locations,
modify existing facilities at high-risk locations, adopt informed decisions regarding future
designs, and run campaigns to the targeted audience. This study also contributes to the
state of the literature by estimating the significant variables associated with different levels
of injury severity of bicyclists, by examining how crash-related variables differ by party at
fault for different injury levels, and how the presence of bicycle facility affects the severity
of crash.

2. Materials and Methods

The crash data used in this study were acquired from the Texas Department of Trans-
portation’s (TxDOT) Crash Records Information System (CRIS) for the 5 year study period
(January 2014 to December 2018). Starting from 2003, all crashes that occurred on Texas
roads and were reported by law enforcement officers, when predefined criteria were met,
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were included in the database. If any crash resulted in injury or death of any person
involved or property damage ($1000 or more), a report was forwarded by the law enforce-
ment officer to TxDOT no later than the 10th day after the date of the crash. The CRIS
database includes the location and time of crash occurrence along with other relevant
information pertaining to the crash (e.g., environmental, temporal, road, and bicyclists’
characteristics). The bike facility data were collected from the Traffic Engineering Division
of the Transportation and Capital Improvements Department (TCI) of San Antonio. The
facility demarcation is representative of the centerline of the facility.

Injury severity of the bicyclists was divided into two categories: KA (fatal or incapac-
itating injury; i.e., severe injury) and KAB (fatal or incapacitating or non-incapacitating
injury; i.e., any confirmed injury). Bicycle crashes occurred on roads not maintained by
the City of San Antonio were excluded from the analysis. Five datasets were prepared
for analyses: all bicyclist-related crashes, bicyclist-not-at-fault crashes, bicyclist-at-fault
crashes, on-facility bicycle crashes, and off-facility bicycle crashes. Any crash that occurred
within 15 m of any side of the centerline of a road with a bicycle facility was considered
as an on-facility crash. A bicyclist was assumed to be at fault if associated with any of
the following primary contributing factors: changed lane when unsafe, disregarded stop
and go signal, disregarded warning sign at construction, inattention, failed to control
speed/speeding, disregarded stop sign or light, disregarded turn marks at intersection,
faulty evasive action, fleeing or evading police, followed too closely, was drinking, overtook
and passed with insulfficient clearance, turned improperly, under influence of alcohol/drug,
driving on wrong side/way, and was using a cellphone.

A heatmap (Figure 1) was created using reported locations of bicycle crashes to
represent crash density over the study area. A color scheme consisting of a set of smoothly
varying colors [45] was used for the density calculation with the kernel density estimation
(KDE) method to visualize crash data as a continuous surface [46]. A defined kernel density
surface is required for each crash point where the density value peaks at the center and
gradually declines away from the center [47,48]. The KDE tool uses the quartic kernel
function represented by the following equation:

Ko(0) = { 3 1(1— Z)TU>2 if vlo <1 1)

0 otherwise !

where K;(v) = is the kernel function for two-dimensional v. Generally, K is a radially
symmetric unimodal probability density function [47].
The predicted density at a (p,q) location is determined by the following formula:

. 2\ 2
Density = (radius) — Z popl ( (%) ) For distance; < radius,  (2)
where i=1,...,n are input points or point crashes , pop; is the population field value of
point i, and distance; is the distance between point i and the location (p, 4).

The hotspot analysis (Getis-Ord Gi*) was used to identify statistically significant
spatial clusters [49]. This method uses the Getis-Ord Gi* statistic to identify clusters of high
values (hotspots) and low values (cold spots). For each input feature, an output feature is
created containing a z-score, p-value, and confidence level bin. The Getis-Ord local statistic

is defined as o
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where x; = the attribute value for feature j, w;; = the spatial weight between feature i and j,
and n = the total number of features.
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The average of the observed values is expressed as
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The standard deviation is expressed as
noo.2
=1% 2
S=\ "+ -(X)" ®)

The complete spatial randomness (CSR) of the features or the values associated with
those features is the underlying null hypothesis for this analysis. The null hypothesis is
rejected when the z-score is relatively high /low and the p-value is very small, indicating
statistically significant clustering or dispersion of features or values associated with features.
The p-value represents the probability of randomness in clustering, and z-scores represent
standard deviations. A very small p-value along with a very high/low z-score indicates
the small probability of a cluster being a product of random distribution. When the search
bandwidth is excessively large, a very smooth pattern is produced, making the process of
differentiation harder between local hotspot locations. On the other hand, a spiky density
pattern is produced by a narrow search bandwidth which highlights individual hotspot
locations. Therefore, the use of an excessively large or narrow bandwidth might lead to
false conclusions. To overcome this limitation, a trial-and-error method was adopted as
recommended by previous studies [49-51]. When working with point data, a fixed distance
band is suitable in the conceptualization of spatial relationships, and the selected threshold
distance was 250 m.

The heatmaps derived using crash density cannot identify severe crash-prone locations.
Hot/cold spots can be identified on the basis of crash severity, and each crash must be
provided a weight based on its severity. The “compromise approach” (more severe crashes
are provided with greater weight) has been popular in providing weight to crashes, but
there is no established standard weighting system [52]. Crashes involving a fatality, serious
injury, other injury, and property damage only were assigned severity indices of 3.0, 1.8, 1.3,
and 1.0, respectively, by the Roads and Traffic Authority of New South Wales [53]. Another
study based on Flanders, Belgium, used 5.0, 3.0, and 1.0 as severity indices for fatal, serious,
and light injury crashes, respectively [54]. This study was primarily focused on identifying
the high-risk locations for bicyclists in its spatial analysis segment and placed relatively
greater weights on severe bicycle crashes. The following equation was used to determine
the severity index (SI) of any location:

