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Abstract: In Germany, local health departments are responsible for surveillance of the current
pandemic situation. One of their major tasks is to monitor infected persons. For instance, the direct
contacts of infectious persons at group meetings have to be traced and potentially quarantined. Such
quarantine requirements may be revoked, when all contact persons obtain a negative polymerase
chain reaction (PCR) test result. However, contact tracing and testing is time-consuming, costly
and not always feasible. In this work, we present a statistical model for the probability that no
transmission of COVID-19 occurred given an arbitrary number of negative test results among contact
persons. Hereby, the time-dependent sensitivity and specificity of the PCR test are taken into account.
We employ a parametric Bayesian model which combines an adaptable Beta-Binomial prior and
two likelihood components in a novel fashion. This is illustrated for group events in German school
classes. The first evaluation on a real-world dataset showed that our approach can support important
quarantine decisions with the goal to achieve a better balance between necessary containment of the
pandemic and preservation of social and economic life. Future work will focus on further refinement
and evaluation of quarantine decisions based on our statistical model.

Keywords: COVID-19; decision support; bayesian statistics; quarantine; risk assessment

1. Introduction
1.1. COVID-19 Pandemic and Situation in Germany

Since spring 2021, COVID-19 spread to almost all countries around the world [1].
Many countries legislated strict lock-downs in order to decrease infections numbers. When
the infection numbers have reached an acceptable low level, more liberal rules applied,
such as social distancing and limits on larger gatherings. In addition, many countries
have issued regulations requiring infected persons to be isolated and contact persons to
be quarantined. In Germany, local health departments report information about their
local, new cases daily to the Robert Koch Institute (RKI), the central German institution
for infectious disease study and control. The RKI reports on a regular basis about the
COVID-19 situation in Germany; see, for example, Reference [2]. Based on those reported
numbers, the RKI recommends an implementation, adaption, or cancellation of procedural
rules for political decision-makers in Germany.

Since August 2020, a second significant increase of new infections per week has been
reported in Germany, as well as in many other European countries. Many of these cases
were associated with vacation travels. In Germany, it resulted in several times higher
numbers than reported in June, where the number of new infections per day had reached
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a minimum so far [3]. This triggered strong societal discussions about risks involving
the reopening of schools and re-allowing events, such as mass gatherings and shortening
of the quarantine duration time for contact persons. This infection increase resulted in
the so-called second wave in end of 2020, which continued until the start of 2021. Due
to the spread of the alpha variant, the number of infections increased again in February
and triggered a third wave of infections in spring of 2021. A similar situation occurred in
summer 2021. Since June 2021, the delta variant, which already dominated the infections
in July, has caused a further increase in infections.

1.2. Quarantine Decisions in Germany

The German Protection against Infection Act (“Infektionsschutzgesetz”) [4] defines
the general rules for dealing with infectious diseases. It specifies which pathogens must be
monitored and allows German health departments to quarantine people at home. In the
current COVID-19 pandemic, all contacts with close contact to the infected person and,
therefore, at high risk of infection have to stay at home. Since a large number of COVID-19
cases was reported by the RKI, a large number of contact persons probably had to be
quarantined in Germany [2]. The RKI provides the procedural guidelines for theses cases.
In the end, however, the local health departments have to decide autonomously whether
and for how long a person or a group of persons have to be quarantined.

This is the first time in many decades that health departments have had to quarantine
such a large number of infected individuals and contacts. In recent decades, quarantines
have been imposed only a few times. For example, in 2002/2003, the first severe acute
respiratory syndrome (SARS-CoV) started to spread over several countries. In Germany,
contact persons were quarantined at home, but the number of quarantined was substan-
tially smaller than in the current COVID-19 pandemic [5]. A default workflow for contact
tracing of COVID-19 cases is provided by the RKI [6]. All contact persons are classified
into one of the three categories, that are listed in Table 1.

Table 1. Contact categories defined by the RKI.

Category Infection Risk

1. high, close contact to infectious person
2. low, sparse contact to infectious person
3. medical staff with adequate protection

The RKI defines category 1 as persons who

• had face-to-face contact for at least 15 min or
• had direct contact to bodily fluids or
• were exposed to a relevant aerosol concentration.

