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Abstract: Nowadays people are mostly focused on their work while ignoring their health which in
turn is creating a drastic effect on their health in the long run. Remote health monitoring through
telemedicine can help people discover potential health threats in time. In the COVID-19 pandemic,
remote health monitoring can help obtain and analyze biomedical signals including human body
temperature without direct body contact. This technique is of great significance to achieve safe and
efficient health monitoring in the COVID-19 pandemic. Existing remote biomedical signal monitoring
methods cannot effectively analyze the time series data. This paper designs a remote biomedical
signal monitoring framework combining the Internet of Things (IoT), 5G communication and artificial
intelligence techniques. In the constructed framework, IoT devices are used to collect biomedical
signals at the perception layer. Subsequently, the biomedical signals are transmitted through the 5G
network to the cloud server where the GRU-AE deep learning model is deployed. It is noteworthy
that the proposed GRU-AE model can analyze multi-dimensional biomedical signals in time series.
Finally, this paper conducts a 24-week monitoring experiment for 2000 subjects of different ages to
obtain real data. Compared with the traditional biomedical signal monitoring method based on the
AutoEncoder model, the GRU-AE model has better performance. The research has an important role
in promoting the development of biomedical signal monitoring techniques, which can be effectively
applied to some kinds of remote health monitoring scenario.

Keywords: telemedicine; biomedical signal monitoring framework; GRU-AE; COVID-19 pandemic;
healthy monitoring

1. Introduction

Telemedicine is the use of electronic information and telecommunication technology
to provide the health care that people need while practicing social distancing [1]. The
fields of application of telemedicine are various and constantly evolving, from cardiology
(transmission of electrocardiographic traces) to radiology (transmission of radiographic
images), dermatology (transmission of digital images of skin lesions), pathological anatomy,
and many others. Due to the COVID-19 pandemic that has swept the world, health
monitoring services in telemedicine have developed explosively [2]. The remote health
monitoring services mainly diagnose and evaluate health issues by monitoring various
biomedical signals. A health issue occurs when the normal metabolism of the body fails
or is altered due to pollutants, pathogens or other means that cause health problems that
are considered as diseases. Common biomedical signal parameters include: pulse, body
temperature, blood oxygen saturation concentration, blood glucose concentration and
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blood pressure [3]. With the popularization of health monitoring equipment, many non-
medical professional equipment such as smart bracelets are widely favored by people. The
equipment can provide users with the display of various biomedical signals through real-
time monitoring while lacking an analytical function [4,5]. Even professional telemedicine
monitoring equipment cannot perform the comprehensive analysis of multi-dimensional
biomedical signal data in time series, and quickly find potential health issues. As we all
know, the COVID-19 pandemic has been growing rapidly because of a new variant, which
is also a serious problem in many countries. Therefore, the demand for a remote health
monitoring service is more urgent for measuring the body temperature aspect. In the
meantime, this requires higher requirements for the intelligence gathering and accuracy of
remote health monitoring. For example, the occasional rise in body temperature may be
caused by exercise or stress, rather than a precursor to infection with COVID-19.

Nowadays, remote health monitoring relies on artificial intelligence, the Internet
of Things (IoT), cloud computing and other Internet technologies [6]. There are many
research works focused on how to obtain all kinds of biomedical signals through integrated
technologies. For example, in the aspect of biomedical signal monitoring, biomedical signal
data can be obtained through wearable IoT sensor devices. These data are transmitted to
the cloud server through a high-speed network for subsequent processing and analysis.
Finally, the potential health issues can be sent to users or medical staff [7]. These methods
provide important support for the realization of intelligence, real-time and accuracy of
remote health monitoring, but still have some shortcomings. A few methods can provide
intelligent single biomedical signal analysis while they lose efficacy when facing multiple
biomedical signals. Some others fuse multi-dimensional physiological signals, but ignore
the time influence.

In order to solve the problems of existing remote biomedical signal monitoring meth-
ods, this paper introduces the IoT, 5G communication, artificial intelligence and other
technologies and constructs a biomedical signal monitoring framework based on GRU-AE
deep learning model, which realizes the automatic collection and intelligent analysis of
multi-dimensional biomedical signals. The framework collects biomedical signals through
IoT sensing devices, and then uses high-speed mobile communication networks to trans-
mit them to the cloud server in real time. The GRU-AE model deals with the correlated
biomedical signals based on time series to achieve more accurate and efficient intelligent
health monitoring. The proposed framework has the strengths of fast response and high
accuracy. It is especially suitable for the intelligent monitoring of biomedical signals such
as body temperature under the COVID-19 pandemic.

The structure of this paper is organized as follows. In Section 2, related work is intro-
duced. In Section 3, The biomedical signal monitoring framework based on deep learning
is elaborated, including its application scenarios and workflow. Section 4 introduces the
basic structure of the GRU-AE model and the principle that it is used to process and mon-
itor multi-dimensional biomedical signals in time series. Section 5 reveals experimental
and analytical process on two biomedical signals and indicates the performance of our
proposed model. Finally, we draw conclusions in Section 6.