SI=50xY1+3xY2+18xY3+13x Y4+ Y5, (6)

where Y1, Y2, Y3, Y4, and Y5 represent the total number of crashes involving a fatality,
serious injury, non-serious injury, possible injury, and no injury, respectively.
Bicycle-motor vehicle crash-associated variables selected for statistical analyses (Table 1)
were based on a literature review [12,30,33,39,40,42—44,55] to study their effect on the severity
of bicycle crashes as stand-alone variables and in conjunction with other. Bivariate analysis
is utilized as an exploratory tool for hypothesis of the association test between a dependent
and an independent variable, and it was used in this study to explore the relationships
between the bicyclist injury severity and bicycle-motor vehicle crash-associated variables (as
standalone variables). Chi-squared tests were performed for each categorical variable in the
bivariate analysis to determine statistically significant differences within two or more classes
in the distribution of the variable. Although a chi-squared test can determine the association
between two variables, it fails to account for possible confounding factors. Hence, a definite
causal relationship between two variables cannot be established from the chi-squared test.
The strength of association was determined using the odds ratio (OR), which represents the
ratio of the odds of an event occurring in the presence of the independent variable compared
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to the odds of that event occurring in the absence of that independent variable. Crash severity
was used as the response variable during the development of logistic regression models to
test the relationship of bicycle crash severity with other crash-associated variables (weather
condition, lighting condition, speed limit, road class, collision type, time, period of week,
month, and intersection presence) and bicyclist-related variables (age, gender, ethnicity, and
helmet wearing practice) for all five data types described above. Developed logit models
were used to identify statistically significant classes within the selected variables (in terms
of crash severity) and to check the strength of association of each significant class in the
logit model. This study used the logit as the natural logarithm of the odds, as shown in
Equation (7).

Logit (A) =In(A/1 — A) =g+ By X Z1 +... .+ Bj X Zi, @)

where A is the probability of severe crashes, Zi is the independent variable, and i is the
model coefficient directly determining the odds ratio.

Table 1. Description of the logistic regression independent variables.

Num.  Description Values Num.  Description Values
1 Day of Week Weekend 7 Speed limit <25 mph
Weekday >25 mph
2 Season Winter 8 Collision type Going straight
Spring Turning
Summer Other roads
Fall 10 Gender Male
3 Time of Day 8 p.m.—-6a.m. Female
6 am.-8 p.m. 11 Age <18
4 Lighting condition Daylight 19-64
Dark >65
5 Weather condition Rain 12 Ethnicity Non-Hispanic
No rain 13 Helmet status Wearing
6  Intersection presence Yes Not wearing
No

The injury severity is determined by the officer on duty without cross-checking
with hospital data or other external sources, and the party at fault is determined on the
basis of the contributing factors reported by the officer; both can be subject to errors.
Motor vehicle-bicycle crashes resulting in minor injuries or no visible injuries were often
underreported, which might have led to a bias in results. Traffic volume data were not
included in the spatial analysis, and only basic demographic variables were included due
to the unavailability of city-wide detailed traffic volume data. The traffic policies and
environmental factors did not change significantly during the study period to our best
knowledge. However, consideration of the dataset as static over the study period might
have been a potential limitation of this study due to the lack of control of environmental
factors. Bias in sample selection was also possible, which is often associated with crash
data analyses as people involved in crashes might not be representative of the general road
user population. Coordinates were unavailable for 17.6% of the crashes; thus, the heatmap
and hotspots were prepared using 83.4% of all crashes only.

3. Results and Discussion
3.1. Spatial Analysis

Crashes were analyzed by location and severity to identify areas with relatively higher
densities of severe crash occurrences, as shown in Figures 1-4. The downtown area had the
highest bicycle crash density. This was expected since the downtown area experiences the
highest bicycling activities. The intersection at E Houston St and N St Mary’s St was one of
the most critical in the City in terms of crash frequency, experiencing 10 bicycle crashes



Int. |. Environ. Res. Public Health 2021, 18, 9220 6 of 19

during the study period. Another location of high crash frequency was the intersection at
E Market St and N Alamo St.
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Figure 2. Locations with frequent bicycle crashes: intersection at W Commerce St and Zarzamora St
(top left), intersections in the city center (top right), intersection at Fredericksburg Rd and San Pedro
Ave (bottom left), and intersection at Broadway St and W Ashby P1 (bottom right).
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Figure 3. Hot and cold spots of bicycle crashes in San Antonio based on crash severity.
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Figure 4. Locations with statistically significant cluster of bicycle crashes near the intersections at N
New Braunfels Ave and Hays St (top left), Guadalupe St and S Hamilton St (top right), S Hackberry
St and Denver Blvd (bottom left), and E Cevallos St and TX-536 SPUR (bottom right).

The spatial distribution of locations with high bicycle crash density in the heatmap
and locations with a statistically significant cluster of severe bicycle crashes with complete
spatial randomness in hotspot analysis did not superimpose (Figures 1-4). However, cold
spots in terms of crash severity were centered at some of the intersections at E Houston St, E
Commerce St, and N St Mary’s St in the heart of the city, which is the area with the highest
bicycle crash densities (Figure 3). Traffic speed is relatively slow in the downtown area, and
bicycle facilities were more prevalent. These might be the factors resulting in statistically
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less severe crash locations in this area. On the other hand, hotspots were observed at
locations with comparatively lower crash frequencies and higher road speed limits.

3.2. General Characteristics of Bicycle Crashes

Bicycle crashes accounted for a total of 1528 crashes (1539 bicyclists involved) in San
Antonio during the study period, accounting for 0.84% of the total crashes. However,
bicycle crashes accounted for 3.9% of all fatal and incapacitating injury crashes. These
crashes resulted in death of 16 bicyclists and another 105 bicyclists sustained incapacitating
injuries. Bicyclists were at fault in 569 crashes (37.2%), and these crashes resulted in slightly
fewer KA injuries compared to crashes where bicyclists were not at fault (6.7% vs. 8.6%).
Crash coordinates were available for 1251 crashes (296 on-facility crashes and 955 off-
facility crashes). The introduction of a bicycle facility had no statistically significant effect
on the injury severity of bicyclists.