Other contact persons are classified as category 2. Medical staff with appropriate personal
protective equipment is classified as category 3. The RKI recommends that contact persons
of category 1 and 2 normally should reduce their contacts to other persons, and contact
persons of category 1 additionally should stay quarantined at home until 14 days after
exposure. Moreover, contact persons of category 1 should be tested, ideally one day after case
documentation and a second time 5–7 days after contact with the COVID-19 case [6].

Since February 2020, a high number of contact persons of COVID-19 had to stay in
home quarantine, especially during the infection waves, when the highest number of
active COVID-19 cases occurred. The RKI collected data about all COVID-19 spreads
until 11 August 2020 and reported the frequency and size for different event types [7].
The probability of a transmission and the number of infected people depends noticeably
on the event type. As of 11 August 2020, 3902 spreads occurred in households and
709 spreads in retirements homes, whereas only 31 spreads were reported at schools and
33 at kindergartens [7].
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This indicates that the risk of a COVID-19 spread in a group depends strongly on
the scenario. This fact might inform quarantine decisions and might justify more liberal
quarantine decisions in certain situations. However, the event type is currently not taken
into account systematically according to the RKI recommendations. Furthermore, it is often
not possible to get test results from all participants of a contact event. Reasons for this
might be that testing capacity is limited, the persons could not be contacted at all or they
did not go to a test center.

Moreover, quarantine can indirectly cause economic damage. Since the persons have
to stay at home or employees have to take care of their quarantined children, they are unable
to work during the quarantine. In addition, quarantines of persons, which work in system
relevant positions, can lead to an undersupply of critical infrastructure. This includes
medical care and food supply, but also other sectors, such as government administration
and supply of water and energy.

Against this background, it is desirable to support these quarantine decisions with
objective data and statistical models because many people are involved in the process.
A software implementing such a model can streamline and support the decision making
process and make it less prone to human mistakes. In literature, different models have
been proposed for explaining COVID-19 transmission dynamics [8,9] or predicting the
number of COVID-19 infections [10,11]. Those models allow the governments to adapt
their COVID-19 regulations in order to control the COVID-19 pandemic. However, it also
important to directly support the institutions which are responsible for monitoring the
COVID-19 infected persons in their district. In literature, a statistical model for describing
COVID-19 transmissions of an infected person [12] and a model for estimating the infection
risk in meetings [13] has been introduced. However, no model for decision support of
group quarantines has been reported, to the best of our knowledge. Thus, this is the first
work which describes a statistical model as decision support for group quarantines.

1.3. Structure of the Paper

In this work, we will provide a statistical model for the risk assessment of canceling
group quarantines. It allows to estimate the risk of canceling a group quarantine, where
a fraction of the group has been tested and all test results are negative. In Section 2,
the Bayesian model including the prior choice is described. The proposed model can be
used for any group event situation in any country. In this work, it is applied for a school
class scenario and analyzed in Section 3. Here, the model specified for school classes was
tested with a real-world data-set of a German school class. Finally, the model and the
results are discussed in Section 4.

2. Materials and Methods
2.1. Use Case

In the following, we describe the idealized use case for our model. We assume that a
group contact event took place, e.g., a family party, a sports event, or a teaching unit in
school. A certain time after the event, one or multiple participants are tested positive for
COVID-19, possibly only after the onset of symptoms. More generally, a series of contact
events with the same group (e.g., in school or at work) might have taken place. We presume
that there is only a single person known to be infected, the so-called primary or index case.
Adaptations for multiple primary cases are discussed in Section 4. The remaining group,
without counting the primary case, is assumed to consist of M individuals with unknown
infection status. As a precautionary measure, this group of potential secondary cases is
quarantined by health authorities to contain further infection dynamics. In addition, all
contact persons are invited to take a polymerase chain reaction (PCR) test. Currently, all
contacts should stay in quarantine for 14 days [14].