2. Related Works

In recent years, many remote health monitoring methods based on multi-techniques
have emerged. Most monitoring frameworks are implemented using technologies such as
the IoT and wireless sensor networks. Yang [8] designed a multi-sensor bracelet to collect
physical information and uploaded it to a cloud server through the IoT. After extracting the
features of the experimental data, an evaluation model of these biological characteristics
and human health emotions was established, and the mapping relationship between multi-
sensor data and mental conditions was mined. Xing [9] designed a set of wearable devices
that could collect the ECG signals of patients with cardiovascular diseases. The data were
transmitted to the self-built cloud server through the IoT, which could store the complete
ECG signal data and display it on the web in real time. It implemented a system for
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monitoring electrical signals through the IoT. Zubair et al. [10] designed an economical,
efficient, and low-power wearable smart band based on IoT. This band detected mental
stress based on skin conductance and was mainly used for medical care. It could also
continuously monitor the user’s mental stress, and wirelessly transmitted stress-related
data to the user’s smartphone. Isabel et al. [11] designed a pressure monitoring system
using wearable devices based on IoT. This system included a smart bracelet module and
a chest strap module, which could be worn on the wrist and chest respectively. The
parameters of system monitoring such as electrical skin activity and heart rate in real time
were sent to a cloud-based server. And The server was used as an online IoT platform,
using applications to perform data calculations and displayed stress reports. Sravanthi
and Ganesan [12] proposed an IoT-based health monitoring device that tracked the heart
rate and body heat and also sent an email/SMS warning when these readings went above
the main values. Thingspeak and Google sheets logged heart rate and body temperature
measurements so that patient wellbeing could be tracked on the internet everywhere in the
world. There would also be a rush so that patients could quickly send messages to their
families. Imberti et al. [13] found that device-based remote monitoring (RM) was useful in
the early detection of cardiac implantable electronic devices (CIEDs) technical issues and
cardiac arrhythmias. Moreover, RM allowed the continuous monitoring of several patients’
clinical parameters associated with impending heart failure (HF) decompensation, but there
was still uncertainty regarding its effectiveness in reducing mortality and hospitalizations.
Charrad et al. [14] designed a monitoring system for heart patients. This system was called
ECG Patch Monitor, which could collect and analyze heart data in an actual environment
(for example, at work or at home). Once an abnormality was detected, the device would
alert the medical center. Subsequently, the medical center remotely controlled the ECG
patch monitor through the platform.

Furthermore, artificial intelligence technology has also been widely used in the fields
of medical health and biomedical signal processing [15]. Guo [16] autonomously learned
the spatial and temporal characteristics of ECG by constructing a CNN-LSTM hybrid
model. He utilized multi-task learning to classify diseases. Finally, an ECG monitoring
system was realized based on a deep learning model, which included the functions of ECG
signal data acquisition and analysis. Liu et al. [17] analyzed different types of ECG and
used the support vector machine method to identify arrhythmia. The proposed method
could effectively identify four types of arrhythmia biometric signals. Zhang et al. [18]
trained an LSTM deep learning model through a large number of biometric signals in the
physical examination records of pregnant women. Finally, the prediction of fetal weight
was realized, and experiments proved that the model achieved good prediction effect
on abnormal weight. Sun et al. [19] proposed a CNN-based method for doctors to iden-
tify potential risks through biometric identification analysis. This method automatically
learned features from the original biometric signal and identified abnormal monitoring
of physiological signals through unsupervised learning and multivariate Gaussian dis-
tribution. The experimental results proved that the method could be applied to identify
early signs of illness. Paraschiakos et al. [20] proposed an architecture consisting of an
RNN with 3 GRU layers and a feedforward network combining both accelerometer and
participant-level data. It could measure physical activity energy expenditure for older
people. Xiao [21] designed a deep ensemble network of CNN and GRU for time-series
classification. It could be applied to ICU time series data and combined with static data
to achieve high-performance intubation prediction. Sharma et al. [22] proposed a model
based on IoT for early detection of COVID-19 based on ontology method using sensory 1D
biomedical signals such as ECG, PPG, temperature, and accelerometer. This model extracts
the characteristics of the four biological signals and uses the MDCA method for fusion,
and finally uses SVM and KNN for classification, which realizes the classification and
monitoring of abnormal biological signals. Most of the applications of artificial intelligence
in the medical field are image processing based on deep learning [23,24]. It is applied to
medical physiological images, such as gesture recognition, electrocardiogram, ultrasound
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image classification and prediction [25]. There are few studies on the use of deep learning
anomaly monitoring methods in biomedical signal monitoring.