Figures 5 and 6 show the frequencies of bicycle crashes and the KA and KAB in-
jury proportions over the years based on the party at fault and the presence of facility,
respectively. The proportion of KA and KAB injuries slightly increased over time for
bicyclist-at-fault crashes. The proportion of on-facility KA and KAB injury crashes dropped
in 2015 but experienced an overall increase in the subsequent years (Figure 6). The increase
in the total number of bicycle crashes in 2017 could be attributed to the introduction of
more bike lanes, thus attracting more bicyclist ridership [56].
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Figure 5. Annual frequency and proportions of KA and KAB injury of bicycle crashes based on party
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Figure 6. Annual frequencies and proportions of KA and KAB bicycle crashes based on presence
of facility.



Int. J. Environ. Res. Public Health 2021, 18, 9220 9 of 19

The age of 73 bicyclists was not specified in CRIS. Among the 1466 bicyclists with
known age, 1249 were males, 216 were females, and the gender of one bicyclist was not
reported. Crash frequency with respect to age and gender for each age group is shown in
Figure 7. Male bicyclists were more common victims for all age groups, especially for older
groups. The 20-24 age group had a noticeably higher proportion of female bicyclists in-
volved in crashes. The frequencies and proportions of bicycle crashes based on two different
crash severity levels for potential crash contributing factors and the statistically significant
differences between classes of selected variables are presented in Tables 2 and 3 (propor-
tions expressed in boldface type indicate a statistically significant difference, i.e., p < 0.05,
whereas italicized type indicates a marginally statistical significance, i.e., 0.05 < p < 0.1).

N W
W O
o O

Number of Bicyclists
s @ 3
o o o
 E—
<15

b I I I I I
0 | L.
)} < AN < o)) < N < [*N <t D < N < <
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w o el o el [ LAl [l el ) Nl fo) v [
— N N o o < < el gl 0 o o~ o~ o0
Age Group

mMale ®Female

Figure 7. Age and gender distribution of bicyclists involved in crashes.

Table 2. Proportions of bicyclist KA and KAB crashes in San Antonio from 2014-2018 corresponding to environmental,
temporal, and road-related variables—Inter/Y and Inter /N denote at and not at intersection, respectively; 25 mph refers to
the roadway speed limit.

All Bicyclists Not at Fault At Fault On Facility Off Facility
N KA KAB N KA KAB N KA KAB N KA KAB N KA KAB
Overall 1528 79 474 959 87  48.6 569 6.7 455 296 9.1 564 955 84  46.6
Daylight 1061 6.4 454 640 6.6 45.6 421 6.2 451 199 9.0 553 644 6.5 449
Dark 417  12.0 50.6 286  13.3 521 131 9.1 473 87 80 575 282 131 489
Rain 49 122 40.8 38 132 36.8 11 9.1 545 5 NA 40.0 35 8.6 40.0
No rain 1473 78 477 915 86 49.1 558 6.6 453 290 93 566 916 84 469

Highway/FM 202 104 525 143 12,6 545 59 51 475 20 102 54.8 180 105 522
Other roads 1299 73  46.6 700 81 482 499 70  36.8 273 88 545 747 76  45.0
<25 mph 202 54  40.6 210 81 46.2 70 57 414 17 59 588 71 99  38.0
>25 mph 1202 82 483 749 88 493 453 73  46.6 264 95 56.8 816 83 472

Weekend 353 11.3 495 242 12.8 529 111 81 424 70 143 572 217 12.0 493
Weekday 1175 6.9 468 717 73 472 458 6.3 463 226 75 562 738 73 458
Inter/Y 754 6.8 477 523 78 475 318 53 481 208 77 543 513 6.6 46.6
Inter/N 774 9.0 472 436 94 495 251 84 422 88 125 614 442 104 46.6
Winter 319 69 433 213 75 451 106 57 39.6 58 34 50.0 203 84 4438
Spring 421 69 451 252 63 434 169 77 479 81 8.6  58.0 270 63 433
Summer 384 94 526 233 107 549 151 73 490 81 123 56.8 242 95 512
Fall 404 84  48.3 261 10.0 51.0 143 56 434 76 105 59.2 240 9.6 471

8 p.m.—6 a.m. 322 13.0 525 219  13.7 7.2 103 11.7 495 76 11.8 52.6 212 142 514
6am-8pm. 1206 6.6 46.1 740 72 470 466 56 446 220 82 577 743 6.7 452
Straight 1034 88 478 604 9.9 48.0 430 72 474 183 104 60.1 637 9.6 468
Turning 457 6.6 481 330 70 509 127 55 409 113 71 504 300 64 47.6
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Table 3. Proportions of bicyclist KA and KAB crashes in San Antonio from 20142018 corresponding to bicyclist-related variables.