We are now interested whether there occurred any transmissions of COVID-19 from
the primary case to any of the contact persons during the group event. Any other transmis-
sion paths outside of the group event are not considered. If there is at least one positive
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test result in the remaining group, this indicates that a COVID-19 transmission occurred.
In this case, the health offices in Germany are not allowed to cancel the group quaran-
tine because other persons might be also infected, and this has to be checked. Thus,
the case of interest is that all test results are negative. Figure 1 (left) illustrates the timeline
of these events described above. The main question which guided the methodological
developments in this work is:

“Under which conditions can a group quarantine be released (earlier) such that
the probability of overlooking a (secondary) infection is low?”

In an ideal world, all potential cases would be tested by a highly accurate test. How-
ever, we rather suppose that not all M individuals are tested due to resource constraints or
other reasons. Instead, out of the M person group, N ≤ M are successfully tested negative.

In our situation, we consider reverse transcription PCR tests with (time-dependent)
imperfect accuracy. An extension to other tests, as, for example, the rapid antigen test, is
possible as long as the specificity and sensitivity can be characterized. Thus, the probability
that all test results are negative, even though there are some infected persons in the group,
is not zero. As a further complication, we allow that not all N tests are conducted on the
same day (after the group contact event). Rather, usually, test time points vary due to
logistic or resource limitations. In summary, we have only partial (probabilistic) knowledge
regarding the disease status of the remaining group. The above question, thus, can be
formulated more precisely as:

“How likely is it that there is no secondary infection, given all N out of M people
are tested negative?”

The model described in the following assumes that the people to be tested are chosen
randomly. This is not likely to hold in the real world as most authorities will give priority
to testing people that were close spatially or socially to the primary case(s). As a result,
it is less likely that an individual with a high risk gets released from quarantine without
a test. If that is the case, the model will slightly overestimate the risk of an infection. In
consultation with the health office Berlin-Reinickendorf, we concluded that this calculation
is appropriate.

Figure 1. Left: Timeline of the events starting from the group event until the quarantine decision. Right: Overview of the
group with M, the possible number of infected K, and the negative tested persons N. For N and K, the contact persons are
divided into subgroups Nd and Kd, which are tested on day Dd, d ∈ {1, . . . , n}, are also illustrated.

2.2. Statistical Model

The goal of the model is to estimate the probability, that no COVID-19 transmission
occurred. As outlined above, we consider M contact persons, N ≤ M of them having been
tested and all tests results are negative. Moreover, we have an unknown number of infected
persons K; K ≤ M. We consider only the secondary transmissions caused by the group event,
but no further potential infections outside of the participant group M. Figure 1 (right) gives
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an overview over these (sub)groups. According to Bayes rule, the posterior distribution for a
given number of K = k is then described as

P(K = k|N out of M tested negative at specific days)

=
P(N out of M tested negative at specific days |K = k) · P(K = k)

P(N out of M tested negative at specific days)
.

(1)

For our use case, we are interested in the probability, that no one is actually infected
(K = 0) given that N out of M have been tested, and all tests result are negative. This
probability is then given as

p0 := P(K = 0|N out of M tested negative at specific days)

=
P(N out of M tested negative at specific days |K = 0) · P(K = 0)

P(N out of M tested negative at specific days)

=
P(K = 0)

∑M
i=0 P(N out of M tested negative at specific days|K = i)P(K = i)

,

(2)

since it is assumed, that healthy persons are always tested negative, which is described in
more detail in Section 2.4. Thus, P(N out of M tested negative|K = 0) = 1 holds.

This requires an a-priori probability distribution P(K) for the number of infected per-
sons K. This prior describes which values of K are considered probable before considering
the data. Furthermore, a likelihood function P(N out of M tested negative|K) is needed,
which describes the probability distribution that N of M are tested negative under the
condition that K persons are infected in the group. The modeling of the prior and the
likelihood function are described in the following sections.