In summary, artificial intelligence, IoT and other techniques have been applied in the
field of biomedical signal monitoring and medical health. However, the current related re-
search works have some limitations. Remote healthy monitoring through the IoT and cloud
computing is simple collection. Biomedical signals are simply recorded or reminded that
they exceed the normal range. Most biomedical signal processing methods lack analysis of
biomedical signal data in time series. They cannot process multi-dimensional biomedical
signal data in parallel [26]. At present, there are few research works on realizing remote
intelligent health monitoring by combining technologies such as the IoT, cloud computing,
and artificial intelligence to automatically collect, process and analyze biomedical signals.
In particular, the research results of remote health monitoring for the prevention and
control of the COVID-19 pandemic are relatively insufficient [27].

3. Biomedical Signal Monitoring Framework Based on Deep Learning

The proposed biomedical signal monitoring framework consists of four layers includ-
ing: (1) Biomedical signal perception layer, (2) Network layer, (3) Intelligent monitoring
layer and (4) Application layer, shown in Figure 1.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 24 
 

 

intelligence in the medical field are image processing based on deep learning [23,24]. It is 
applied to medical physiological images, such as gesture recognition, electrocardiogram, 
ultrasound image classification and prediction [25]. There are few studies on the use of 
deep learning anomaly monitoring methods in biomedical signal monitoring. 

In summary, artificial intelligence, IoT and other techniques have been applied in the 
field of biomedical signal monitoring and medical health. However, the current related 
research works have some limitations. Remote healthy monitoring through the IoT and 
cloud computing is simple collection. Biomedical signals are simply recorded or reminded 
that they exceed the normal range. Most biomedical signal processing methods lack anal-
ysis of biomedical signal data in time series. They cannot process multi-dimensional bio-
medical signal data in parallel [26]. At present, there are few research works on realizing 
remote intelligent health monitoring by combining technologies such as the IoT, cloud 
computing, and artificial intelligence to automatically collect, process and analyze bio-
medical signals. In particular, the research results of remote health monitoring for the pre-
vention and control of the COVID-19 pandemic are relatively insufficient [27]. 

3. Biomedical Signal Monitoring Framework Based on Deep Learning 
The proposed biomedical signal monitoring framework consists of four layers in-

cluding: (1) Biomedical signal perception layer, (2) Network layer, (3) Intelligent monitor-
ing layer and (4) Application layer, shown in Figure 1.  

Biomedical signal  Perception Layer

Network Layer

Intelligent Monitoring Layer

Application Layer

 
Figure 1. Intelligent biomedical signal monitoring framework. 

(1) The biomedical signal perception layer is the sensing device layer. In this layer, IoT 
devices (i.e., body temperature monitoring device, heart rate monitoring device, ac-
celerometers, finger imaging) are widely used to collect different biomedical signals 
from users.  

(2) The network layer is responsible for transmitting the data collected by perception 
layer. The network connection between this layer and the perception layer usually 
relies on a wireless sensor network, such as Wi-Fi, Bluetooth, etc. The data transmis-
sion is based on various communication networks such as LAN, wired broadband 
and mobile communication networks.  

(3) The intelligent monitoring layer is the most critical part of this framework. The deep 
learning model is deployed here. It generally has three main steps: (1) data processing, 
(2) deep learning model training, (3) real-time monitoring. This layer is generally de-
ployed in the cloud. It can even be deployed in the edge cloud [28]. In the experiment 
of this paper, 5G communication network [29] is used at the network layer simulta-
neously, this is the perfect solution for the entire framework.  

(4) The application layer is used to deploy applications suitable for this framework. At 
present, the main application proposed in this paper is health monitoring. It can also 

Figure 1. Intelligent biomedical signal monitoring framework.

(1) The biomedical signal perception layer is the sensing device layer. In this layer,
IoT devices (i.e., body temperature monitoring device, heart rate monitoring device,
accelerometers, finger imaging) are widely used to collect different biomedical signals
from users.

(2) The network layer is responsible for transmitting the data collected by perception layer.
The network connection between this layer and the perception layer usually relies
on a wireless sensor network, such as Wi-Fi, Bluetooth, etc. The data transmission
is based on various communication networks such as LAN, wired broadband and
mobile communication networks.

(3) The intelligent monitoring layer is the most critical part of this framework. The
deep learning model is deployed here. It generally has three main steps: (1) data
processing, (2) deep learning model training, (3) real-time monitoring. This layer is
generally deployed in the cloud. It can even be deployed in the edge cloud [28]. In
the experiment of this paper, 5G communication network [29] is used at the network
layer simultaneously, this is the perfect solution for the entire framework.