All Bicyclists Not at Fault At Fault On Facility Off Facility
N KA KAB N KA KAB N KA KAB N KA KAB N KA KAB
Overall 1539 79 476 96 86 487 573 6.6 456 296 91 564 963 84 46.6
Helmet/Yes 224 71 442 173 87 468 51 20 353 61 6.6 508 134 9.0 425
Helmet/No 1156 84 497 684 89 497 472 76 496 210 105 600 719 86 491
Helmet/NA 159 50 371 109 64 450 50 20 200 25 40 400 110 55 373
Gender/M 1306 8.0 469 813 86 478 493 69 452 250 9.6 544 816 83 464
Gender/F 220 77 545 149 87 544 71 56 549 4 68 705 136 88 529
Age/< 18 450 45 479 254 47 471 193 47 497 73 41 575 286 52 479
Age/19-64 977 9.7 496 655 102 501 317 85 486 195 123 590 604 99 472
Age/> 65 39 12.8 53.8 24 125 542 15 133 533 11 NA 63.6 25 20.0 440
Ethnicity /Non-Hisp 666 102 491 453 115 500 213 75 465 113 133 646 408 113 49.0
Ethnicity /Hispanic 827 62 474 490 59 469 337 65 481 174 70 523 526 6.5 468

3.3. Bivariate Analysis
3.3.1. Environmental Factors

As expected, a substantial proportion of bicycle crashes (69.4%) occurred in daylight
conditions (Table 2). Except for on-facility crashes, all other crash types were associated
with higher proportions of KA injury in dark lighting conditions (“dark, lighted” and “dark,
not lighted”). Dark lighting conditions significantly increased KA injury risk for all bicyclist,
bicyclist-not-at-fault, and off-facility crashes. The odds ratio of severe bicycle injuries was
over 1.5 times in dark lighting conditions for all crash types except for on-facility crashes
(OR 0.9).

For both injury severity levels (KA and KAB), the crash severity risk in dark light-
ing conditions was higher for bicyclist-not-at-fault crashes compared to bicyclist-at-fault
crashes (OR 2.2 vs. OR 1.5 for KA crashes and OR 1.3 vs. OR 1.1 for KAB crashes). For KAB
injury, the effect of lighting condition was statistically significant only when bicyclists were
not the party at fault. Bicyclists being unaware of an imminent crash, collision type/angle,
and faulty behaviors by motor vehicle drivers such as distracted driving, drugs and alcohol,
and speeding might have contributed to the greater risk associated with crashes where
bicyclists were not at fault in dark conditions. Dark lighting conditions increased the risk
of KA injury more than non-incapacitating injury. The greater reaction time required by
both motor vehicle drivers and bicyclists to avoid collision under reduced visibility might
make the collision more lethal and, hence, increase injury severity.

Only 3.2% of the crashes occurred in adverse weather (rain/hail /snow /fog/crosswind).
Adverse weather conditions increased the overall KA injury risk. Bicyclist-not-at-fault
crashes had relatively greater KA injury risk. None of the only five crashes that occurred
on roads with bicycle facilities during adverse weather resulted in KA injury. Adverse
weather conditions increased the odds of KA injury (all crashes) but decreased the odds of
KAB injury (bicyclist-at-fault crash being the exception).

3.3.2. Time Factors

The weekend period, especially Sunday, had high proportions of KA injury, but
relatively lower crash frequency (Table 2). For KAB injury, however, only crashes where
bicyclists were not at fault had higher injury risk during the weekend. Bicyclists showed
lower faulty behavior for weekend crashes (31.4% during weekend vs. 39.0% during
weekdays). The day of crash occurrence had a statistically significant effect on KA injury
for all bicyclist, bicyclist-not-at-fault, and off-facility crashes. All five crash types had
increased KA injury risk during the weekend. Lower traffic volumes on roads leading
to the higher speed of motor vehicles during the weekend might have contributed to the
higher KA injury risk. KA injury OR was higher for bicyclist-not-at-fault crashes compared
to bicyclist-at-fault crashes (1.9 vs. 1.3) during the weekend. The results suggest that the
injury severity of bicyclists during weekend was more influenced by the fault of motor
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vehicle drivers rather than the fault of bicyclists. The association of the day of the week
with KAB injury was not statistically significant for any of the five types of crashes.

About 21% of all bicyclist crashes occurred during the nighttime (8 p.m.—6 a.m.), as
shown in Table 2. Nighttime was associated with higher proportions of KA and KAB
injury for almost all crash types (KAB injury for on-facility crashes being an exception).
Off-facility and bicyclist-not-at-fault crashes had higher proportions of KA injury during
the nighttime compared to their counterparts. KA injury was significantly influenced by
the time of crash occurrence. The risk of KA injury increased during the nighttime for all
crash types. On-facility crashes had the lowest association with KA risk and the lowest KA
proportion during nighttime among all five crash types (lowest nighttime OR, 1.5). The
majority of on-facility crashes occurred at intersections, and bicycle crashes occurring at
intersections had a substantially low risk of severe injury. Moreover, on-facility roads have
dedicated facilities for bicyclists such as separated bike lanes and markings, and they are
often amply illuminated, which might have contributed to the reduced severe injury risk
of bicyclists on these roads. The KAB proportion also increased during nighttime (except
for on-facility crashes), but to a relatively smaller magnitude than the KA proportion.
Off-facility crashes had a higher injury risk during nighttime irrespective of injury severity.
The presence of bicycle facilities on roads might have decreased the severity of nighttime
crashes for these roads.

Bicycle crashes were more frequent during the spring and less frequent during the
winter season (Table 2). Summer had relatively higher KA (except for bicyclist-at-fault
crashes) and KAB (except for on-facility crashes) proportions. The relationship between
the season and crash occurrence and severity was statistically significant only for all and
bicyclist-not-at-fault crashes (KAB proportion). The risk of KA injury on on-facility roads,
however, substantially decreased during winter (3.4% in winter vs. 12.3% in summer; OR
0.3 in winter vs. OR 1.2 in summer). Lower temperatures in the winter might encourage
more bicyclists to wear helmets, and lower cycling practice during winter might make
sharing of the roadway easier, which might have contributed to the reduced KA injury.
KAB injury risk significantly increased during the June-November period for crashes
where bicyclists were not at fault, which might be attributed to the lighter clothing practice
and less use of protective gear by bicyclists.