2.3. Prior Distribution

Transmissions of COVID-19 have a high heterogeneity, which means that most infected
do not infect anybody else whereas some infected persons are causing super-spreading
events. Lelieveld et al. [13] introduced a model based on the binomial distribution for
SARS-CoV-19 aerosol transmission risk calculation. The negative binomial distribution was
employed in the literature to model heterogeneity in secondary infections [12]. However,
the negative binomial distribution is defined for an unrestricted support {0, 1, 2, . . . },
which is not fitting for a finite (and usually small) group size as considered in this work.
We employ a Beta-binomial prior instead, which is a direct extension to the binomial
prior. The uncertainty regarding the transmission probability p can be modeled using the
Beta-binomial as prior distribution. The Beta-binomial distribution is defined as

K | α, β, M ∼ BB(M, α, β), (3)

with shape parameters α and β. It is a discrete probability distribution on a finite support
of non-negative integers, and it is frequently used when the success probability in each of
the known number of trials is either unknown or random. Its probability mass function is
defined as

P(K = k) =
(

M
k

)
B(k + α, M− k + β)

B(α, β)
, (4)

where B(α, β) is the beta function. The probability that the contact persons become infected
and the number of infected persons depends on the type of event, e.g., if it takes place
outside or inside and how much the persons interact and talk. Thus, the parameters of the
Beta-binomial distribution should be adjusted to the considered use case.

In order to define α and β, we use two other parameters for the scenario specific mod-
eling which allows for easier interpretation. We consider the probability that a transmission
of COVID-19 to at least one person takes place

P(K > 0), (5)
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and the conditional expected value

E(K|K > 0) =
∑M

i=1 P(K = i) · i
P(K > 0)

. (6)

With these two known values, the needed parameters α, β can be determined by
solving an optimization problem, for example, with the L-BFGS method [15].

2.4. Likelihood

The accuracy of a test is described by the specificity (Sp, also called True Negative Rate)
and the sensitivity (Se, also called True Positive Rate). In this paper, PCR tests are considered
for testing. The U.S. Food and Drug Administration analyzed PCR tests and determined a
specificity of nearly 100% [16] (the very few false positives are usually caused by laboratory
handling errors). Thus, we assume a specificity of 1. However, the sensitivity is less than 1,
and the probability that a person infected with COVID-19 is tested positive depends on the
time point of testing; see Reference [17], as well. For our model, these probabilities were
read and copied manually from the first graph of Figure 2 of publication [17]. Thus, the test
of an infected person will be negative with almost 100% probability on the first and second
day after the infection; between days six to ten after infection, this probability of a false
negative test result drops below 25%, reaching a minimum of about 20% on day eight.

This day specific sensitivity is used for our realistic modeling of the likelihood function:
The N tested persons are split in n day specific groups. N1 persons were tested on day D1
after the group event, N2 persons were tested on day D2, D2 6= D1, . . . , and Nn persons
were tested on day Dn, Dn 6= Dd for d ∈ {1, . . . , n − 1}. In the same way, the K infected
persons are divided into days: K1, . . . , Kn. For both the tested persons Nd and the infected
tested persons Kd, we assume that they are only tested on a single day. Thus, every person
x is tested on day Di and is not tested on day Dj and i 6= j ∀ i, j ∈ {1, . . . , n}. The remaining
untested and infected persons N0 = M− N, K0 = K−∑n

d=1 Kd are considered as an addi-
tional group. These subsets of N and K are also illustrated in the right image of Figure 1.
Moreover, the day dependent sensitivity sDd is known for all days Dd, d ∈ {1, . . . , n}.

The distribution of COVID-19 infected persons K can now be considered as a random
drawing from an urn containing M persons divided into the subsets N0, N1, . . . , Nn. Then,
the probability of one specific draw K̃ = (K0, . . . , Kn), ∑n

d=0 Kd = K and Kd ≤ Nd ∀ d ∈
{0, . . . , n} can be calculated with the formula of the multivariate hyper-geometric distribution:

P(K̃ = (K0, . . . , Kn)) =
∏n

d=0 (
Nd
Kd
)

(M
K )

. (7)

Furthermore, the probability for a negative test on day d is needed. For healthy
persons, this probability is 1, since we assume a specificity of 100%. However, for infected
persons, this probability depends on the test date:

P(Negative test on day Dd| person is healthy) = 1; (8)

P(Negative test on day Dd| person is infected) = 1− sDd . (9)

On each day Dd, Nd persons with an unknown number of infected persons Kd ≤ Nd
are tested and the likelihood of testing them all negative is given by

P(Nd negative tests on day Dd|Kd persons are infected) = (1− sDd)
Kd · 1Nd−Kd

= (1− sDd)
Kd .