(4) The application layer is used to deploy applications suitable for this framework. At
present, the main application proposed in this paper is health monitoring. It can also
provide some other health data statistical analysis applications for biomedical signal
data, such as health state assessment and prediction.
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The workflow of the entire framework is shown in Figure 2. Firstly, the biomedical
signal perception layer collects biomedical signals at any time through IoT devices. The data
are transmitted to the intelligent monitoring layer through the network layer. Secondly, the
intelligent monitoring layer preprocesses the collected data. When the collected data reach
the threshold for the training set, the intelligent monitoring layer starts model training.
When the model training is completed, the biomedical signals collected from the perception
layer will be input into the model for health monitoring. If the output result is abnormal, it
means that health issues may occur. An alarm will be sent to the user.
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The actual application scenario of the biomedical signal monitoring framework is
shown in Figure 3. The wearable IoT sensor device collects users’ biomedical signal data
and transmits them through the fast communication networks (i.e., 5G communication
network). Deep learning models are deployed in cloud servers (such as edge computing
servers). These models are capable of connecting multiple users and establish the remote
transmission of biomedical signal data. Finally, the monitoring results will continue to
be sent to users or telemedicine health centers. In the COVID-19 pandemic scenario, the
entire framework can remotely collect the body temperature data of a large number of
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quarantined persons, and establish models for intelligent monitoring. The monitoring
results can be sent to users and the pandemic prevention and control center in real time.
The prevention and control center can grasp the temperature changes or other health issues
in real time without direct contact, so as to make accurate prevention and control decisions.
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4. Intelligent Biomedical Signal Monitoring Model

The intelligent biomedical signal monitoring model is deployed in the intelligent
monitoring layer [30]. Biomedical signal health monitoring is related to time. Therefore,
deep learning models which can deal with the time series data are generally used. For
example, recurrent neural network (RNN) is a type of artificial neural network which uses
sequential data or time series data. However, the problem of gradient disappearance and
gradient explosion during long sequence training may occur in RNN. LSTM is a variant
model of RNN to solve the above problems. Furthermore, a simplified version of LSTM
named GRU proposed by Cho, et al. [31] is widely used to address the ‘short-term memory’
issue plaguing vanilla RNNs. GRU is able to effectively retain long-term dependencies in
sequential data. This paper proposes a model combining GRU and AutoEncoder to realize
biomedical signal real-time monitoring.

4.1. Introduction of Monitoring Model
4.1.1. AutoEncoder

AutoEncoder is an unsupervised artificial neural network that is used to efficiently
compress and encode data to achieve the goal of dimensionality reduction. The schematic
diagram of AutoEncoder model is shown in Figure 4.

AutoEncoder consists of three layers including an input layer, a hidden layer, and
the output layer. Input and output layers have an equal number of nodes in AutoEncoder.
This is because the purpose of the AutoEncoder is to initialize the hidden layer parameters
that will reconstruct the multidimensional input data. Encoding is the process between the
input layer and the hidden layer. The encoder is usually used to reduce multidimensional
data to low-dimensional data (compressed representation), whereas it may allow different
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representations of equal dimension and higher dimensional data (sparse representation) to
be obtained. The decoding constructs the process of the output using hidden layer output
weights between the hidden layer and the output layer. Decoding aims to reconstruct the
input data by using the sparse or compressed representations into preferred dimensionality.
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In monitoring applications, the output data need to be as close to the original data
as possible. The monitoring function is realized by evaluating the difference between the
output data and the original data. The encoding and decoding process are shown in the
following formulas.

y = f (Ax + b) (1)

x′ = g(Cy + d) (2)

The objective function is when the difference between input and output is the smallest.
It means the loss is the smallest l. It is shown in the following formula.

l = argminy,x′Loss (3)

Loss
(
x, x′

)
= ‖x− x′‖2 (4)

Loss
(
x, x′

)
= ‖x− g(C f (Ax + b) + d)‖2 (5)

After the model has been trained, if the Loss exceed the threshold, it indicates that the
data is abnormal.

4.1.2. LSTM

LSTM has a complex structure, and the model is shown in Figure 5. The selective
power of LSTM is archived by the gate state which helps remember information that needs
long-term memory and opt out unimportant information by controlling the information
transmission [32].

In addition to the sample feature x and the hidden layer output ht−1 of the previous
time, the LSTM input also adds memory cell ct−1. These inputs need to pass through
the input gate it, the forget gate ft, the output gate ot and the candidate memory cell c̃t
inside the structure. ct denotes the cell state for time t. It is yielded from the previous
cell state ct−1 plus some values. It is mainly used to save the data passed by the previous
unit. The information passed each time will be ‘forgotten’ in certain dimensions, and the
information contained in the current node will be added. Therefore the value of ct changes
are relatively small. ht is mainly for combining with the current input to obtain the gate
signal. For different current inputs, the ht passed to the next state will differ greatly. The
related calculation formula is as follows.
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
it = σ(W[ht−1, xt] + bi)

ft = σ
(

W[ht−1, xt] + b f

)
ot = σ(W[ht−1, xt] + bo)

c̃t = tan h(W[ht−1, xt] + bo)

(6)

The update formula of the memory cell is as follows.

ct = ft ∗ ct−1 + it ∗ c̃t (7)

The update formula of the hidden cell is as follows.

ht = ot∗ tan h(ct) (8)

The final output y is calculated by the deformation of the h.

ŷt = σ
(
Wyhy + by

)
(9)

Among them, the excitation function σ is the sigmoid function.
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4.1.3. GRU

GRU is mainly proposed to solve the problem of gradient disappearance in standard
recurrent neural networks. Since GRU and LSTM are very similar, GRU can also be
regarded as a variant of LSTM. The GRU only has an update gate and a reset gate. These
two gate vectors determine which information should be passed to the output. Therefore,
there are fewer parameters and calculations in GRU. It is easier to converge and has higher
efficiency. However, when the data set is large, LSTM expression performance is better.