3.3.3. Road Factors

Among all bicycle crashes, 78.6% occurred on roadways with a speed limit >25 mph
and 13.2% occurred on roadways with a speed limit <25 mph (Table 2). As expected,
crashes on roads with a higher speed limit resulted in higher KA and KAB proportions,
which is consistent with previous findings [42,43]. The association of speed limit with
KA /KAB injury was not statistically significant for any of the five crash types. However,
all bicyclist and bicyclist-not-at-fault crashes had a significant association with KAB injury.
In general, the higher speed limit increased the risk of KA injury more than KAB injury as
observed from OR values. When bicyclists were not at fault on roads with a higher speed
limit, crashes tended to result in more severe injuries for both levels of injury severity,
implying that the fault of motor vehicle drivers had a greater influence on injury severity.
For roads with a higher speed limit, the odds of KA injury were greater for on-facility
crashes compared to off-facility crashes (OR 1.7 vs. OR 0.8). Minor roads, nontraffic ways,
and the majority of the city roads do not have bicycle facilities in general, and these roads
usually have lower speed limits, leading to the reduced KA crash risk for off-facility roads.

About half (49.3%) of all crashes involving bicyclists occurred at intersections (Table 2),
whereas intersection crashes represented only 31.2% of all crashes in San Antonio. Vehicles
coming from multiple directions and higher traffic volumes at intersections might have
contributed to bicycle crashes at intersections. For all five types of crashes, the presence
of an intersection decreased the severity of the crash (lower KA proportion). However,
only bicyclist-not-at-fault and on-facility crashes had lower KAB proportions. Collisions
during turning were found to be less lethal than collisions while driving straight, and
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a large proportion of the bicycle crashes at intersections occurred while taking a left or
right turn. Less lethal collisions while turning, along with the reduced speed of vehicles
at intersections, might contribute to lower KA injury risk at intersections. The risk of KA
injury was slightly greater at intersections when bicyclists were not at fault (OR 0.8 for
bicyclist not at fault vs. OR 0.6 for bicyclist at fault). Intersection presence substantially
reduced KA injury, but slightly increased non-incapacitating injury severity. Apart from
driver inattention, the most common fault of motor vehicle drivers was failure to yield
right of way, whereas, for bicyclists, it was disregard of stop signal/sign and failure to yield.
When a bicyclist at fault is driving straight at a stop sign/signal, the motor vehicle is just
beginning to gain speed in most cases. On the other hand, when a bicyclist is taking a turn
and the motor vehicle is moving at a greater speed, the collision between motor vehicle
and bicycle rarely occurs at a right angle. These might have been the reasons behind the
relatively reduced injury risk for bicyclist-at-fault crashes at intersections.

About two-thirds of all bicycle crashes (67.7%) occurred when the bicyclist was going
straight (Table 2), whereas 29.9% crashes occurred while taking a turn (13.7% right turn,
16.2% left turn). For all five bicycle crash types, KA injury was highest when the bicyclist
was going straight, followed by when turning left (bicyclist-at-fault crashes being an
exception). The association of collision type with KA /KAB severity was not statistically
significant for any of the crash types. In cases of crashes where bicyclists were not at fault,
collision during a turn had a greater non-incapacitating injury risk. When the bicyclist was
driving straight, the motor vehicle involved in the crash was going parallel to the bicycle
(hitting the bicycle from the side/back), approaching from a perpendicular direction at
crossings, or in some cases coming from opposite direction. In cases of crashes when
the vehicle was moving parallel to the direction of bicycle, the speeds of the vehicle and
bicycle were greater than that when turning, which might have resulted in more severe
crashes. For perpendicular and opposite direction crashes, the severity was expected to be
even higher.

Although the majority of crashes occurred on city streets (67.8%), crashes occurring
on highways (9.4%) had higher KA proportions in general (Table 2). When bicyclists were
at fault in crashes on highways, the proportion of KA injury was substantially lower (13.3%
overall vs. 4% for bicyclist-at-fault crashes). KA injury risk increased significantly on
highways for crashes where bicyclists were not at fault (OR = 2.1). Bicyclist-at-fault crashes
had lower fatal/incapacitating injury and higher non-incapacitating injury proportions
on highways and farm-to-market (FM) roads compared to other road types, implying that
the fault of motor vehicle drivers in a crash increased the risk of injury severity on roads
with a higher speed limit. Higher vehicle speeds on highways and faulty motor vehicle
drivers unable to properly share the roadway with bicycles off facility increased the injury
risk the most.

3.3.4. Bicyclist Factors

Consistent with a previous study, the absence of a helmet increased the odds of severe
injury of bicyclists [57]. Use of a helmet was scarce among bicyclists involved in crashes
(14.6%), as shown in Table 3. Except for the KA proportion for off-facility crashes (9.0% with
helmet worn, 8.6% not worn), the absence of helmet use was associated with higher severe
injury proportions for all five crash types. In the absence of helmet, KA injury proportions
substantially increased for bicyclist-at-fault crashes (7.6% vs. 2.0%) and on-facility crashes
(10.5% vs. 6.6%). For all five crash types, bicyclists helmet status had a greater association
with non-severe injury crashes compared to severe injury crashes. When bicyclists were at
fault in a crash and did not wear a helmet, the odds of KA injury were almost four times
greater compared to crashes where bicyclists were not the party at fault, implying that the
combination of bicyclist’s fault and absence of a helmet increases crash severity.