(10)
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The probability for testing all infected persons on all days negative can be determined
by multiplying all day specific probabilities, since the number of negative tests is given for
each day; thus, the probabilities for each day are independent:

P(N total negative tests with Nd at each day Dd|K =
n

∑
d=0

Kd of Nd persons are infected)

=
n

∏
d=1

P(Nd negative tests on day Dd|Kd of Nd persons are infected)

=
n

∏
d=1

(1− sDd)
Kd .

(11)

For the next step, we are considering a simple example, where all persons are tested
on the same day, and it holds that N = N1, N0 = M− N. In this case, the following draws
K̃ can occur:

XK = {(min(N0, K), K−min(N0, K)), . . . , (K−min(N1, K), min(N1, K))}. (12)

Thus, the probabilities for all those possible draws defined in Equation (7) multiplied
with the negative testing probabilities defined in Equation (11) must be summed up to obtain

P(N out of M tested negative at specific days |K) = ∑
(K0,K1)∈XK

(N
K0
)(M−N

K1
)

(M
K )

(1− sD1)
K1 . (13)

In general, the persons are tested on n different days, and we obtain:

XK =

{
(K0, . . . , Kn)|

n

∑
d=0

Kd = K and Kd ≤ Nd ∀ d ∈ {0, . . . , n}
}

(14)

as set of all possible draws. Again, the probabilities have to be summed up to obtain
the probability

P(N out of M tested negative at specific days |K)
= ∑

K̃ ∈XK

P
(
K̃ = (K0, . . . , Kn) ∩ N total negative tests with Nd at each day Dd

)
, (15)

where P(K̃ = (K0, . . . , Kn)∩ N total negative tests with Nd at each day Dd) is the probabil-
ity of testing all persons in one specific realization K̃ = (K0, . . . , Kn). As in the simple
example, the probability for the draw has to be multiplied with the probability, that all
infected people are tested negative. Using Equations (7) and (11), we obtain

P(K̃ = (K0, . . . , Kn) ∩ N total negative tests with Nd at each day Dd)

= P(K̃ = (K0, . . . , Kn))

· P(N total negative tests with Nd at each day Dd|K =
n

∑
d=0

Kd persons are infected)

=
∏n

d=0 (
Nd
Kd
)

(M
K )

·
n

∏
d=1

(1− sDd)
Kd

=
(N0

K0
)

(M
K )
·

n

∏
d=1

(
Nd
Kd

)
(1− sDd)

Kd .

(16)

Thus, the likelihood function is modeled with the above equations, and the posterior
probability can be calculated via Bayes Theorem, as outlined in Section 2.2.
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3. Result
3.1. Prior Distribution for School Classes

We conducted a literature search about the probability of a COVID-19 outbreak in
schools. This search was done with Google Scholar with different combinations of the
keywords SARS-CoV-2, COVID-19, transmission, school, pupils, education. As a result, we
found four studies that analyzed the transmission probability in school classes: a French
study of one school [18], an Irish study of all COVID-19 cases in schools [19], an Australian
study [20] analyzing different educational scenarios, and a study in Luxembourg [21].

In the Australian study, 15 school classes with at least one COVID-19 infected person
were analyzed and for 3 school classes new COVID-19 infections were detected [20]. No
transmission of COVID-19 in 6 school classes was detected in the Irish study [19]. In the
French study, one outbreak was analyzed in detail, especially the transmissions of COVID-
19 in one high school [18] that took place at a time prior to enforcement of strict pandemic
hygiene rules. This study analyzed an outbreak at a whole school and not in one single
school class. The study in Luxembourg analyzed the primary and secondary transmissions
in school; however, no information about transmission probability in school classes was
reported [21]. Therefore, we decided not to take the last two studies into account. Based
on the two remaining sources, we obtain a first crude estimation of P(K > 0). Here, we
considered all school classes equally. Then, the sum of all school classes with transmissions
was calculated and divided by the sum of all considered school classes:

P(K > 0) =
0 + 3

6 + 15
=

3
21
≈ 0.14. (17)

Moreover, the RKI recently published a report about COVID-19 outbreaks in different
environments [7]. In this document, an analysis about the average number of infected
persons per outbreak was made. For school classes, an average number of 4.8 infected
persons was reported, which equals the conditional mean value:

E(K|K > 0) = 4.8. (18)

With these two values, a unique Beta-binomial distribution can be determined as
outlined in Section 2.3. The distributions for school classes with M = 15, 25, 35 are plotted
in Figure 2. For all cases, a suitable Beta-binomial distribution could be calculated. Small
differences between the distributions can be only observed for the probability values
with K > 0.