In order to describe the GRU message transfer process in detail, the specific GRU unit
structure is shown in Figure 6. σ represents the sigmoid function. ut represents the update
function, xt represents the input, ht represents the output, rt represents the reset function,
and h̃t represents the current memory content. The role of the update gate is to help the
model to convey the amount of past information. In this way, the model can solve the
problem of gradient messages.

The GRU model can use the reset gate to store past information. Firstly, the product of
the input xt and the weight W, the product of ht−1 and the weight U should be obtained.
Then the product of reset gate rt and ht−1 will be obtained element by element. Finally,
using the tanh function to find the memory content h̃t. In the last step of the GRU unit,
ht needs to be calculated, which saves the information of the current unit and transmits
it to the network. GRU uses the update gate to determine the information read from the
memory content and the previous unit. The calculation process is shown in formula (10) to
formula (13).

ut = σ(Wuxt + Uuht−1) (10)

rt = σ(Wrxt + Urht−1) (11)
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h̃t = tan h(Wxt + rt ∗Uht−1) (12)

ht = ut ∗ ht−1 + (1− ut) ∗ h̃t (13)
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4.2. GRU-AE Monitoring Model

Both GRU and LSTM are models related to time series. The state of the previous
moment is used as the input of the current moment. The memory is selected according to
the gate. The state of the model in time is shown in Figure 7. We let set {X1, X2, · · · , XM}
indicate m types of biomedical signal data. Each unit represents a single LSTM unit or GRU
unit in Figures 4 and 5. The model has an output result at each moment and inputs it to the
next moment.
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Biomedical signal data monitoring must meet the requirements of both monitoring
function and time series. This paper combines the AutoEncoder model and the GRU
model, using the GRU unit as the node of the AutoEncoder. It constructs a three-layer
GRU-AutoEncoder (GRU-AE) model. A fully connected layer is added to the output layer.
This can make the dimensionality of the output data consistent with the input data. The
entire model is shown in Figure 8.

The input data of the model is biomedical signal data. The feature dimension of the
input data is determined by the classes of the biomedical signals. The first layer of the



Int. J. Environ. Res. Public Health 2021, 18, 9037 10 of 23

model is the same as the ordinary GRU model. The number of GRU units is reduced in
the second layer. The output of the previous layer is used as the input of this layer. The
third layer has the same number of units as the first layer to achieve decoding. At the same
time, each layer takes ht−1 as input, which from the previous moment. The output ht of the
model at the current moment will also be used as the input at the next moment. Finally, to
calculate the loss, the output of the entire model is kept consistent with the dimensions
of the input. A fully connected layer is added to the fourth layer. The input dimension is
consistent with the dimension of the last layer. The output dimension is consistent with
the input dimension.
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The input of the first layer is that the collected biomedical signal data are xt. This
represents the data at time t, which are composed of n kinds of biomedical signal, as shown
in the formula (14).

xt = {Xi|i = 1 . . . n} (14)

Each GRU unit has two inputs and one output, which is a function of binary inde-
pendent variables. The k-th layer is represented by the superscript on the right. Then, the
relationship between the input and output of the first layer at time t is:

h1
t = g1

(
xt, h1

t−1

)
(15)

The function g represents a series of function combinations of the GRU model intro-
duced earlier.

The input of the second layer becomes the output of the previous layer. The input and
output relationships of the second and third layers are respectively:

h2
t = g2

(
h1

t , h2
t−1

)
(16)
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h3
t = g3

(
h2

t , h3
t−1

)
(17)

After going through the fully connected layer:

yt = σ
(

Wyh3
t + by

)
(18)

In general, supervised learning is to find the minimum value of the objective function
MSE, as shown in formula (19). Its role is to make the output of the model approximate the
label value.

Loss =
1
n ∑n

i=1(yi − ŷi)
2 (19)

The Autoencoder is to find the minimum loss between output and input. Its goal is to
make the output as close to the input as possible. The loss function at a certain time t is:

Losst =
1
2
(yt − xt)

2 (20)

The loss at all moments is:

Loss = ∑T
t=1

1
2
(yt − xt)

2 (21)

Loss = ∑T
t=1

1
2

(
σ
(

Wy

(
g3
(

g2
(

g1
(

xt, h1
t−1

)
, h2

t−1

)
, h3

t−1

))
+ by

)
− xt

)2
(22)

Therefore, the ultimate goal is to make loss tend to 0. Each parameter is obtained by
the back propagation principle of a neural network. According to the gradient descent
iterative update principle of back propagation, combining the input-related functions in
back propagation, the update of some parameters in the coding layer is shown in the
following formula:

∂Loss
∂W

= h2T

t
∂Loss

∂h̃t
(23)

∂Loss
∂Wr = h2T

t
∂Loss

∂r̃t
(24)

∂Loss
∂Wu = h2T

t
∂Loss

∂ũt
(25)

Through the GRU-AE model, multiple biomedical signals can be correlated in time
series. The model uses a variety of biomedical signals and historical states as the basis
for monitoring health. Such standards are more scientific and accurate than other moni-
toring models, and even human judgments. In addition, the GRU-AE model only needs
biomedical signals of the health state for training.