Mixed results were observed regarding the association of bicyclist ethnicity with
bicyclist injury severity in previous studies. One study using bicyclist crash data of Los
Angeles concluded that Hispanic bicyclists were less likely to sustain severe injuries [12]
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while another study based on bicyclists of Colorado suggested that Hispanic bicyclists had
a higher fatality rate [58]. More than half of the bicycle crash victims in San Antonio were
Hispanic (53.7%), followed by Whites (34.8%) and Blacks (6.5%). This ethnic distribution
does not exactly mirror the community distribution (54% Hispanics, 24.7% Whites, and
6.5% Blacks) implying that Whites are overrepresented in bicycle crashes and maybe bicycle
use. The proportions of victims from Asian and other ethnicities were extremely small.
For all crash types, Hispanics were associated with substantially lower severe injury and
relatively lower non-severe injury. When bicyclists were at fault, Black bicyclists were
relatively more susceptible to severe injury. When bicyclists were not the party at fault and
crash did not occur on roads with bicycle facility, Hispanics had significantly lower severe
injury risk. When bicyclists were at fault, the odds ratio of severe injury for non-Hispanics
(White, Black, Asian, or other) was 1.0, implying the neutrality of ethnicity in affecting
crash severity when bicyclists were at fault in crashes. A higher proportion of young
Hispanic bicyclists, a relatively lower proportion of Hispanic bicyclists (especially older
Hispanic bicyclists) on highways and FM roads (especially during weekend), and relatively
more helmet use during nighttime were some of the reasons behind the lower KA crash
risk for Hispanics.

The vast majority of bicyclists involved in crashes were male (84.9%). When bicyclists
were at fault and crashes occurred on roads equipped with bicycle facilities, male bicyclists
were more likely to be involved in severe crashes and female bicyclists were more likely to
be involved in non-severe crashes, which is consistent with a previous study [12]. Overall,
the effect of the bicyclist’s gender was more profound for non-incapacitating injury severity
(although not statistically significant). Older bicyclists (age >65) were more susceptible to
KA injury than younger bicyclists (12.8% vs. 4.5%). All severe injury crashes related to older
bicyclists occurred on roads without bicycle facilities, and advanced age of the bicyclist
was a strong predictor of severe bicyclist injury, consistent with previous studies [33,42].
The greater reaction time required by older drivers along with being more vulnerable
physically might have been the reason behind the higher KA injury risk. On-facility crashes
resulted in greater non-severe injury proportions for all age groups, which might reflect
the effectiveness of facility implementation in reducing severe injury crashes. The age of
bicyclists had a greater association with KA injury compared to KAB injury. The odds of KA
injury were significantly lower for young drivers when motor vehicle drivers were at fault,
possibly due to better physicality and adaptivity of young bicyclists in crash situations and
cycling on relatively safer roadways.

3.4. Logistic Regression Results

Logistic regression models were developed using bicyclist, environment, road, and
temporal variables associated with bicycle-motor vehicle crashes to analyze their effect on
severity of bicyclist injury. Typically, bivariate analysis identifies key predictors discretely,
while logistic regression identifies key predictors taking all variables into consideration.
A pair of logit models were constructed for each combination of datasets and injury
severity level, one with bicyclist-related variables and the other one with the remaining
variables. The coefficient estimates in log odds terms with the respective reference category,
significance, standard error, and odds ratio are presented in Tables 4—6. The signs and
values of coefficient estimates and the difference among the coefficient estimates of the
categorical variables are indicative of the effects of the categorical variables on the crash
severity. A negative estimate coefficient indicates a decrease in the odds of severe injury of
a bicyclist, while a positive estimate coefficient suggests an increase in the odds of a severe
injury. For example, when the KA injury of all bicyclists was considered (Table 4), daylight
conditions experienced a negative coefficient (—0.51) with dark lighting conditions as the
reference, implying that a change from dark lighting conditions to daylight conditions
decreased the log odds of a severe bicyclist injury by 0.51. The asterisk sign associated
with the coefficient estimate (*) indicates that daylight conditions significantly (p < 0.05)
reduced severe bicyclist injury. Similarly, the positive coefficient (0.52) and significance
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(**) associated with the non-Hispanic ethnicity implies that non-Hispanic bicyclists had
significantly (p < 0.01) higher odds of sustaining severe injury.

Table 4. Logistic regression model results for KA and KAB crashes.

All Bicyclists (KA) All Bicyclists (KAB)
Variable Reference Estimates Std Error OR Estimates Std Error OR
Intercept 1 —1.90 *** 0.53 —0.04 0.30
Daylight Dark —0.51* 0.22 0.6 —0.25"- 0.13 0.8
Rain No-Rain —0.56 0.74 0.6 —0.52 0.33 0.6
Other roads Highway/FM —0.55- 0.29 0.6 —0.16 0.19 0.9
Weekend Weekday 0.45* 0.22 1.6 0.06 0.13 1.1
Speed limit >25 Speed limit <25 0.29 0.34 1.3 0.36 * 0.17 14
Turning Straight —0.30 0.24 0.7 0.06 0.12 11
8 p.m.—6 a.m. 6 am.—8 p.m. 0.23 0.25 1.3 —0.10 0.13 0.9
Spring Fall —0.04 0.29 1.0 —0.07 0.15 0.9
Summer Fall 0.18 0.27 1.2 0.15 0.16 1.2
Winter Fall —0.22 0.31 0.8 —0.19 0.16 0.8
Intersection_Yes Intersection_No —0.39° 0.21 0.7 0.03 0.11 1.0
Intercept 2 —3.27 *** 0.35 0.19 0.17
Helmet_Yes Helmet_No —0.43 0.29 0.7 —-0.30* 0.15 0.7
Helmet_NA Helmet_No —0.54 0.41 0.6 —0.18 0.19 0.8
Male Female 0.10 0.28 1.1 —-0.29 - 0.15 0.8
Age 19-64 Age <18 0.78 ** 0.25 2.2 0.07 0.12 1.1
Age >65 Age <18 1.16* 0.54 3.2 0.32 0.34 14
Non-Hispanic Hispanic 0.52 ** 0.20 1.7 0.08 0.11 1.1

Note: **p < 0.001; ** p < 0.01; * p < 0.05; “-"p < 0.1.