3.2. Posterior Probabilities and Decision Support for School Classes

In this section, the school class scenario is further considered and the posterior proba-
bility is analyzed that no transmission occurred given that N out of M persons are tested
negative. For this analysis, we used the prior specified for school classes which is deter-
mined in Section 3.1. In Germany, school classes have usually at least 13 and not more
than 35 pupils [22]. Thus, we calculated this probability for different school class sizes
M ∈ {13, . . . 35} and different numbers of tests N, which were all done 4 days after the
group event. The results are shown in the left panel of Figure 3. This probability ranges
from 0.85 up to 1.0. One reason for this high minimum is the specific prior distribution,
which should have the probability 0.86 for no transmission. Thus, the posterior probability
cannot be smaller than 0.86 due to formula (2). Smaller values are only observed for
M < 15, where no optimal parameters could be found with the optimization. Moreover,
all determined posterior probabilities never reach 100% because there is always some
small remaining risk, that there could be some infected persons in the group, who were
tested negative.

With this calculated probability, one can make a decision whether the quarantine can
be canceled despite the fact that not all persons have been tested. Using, for example, the
rule p0 > 0.9, the quarantine will be canceled in most cases, as shown in the right panel of
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Figure 3. Only if less than around 30% of the group size have been tested is the result p0
less than 90%, and the quarantine is continued.

Figure 2. Plots of the Beta-binomial distribution as school class prior for M = 15, 25, 35.

Figure 3. Left: Posterior probability that no transmission occurred given that N out of M persons are tested negative using
the specific school prior for different group sizes and number of tests made 4 days after the group event. Right: Decision of
a quarantine cancellation based the condition that p0 > 0.9. The black line shows the situation that 30% are tested.

3.3. Decision about Quarantine Cancellation for School Classes

The statistical model with the prior specified for school classes (determined in
Section 3.1) is tested and evaluated with one dedicated dataset provided by the health
department Berlin-Reinickendorf. The dataset is shown in Table 2. We have 17 persons
which were in contact with one infected person. All of them had contact on 10 August,
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for most of them it was the last contact. However, two of them have met the person
later on until 16 August and 18 August again. These two persons do not fit into our
group event setting and hence were excluded. Employees at the German health de-
partments consider and decide about the quarantine of these persons separately on an
individual basis.

As a result, we now have 15 persons with last contact on August 10. Twelve persons
were tested, and all test results are negative. One person was tested on August 18, ten
persons on August 19, and one person on August 20. The timeline for this sequence of
events is given in Figure 4. With this information, we can calculate the posterior probability,
that nobody at all was infected according to our model. With the prior distribution
determined for a school class with M = 15 pupils, we obtain a probability of p0 = 98%,
that no transmission of COVID-19 occurred in this setting. Based on the described decision
rule of p0 > 0.9 suggested in Section 3.2, this result would support to cancel the quarantine
for the whole group early. Indeed, no further COVID-19 cases were reported to the health
department concerning this particular school class. Hence, the correct decision about
cancellation of quarantine would have been made in this specific case.

Figure 4. Timeline of the school class example.

Table 2. A dataset of a school class from the health department in Berlin-Reinickendorf, which
contains the last contact date, the PCR test date, and the PCR results.