After the GRU-AE model has been trained, it can start to monitor health. The flowchart
of the monitoring process is shown in Figure 9. The biomedical signal data are processed
to satisfy the input format of the model. After inputting the biomedical signal data into
GRU-AE model, output data will be obtained. Loss value is derived from the difference
between the output data and the original biomedical signal data. If the loss value does not
exceed the threshold, the biomedical signal is normal and there are no health issues. The
model continues to monitor the next moment of the input biomedical data. If the loss value
exceeds the threshold, it indicates that the output has a large deviation from the original
data which in turn indicates the biomedical signal is abnormal, and a health issue may
occur. At this time, the health warning is sent to the client or the monitoring center.
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4.3. Experimental Data

The experimental platform built in this paper collected a variety of biomedical signals
from the subjects, and analyzed them with heart rate and body temperature as examples.
In the COVID-19 pandemic prevention and control scenario, body temperature is the main
monitored parameter. When there is an issue with human health, body temperature and
heart rate are usually abnormal, rising or falling. Doctors often judge whether there are
health issues according to the abnormal body temperature and heart rate [33]. However,
there are also some special cases, such as bed rest and sedentary, where heart rate will
decrease. During sports, such as running, heart rate and body temperature rise.

In answering to the feasibility and credibility of the experiment, this study selected
subjects of different age and gender who could be easily tracked. This paper selects
2000 subjects between the ages of 18–50 and the duration is 24 weeks. Specifically, there
were 978 male and 1022 female who are evenly distributed in the range of 18–50. The
males accounted for 48.9% of the total subjects. In addition, all 2000 subjects had no special
diseases and were healthy in the month before the tracking test.

In this experiment, a variety of biomedical signals were collected by wearable IoT sen-
sor devices. Biomedical signal data were collected every hour, and a total of 8,064,000 sets
of biomedical signal data were obtained. Among them, 613 subjects had health issues (i.e.,
based on the diagnosis given by the doctor) during the experiment period.

In order to verify the performance of the model, this paper divided the acquired data
into a train set and a test set. More specifically, based on the time series characteristics
of biomedical signals, we selected the data from week 1 to week 20 as the training set,
including 2000 subjects containing 6,720,000 data. The data from week 21 to week 24 were
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the test set, including 2000 subjects containing 1,344,000 data. For each subject, there were
a total of 672 sets of biomedical signal data in the 4 weeks of the test set.

In this paper, a 20-year-old male subject and a 50-year-old female subject are taken
as examples to analyze and elaborate the experimental results. The data of the former are
defined as test set 1, and the data of the latter are defined as test set 2, shown in Table 1.

Table 1. The unhealthy biomedical signal in test set.

Test Set 1 Test Set 2

Time Sequence Temperature Heart Rate Time Sequence Temperature Heart Rate

667 37.6 80 131 37.5 66
668 37.4 68 132 37.7 70
669 37.3 162 133 38 110
670 37.7 168 134 37.9 100
671 38 165 135 37.6 99
672 37.7 169 601 37.7 89

602 37.5 101
603 37.3 65
604 37.1 1140
605 37 125
606 37.8 110

4.4. Evaluation Metrics

The mean absolute error (MAE) measures the average magnitude of the errors in a
set of forecasts, without considering their direction. It measures accuracy for continuous
variables. The root mean squared error (RMSE) is a quadratic scoring rule which measures
the average magnitude of the error. The MAE and the RMSE can be used together to
diagnose the variation in the errors in a set of forecasts. The formulas of MAE and RMSE
can be expressed as follows.

MAE =
1
m

m

∑
i=1
|yi − ŷi| (26)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (27)

The RMSE will always be larger or equal to the MAE; the greater difference between
them, the greater the variance in the individual errors in the sample. If the RMSE = MAE,
then all the errors are of the same magnitude [34,35].

When the test set data are input to the trained model, if the output result is very close
to the input, it means that the data are a healthy biomedical signal. When the model output
differs greatly from the input, it means that biomedical signal is unhealthy. Therefore, the
difference can be used to determine whether there is an unhealthy state. The size of the
threshold determines the performance of the model. Similar to most classification models,
this paper evaluates the accuracy of model by constructing a confusion matrix. TP, TN, FP,
FN respectively represent the number monitored to be healthy and actually healthy, the
number monitored to be unhealthy and actually unhealthy, the number monitored to be
healthy and actually unhealthy, and the number monitored to be unhealthy and actually
healthy. Then the true positive rate (TPR) is shown in the following formula:

TPR =
TP

TP + FN
(28)

The false positive rate (FPR) is shown in the following formula:

FPR =
FP

FP + TN
(29)

The accuracy is defined by the following formula:



Int. J. Environ. Res. Public Health 2021, 18, 9037 14 of 23

accuracy =
TP + TN

TP + FN + FP + TN
(30)

The threshold is different, the value of TPR, FPR and accuracy will change. These
evaluation methods are widely used in information retrieval, recommender systems and
other fields [36–40].