Table 5. Logistic regression model results for severe injury (KA) based on party at fault and bicycle facility presence.

Bicyclist at Fault Bicyclist Not at Fault On Facility Off Facility
Variable Reference  Estimates Std OR Estimates Std OR Estimates Std OR Estimates Std OR
Error Error Error Error
Intercept 1 —2.5% 0.93 —1.71* 0.68 —3.46* 1.53 —221% 074
Daylight Dark —0.34 036 07 —057* 028 06  —035 056 07 —059* 027 06
Rain No-Rain —0.51 108 06  —047 104 06 —0.86 104 04
g;‘;; Highway —0.57 050 06  —054 038 06 027 .09 13  —056 038 0.6
Weekend ~ Weekday 0.78 * 036 22 0.26 030 13 0.49 060 16 049 028 16
Speiiélm‘t sPeelegmlt 0.58 056 18 0.07 043 11  —020 069 08 089 054 24
Turning Straight —0.40 041 07  —023 031 08  —101 079 04  —0.08 029 09
8 pm—6 6am-8 0.58 047 18 0.17 032 12 0.85 068 23 0.07 031 11
a.m. p-m.
Spring Fall —0.28 051 08 0.05 037 11 0.4 081 16 0.03 036 1.0
Summer Fall 0.51 043 17  —0.04 036 1.0 0.87 076 24 0.07 035 1.1
Winter Fall 0.14 048 12 —041 042 07 0.29 088 13 -0.3 039 07
intersection Infersection 72+ 036 05 015 027 09 019 05 08 —059* 027 06
Intercept 2 - —326**  0.62 —332% 044 388  0.86 —3.04** 041
Helmet Yes Helmet No  —1.61 103 02  —029 031 08  —0.84 058 04  —024 034 08
Helmet NA Helmet No ~ —0.97 1.04 04  —046 045 06  —077 106 05  —0.39 045 0.7
Male Female 0.30 055 14 0.03 032 10 0.71 065 20  —0.05 033 1.0
Age19-64  Age <18 071" 040 20  081* 033 23 125 086 35  066* 030 19
Age>65  Age<18 1.29 085 36 1.09 070 3.0 1.52 % 058 46
H.N"“'. Hispanic 0.15 035 12 0.69* 025 20 0.56 042 17  054* 024 17
1span1c

Note: ***p < 0.001; ** p < 0.01; *p < 0.05; “-"p < 0.1.
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Table 6. Logistic regression model results for any injury (KAB) based on party at fault and bicycle facility presence.

Bicyclist at Fault Bicyclist not at Fault On Facility Off Facility
Variable Reference Estimates Std OR Estimates Std OR Estimates Std OR Estimates Sud OR
Error Error Error Error
Intercept 1 0.12 0.50 —0.24 0.38 ~1.07 0.72 —0.10 0.38
Daylight Dark —0.34 021 07  —020 016 10  —022 030 08 —0.20 016 08
Rain No-Rain —0.24 048 08 —0.77 047 05 —0.56 075 06  —095 045 04
S)t:;; Highway —0.26 033 08 —0.04 023 10 0.25 050 13 0.01 024 1.0
Weekend Weekday 0.20 0.22 1.2 0.02 0.17 1.0 0.72 * 0.32 2.1 —0.06 0.17 1.0
Spee:;é“mt Speejzgm“ 0.23 028 13  045% 022 16 0.01 038 1.0 047 022 16
Turning Straight —0.14 021 09 0.18 015 12 0.25 030 13 0.04 015 1.1
8 1;?‘6 6 ;‘;‘8 0.02 022 10  —0.14 016 09 0.32 029 14  —035 016 07
Spring Fall —0.12 025 09 —0.06 020 1.0 0.24 037 13  —020 020 08
Summer Fall 0.35 026 14 0.08 020 1.1 0.37 037 15 0.26 020 13
Winter Fall ~0.29 026 08 —0.12 021 09 0.07 040 1.1 —0.11 020 09
Interf{eezhon I“"erls\?gt“’“ 0.04 019 1.0 0.05 014 11 0.41 028 15  —001 015 1.0
Intercept 2 - 0.38 0.28 0.07 0.21 0.79 0.42 0.14 0.21
Helmet_Yes Helmet No  —0.61° 032 05 —0.22 018 08  —042 031 07 —036° 020 07
Helmet NA Helmet No  —0.68 040 05 —0.02 022 10  —032 049 07  —0.15 023 09
Male Female —0.30 026 07  —027 018 08  —058 037 06  —026 019 08
Age19-64  Age<18 0.01 019 1.0 0.12 015 1.1 —0.07 029 09 0.08 015 1.1
Age>65  Age<18 0.29 055 13 0.35 043 14 0.23 068 13  —0.05 042 1.0
H,Non'. Hispanic —0.09 018 09 0.16 013 12 0.57 * 026 18 0.09 014 1.1
ispanic

Note: *p <0.05; “-” p < 0.1.