Case Number Date of Last Contact PCR Test Date PCR Test Result

1 10 August 2020 — —
2 10 August 2020 — —
3 10 August 2020 — —
4 10 August 2020 18 August 2020 negative
5 10 August 2020 19 August 2020 negative
6 10 August 2020 19 August 2020 negative
7 10 August 2020 19 August 2020 negative
8 10 August 2020 20 August 2020 negative
9 10 August 2020 19 August 2020 negative
10 10 August 2020 19 August 2020 negative
11 10 August 2020 19 August 2020 negative
12 10 August 2020 19 August 2020 negative
13 10 August 2020 19 August 2020 negative
14 10 August 2020 19 August 2020 negative
15 10 August 2020 19 August 2020 negative
16 16 August 2020 19 August 2020 negative
17 18 August 2020 24 August 2020 negative

4. Discussion

The results show, that the proposed statistical model can support quarantine decisions
by risk estimation. The generalizability of our approach to other countries and/or other types
of group events is limited and depends on the availability of suitable evidence to inform the
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prior distribution. For that reason, we would advise to conduct a literature research to derive
meaningful prior parameters before adopting our model to other scenarios.

The results from the proposed model depend on the chosen prior distribution which is
subject to uncertainty. In Bayesian analysis, a non-informative prior is sometimes phrased
as a solution to this problem. We would, however, discourage using a “non-informative”
uniform prior in the considered scenario because of epidemiological implausibility: for
instance, under a uniform prior, the prior probability of no (K = 0) or all (K = M) contact
persons being infected is equal, which we do not consider to be realistic.

Furthermore, general and quite simplified assumptions were made for the different
probability distributions. Several aspects, such as the number of initially infected persons
in the group or other aspects of the group event (inside/outside, ventilation, activity
type, interactions, etc.), were not addressed. A paper was published, which describes
a model for estimating the aerosol transmission risk depending on several parameters
e.g., room properties, event duration or number of participants [13]. Based on this work,
the probability that a transmission of COVID-19 occurred can be estimated. However,
further information about the average number of infected persons is not available using
this approach introduced in Reference [13]. Currently, there is still a lack of available data
and published studies for extending our statistical model. In addition, for the likelihood,
we assumed that every contact was tested once. However, normally, contact persons are
tested two times.

Since the prior specification is always subjective and depends on the availability of
adequate evidence for model parameters, the sensitivity of the results to the prior should
be addressed in the future. Different frameworks to approach robust Bayesian analysis
have been described in the literature [23]. Furthermore, we assumed a random choice of
tested persons, but, in reality, the contact persons with the highest risk would be chosen
for tests. The likelihood was specified for the PCR-tests, but this could be also adapted for
other test types when the tests sensitivities and specificity are known. We also assumed
that all tests results are negative because the health offices do not cancel the quarantine if at
least one person is tested positive. However, this could change in future due to increasing
vaccination numbers and one or two positive tested persons could be acceptable. In this
case, a more precise estimation of tested specificity and, consequently, the false positive
tested rate is needed to have a realistic model.

5. Conclusions

In this work, we introduced a statistical model for estimating the risk of an early group
quarantine cancellation. Therefore, a day specific sensitivity and a specificity of 100% of
the PCR-test were considered for the likelihood distribution. Moreover, the Beta-binomial
distribution was chosen as prior for the transmission of the COVID-19, and a method for
determining its parameters for specific situations was proposed. The whole model can
be specified for any group event in any country. In this work, it was used for obtaining a
prior distribution for school classes based on data obtained from literature. Based on the
obtained prior distribution, we analyzed the usage of our statistical model for a decision
support for quarantine cancellation and tested it on a real-world dataset of a German school
class. Offered as a web application or integrated in a software solution, our statistical model
could be used by employees of German health departments and could facilitate their daily
work. A prototypical version of the web application (in German) is available upon request
to the corresponding author.

In addition, we illustrated a decision rule based on the arbitrary threshold of 90% for
the posterior probability that no transmission occurred. However, it is not clear, if this is
the best rule for making a decision. The threshold could be also set higher, e.g., p0 > 0.95,
to reduce the remaining risk. Future work should address the choice of the threshold in
dependence of factors, such as available test capacities. Moreover, we will implement
other circumstances of the contact event (location, interactions, etc.) in the model and will
apply it for other specific scenarios. In a next step, the benefit of using our tool in routine
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cases has to be evaluated. For this purpose, a broad evaluation study with German health
departments is planned.
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