In the case of changing the threshold, the ROC curve of the relationship between
TPR and FPR is constructed to evaluate the effect of the model. A positive sample and a
negative sample are randomly selected. The probability that the model predicts that the
probability of the positive sample is positive is greater than the value of the probability
that the model predicts the negative sample to be positive is the value of AUC. The AUC
calculation formula is as follows:

AUC =
∑iεpositiveclass ranki −

M×(M+1)
2

M× N
(31)

Therefore, AUC is the area under the ROC curve. The larger its value, the better the
model performance.

5. Experiment

The experimental platform of this paper was composed of IoT sensing equipment, a
wireless router supporting 5G communication, and a high-performance cloud server. The
IoT sensing device was connected to the router through Wi-Fi, and the router transmitted
data to the server through the 5G network. The GRU-AE monitoring model of this paper
was deployed in the server. The free version of PyCharm community was used as the
development environment on the Ubuntu 16.04 operating system. All methods were
implemented in Python.

5.1. Parameters Determination

This paper compares GRU-AE model with the AutoEncoder model with an identical
parameter setting. They are three-layer neural networks. The first layer has 128 neural units,
the second layer has 32 neural units, and the third layer also has 128 neural units. The fully
connected output layer is a transformation of 128-dimensional data into two-dimensional
data consistent with the input. The learning rate of the model is 0.01, and the epochs of
model training are 4000.

5.2. Experimental Results

Under the above conditions of determining the parameters and train set firstly, these
two models were trained. Figures 10 and 11 display the loss function varies with the epochs
of iterations of AutoEncoder model and GRU-AE model, respectively. It can be found from
the figures that the convergence effect of the two loss functions is good. The parameters and
calculation amount of AutoEncoder are relatively small, and the convergence speed is faster.

The two test sets were then applied to the two trained models. Figure 12 shows the
comparison between the original data and the model output of the AutoEncoder model
in test set 1. Figure 13 shows the comparison between the original data and the model
output of the AutoEncoder model in test set 2. Figure 14 shows the comparison between
the original data and the model output of the GRU-AE model in test set 1. Figure 15 shows
the comparison between the original data and the model output of the GRU-AE model in
test set 2. The abscissa indicates the time sequence of the test set. The ordinate on the left
represents heart rate, and the ordinate on the right represents body temperature. From
the figures, it is found that the original data of the AutoEncoder model is almost the same
as the model output data. It may not be able to monitor unhealthy biomedical signals;
while the GRU-AE model has some obvious differences in some data. However, it may
also be that healthy data are monitored as unhealthy. In addition, the two models have
better auto-encoding effects on most healthy data.
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Figure 12. Comparison of input and output of AutoEncoder model in test set 1.
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Figure 13. Comparison of input and output of AutoEncoder model in test set 2.
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Figure 14. Comparison of input and output of GRU-AE model in test set 1.

Whether the monitoring result is healthy or not can be determined by comprehensive
consideration of the two biomedical signals. Therefore, the aforementioned original data
and output data are processed by loss operation. The final loss values are as shown in the
figures. The abscissa indicates the time sequence of the test set. The ordinate represents
the loss value between the output data and the original data. Figure 16 is the loss value
change of AutoEncoder model and the GRU-AE model in test set 1. Figure 17 is the loss
value change of AutoEncoder model and the GRU-AE model in test set 2. The figures show
that GRU-AE generates more significant losses than the AutoEncoder model on both of
the two test sets. The loss differences are even more significant on test set 2. The result is
more intuitive. Therefore, the AutoEncoder model is likely to fail to monitor unhealthy
conditions successfully. GRU-AE may mistakenly monitor healthy biomedical signal data
as unhealthy but is more sensitive to data.
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Figure 15. Comparison of input and output of GRU-AE model in test set 2.
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Figure 16. Comparison of the loss value changes of the two models in test set 1.

To evaluate the model monitoring effect more accurately, we constructed a confusion
matrix. The ROC curve describing the relationship between TPR and FRP is shown in the
figures. The area under the ROC curve, AUC, can accurately describe the performance of
the model.

Figure 18 is the ROC of the AutoEncoder model in test set 1. Figure 19 is the ROC of
the GRU-AE model in test set 1. Figure 20 is the ROC of the AutoEncoder model in test set
2. Figure 21 is the ROC of the GRU-AE model in test set 2. The abscissa of the figure is FPR,
and the ordinate is TPR.