The results of logistic regression were consistent with the bivariate analysis in general.
The statistical significance of some variables was different between bivariate analysis
and logistic regression, but the relationships between bicycle crash severity and different
variables exhibited a similar direction regardless of crash severity level, party at fault
in a crash, and bicycle facility status. Bicyclist age and ethnicity, day of week, month,
intersection presence, and lighting condition significantly influenced the KA injury of
bicyclists, whereas bicyclist gender, helmet use, and collision type significantly influenced
the KAB injury of bicyclists. Older bicyclists (age > 65) were more susceptible to KA
injury (OR 3.2) compared to young bicyclists (age < 18). The risk of sustaining a severe
injury was almost twofold for non-Hispanic bicyclists compared to Hispanic bicyclists.
Further analyses revealed that the high proportion of young bicyclists among crashes
involved Hispanic bicyclists, relatively greater use of a helmet by Hispanic bicyclists
during nighttime, and fewer crash incidents on highways and FM roads involving Hispanic
bicyclists were the reasons behind the relatively lower KA injury severity risk for Hispanic
bicyclists. The weekend period significantly increased the KA injury risk of bicyclists
(OR 1.6), possibly due to the high proportion of DWI incidents and greater vehicle speeds
due to lower traffic volumes. Intersection presence and daylight conditions reduced the
KA injury risk of bicyclists. Although wearing a helmet did not significantly reduce the
KA injury risk, the KAB injury risk was significantly reduced (OR 0.7). This demonstrates
effectiveness of helmet use in reducing, at least, minor injuries.

Except for the bicyclist age, none of the factors significantly influenced the KA in-
jury resulting from on-facility crashes, implying the effectiveness of bicycle facilities in
minimizing the influence of these factors on KA injury. A higher speed limit (>25 mph)
on roads substantially increased the odds of KA injury and KAB injury in the absence
of bicycle facilities. Compared to the likelihood of KAB injury during daytime (OR 1.0),
nighttime (6 p.m.—6 a.m.) KAB injury risk was higher (OR 1.4) for on-facility crashes and
lower (OR 0.7) for off-facility crashes. Similarly, the risk of KA injury was more than
doubled during nighttime for bicycle crashes occurring on roads with bicycle facilities
compared to off-facility roads. Unlike roads with bicycle facilities, other roads with a higher
speed limit significantly increased the KAB injury risk, which should encourage greater
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implementation of bicycle facilities. Non-Hispanics experienced significantly high severe
injury risk on on-facility roads and non-severe injury risk on off-facility roads.

4. Conclusions

This study examined the spatial distribution of bicycle crashes and analyzed the factors
that influence the injury severity of bicyclists involved in bicycle-motor vehicle crashes
using 5 year crash data for San Antonio, TX. Bivariate analysis and logistic regression
modeling were used to examine the relationships among different human-, environment-,
and crash-related factors for two injury severity levels. Bicyclist age and ethnicity, lighting
condition, road class, time of day, and day of the week had the most significant association
with severe bicycle crashes. Overall, bicycle crashes resulting in severe injury of bicyclists
were more strongly influenced by the variables studied compared to non-severe crashes.

In the absence of bicycle facilities, severe bicycle crashes had several strong predic-
tors (bicyclist age and ethnicity, intersection presence, and temporal variables), while
on-facility severe bicycle crashes had almost none, implying the effectiveness of bicycle
facilities in reducing the influence of some variables on crash severity. Facilities such as
separate/protected bicycle lane might contribute to decreasing the chance of a deadly
collision with motor vehicles, thereby reducing severe injury risk. Although the presence of
bicycle facilities reduced the effects of some variables to some extent, their presence made
no statistically significant difference in crash severity when compared to roads without
bicycle facilities.

Wearing a helmet is not mandatory for bicyclists in Texas [59], but some major cities in
Texas have ordinances of mandatory helmet use. The results indicate very limited practice
of helmet use among crash involved bicyclists in San Antonio and an increase in the injury
severity of bicyclists in the absence of a helmet for bicyclist-at-fault and on-facility crashes.
Our findings suggest that older, male, and non-Hispanic bicyclists of San Antonio are
more likely to sustain severe injuries. Identifying zones with a higher proportion of older
bicyclists and introducing bicycle facilities in these zones, a targeted campaign to encourage
the wearing of helmets and protective gear, and the introduction of a mandatory helmet
use ordinance in San Antonio might reduce the severe injuries of older bicyclists.

Bicycle crashes on roads with a relatively higher speed limit (e.g., highways and FM
roads) notably increased the bicyclist injury severity risk, especially for crashes where
bicyclists were not at fault and those which occurred on roads with bicycle facilities.
Identification of the optimal bicycle lane width and separation of bicycle lanes from the
roadway were effective in reducing the crash rate [35] and raised bicycle crossings were
effective in increasing the safety of bicyclists [60]. These techniques should be introduced
to roads with a relatively higher speed limit and bicycling activities.

The weekend period had a relatively lower bicycle crash count but higher severe injury
proportion. Nighttime during weekend period had a substantially high severe injury risk,
probably due to the higher frequency of DWI and distracted drivers [33], encouraging the
use of ridesharing services during this period. Bicyclists exhibited reduced faulty behavior
during the weekend, whereas the proportion of faulty motor vehicle drivers of San Antonio
was greater during the weekend [44].

The relatively higher bicyclist injury risk during summer and lower injury risk during
winter might be attributed to the seasonal differences in clothing practice. Bicycle crashes,
especially on-facility bicycle crashes, occurred at a much higher proportion at intersections.
This might be an indicator of the effectiveness of facility implementation, as fewer crashes
occurred on roadway segments where facilities were introduced.

Intersections in the city center were more prone to a higher bicycle crash frequency
but lower injury severity of bicyclists, which is analogous to the overall crash pattern at
intersections in San Antonio [41]. The primary contributing factors to bicycle-motor vehicle
crashes were driver inattention and disregard of stop sign/light for both bicyclists and
vehicle drivers. Implementation of bike-activated signal detection and bicycle signal heads
at signalized intersections, encouraging and endorsing the use of autonomous vehicles, as
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well as the implementation of an automated red-light camera and shared marking lanes
along with campaigns toward targeted audience, can significantly reduce bicycle crash
incidents. Future studies focusing on the in-depth analysis of the most significant variables
might be helpful in providing case-specific recommendations.
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