As shown in the figures, the area under the ROC curve of the GRU-AE model is
relatively large in both test sets. The classification accuracy is excellent. In the test set
1, the performance is better due to fewer unhealthy biomedical signal data. However,
obviously it is better than the AutoEncoder model. In test set 2, the performance of the
GRU-AE model is still excellent. According to the calculation, on Test set 1, the AUC of the
AutoEncoder model is 0.91, and the AUC of GRU-AE is 0.978. On Test set 2, the AUC of the
AutoEncoder model is 0.82, while the AUC of GRU-AE is 0.95.



Int. J. Environ. Res. Public Health 2021, 18, 9037 18 of 23

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 16. Comparison of the loss value changes of the two models in test set 1. 

 
Figure 17. Comparison of the loss value changes of the two models in test set 2. 

To evaluate the model monitoring effect more accurately, we constructed a confusion 
matrix. The ROC curve describing the relationship between TPR and FRP is shown in the 
figures. The area under the ROC curve, AUC, can accurately describe the performance of 
the model. 

Figure 18 is the ROC of the AutoEncoder model in test set 1. Figure 19 is the ROC of 
the GRU-AE model in test set 1. Figure 20 is the ROC of the AutoEncoder model in test 
set 2. Figure 21 is the ROC of the GRU-AE model in test set 2. The abscissa of the figure is 
FPR, and the ordinate is TPR. 

0

5

10

15

20

25

30

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

53
0

55
3

57
6

59
9

62
2

64
5

66
8

lo
ss

 va
lu

e

GRU-AE AutoEncoder

0

5

10

15

20

25

30

35

1 24 47 70 93 11
6

13
9

16
2

18
5

20
8

23
1

25
4

27
7

30
0

32
3

34
6

36
9

39
2

41
5

43
8

46
1

48
4

50
7

53
0

55
3

57
6

59
9

62
2

64
5

66
8

lo
ss

 va
lu

e

GRU-AE AutoEncode

Figure 17. Comparison of the loss value changes of the two models in test set 2.
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Figure 18. ROC of AutoEncoder in test set 1.
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Figure 19. ROC of GRU-AE in test set 1.
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Figure 20. ROC of AutoEncoder in test set 2.
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Figure 21. ROC of GRU-AE in test set 2.

5.3. Statistical Analysis

MAE and RMSE were calculated with the data collected from 2000 subjects. The result
of RMSE/MAE was 1.03. The errors of data in this paper are of the same magnitude.

The monitoring accuracy of health issues is an important indicator. The accuracies of
health issues and the overall accuracies are shown in Table 2.

Table 2. Comparison of monitoring accuracy.

GRE-AE AutoEncoder

accuracy of health issues 94.8% 80.1%
overall accuracy 96.2% 86.7%

The results in Table 2 show that in 2000 subjects, the total number of subjects with
healthy and unhealthy status accurately monitored by us was 1924. Among 613 unhealthy
subjects, the number we accurately monitored is 581. The two monitoring results were
much better than the comparison method. For remote health monitoring based on biomed-
ical signal data obtained by portable wearable devices, the method proposed in this paper
displayed high performance. Furthermore, AUCs for the 2000 subjects were calculated
for the two models, respectively, according to the above evaluation process. Then the
AUCs were averaged out. According to the AUCs, the corresponding threshold value was
obtained. Figure 22 shows the results of AUC. It is found that the AUC of the GRU-AE
model in this paper is 0.95, while that for the traditional AutoEncoder model is only 0.82.
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Figure 22. Comparison of AUC.

Some existing methods based on deep learning have been widely used in the field
of telemedicine [41,42]. In reference [42], they used the medical Korea National Health
and Nutrition Examination Survey context data to verify the performance of the CNN-
based regular pattern mining model. Although our experimental data did not come from
hospitals and other medical institutions, we recorded the biomedical signals of 2000 subjects
in 24 weeks of normal life. This is consistent with the telemedical monitoring services
provided by various medical institutions. Through the health monitoring experiment, we
can infer that the proposed method can be effectively applied to remote health monitoring
in telemedicine. If relying on more professional medical monitoring equipment, our
monitoring framework and core methods will achieve higher monitoring accuracy under
telemedicine scenarios.

5.4. Discussion

Summing up, the results show that our proposed GRU-AE deep learning model
is able to deal with the issues raised in former studies which are a lack of time series
data processing capability and the inability of the fusion analysis of multi-dimensional
signal data. As we all know, health monitoring is a complex task. To further improve the
accuracy of monitoring results, in addition to improving the existing monitoring model,
it is also necessary to incorporate the characteristics of the data and comprehensively
analyze the multi-dimensional data from both the horizontal and vertical perspectives.
In fact, biomedical data have different time series features and characteristics in healthy
and unhealthy states. The time series data are also interconnected within certain context,
which needs to be effectively processed, that is, from a vertical perspective. In addition,
there is also a certain internal relationship between different biomedical signals (based on
a biological perspective), and multi-dimensional biomedical signal data need to be fused
and analyzed from a horizontal perspective.

In our remote biomedical signal monitoring framework, we deployed IoT devices, 5G
communications and a novel GRU-AE deep learning model to enable the process of time
series data and the fusion analysis of the multi-dimensional data. In order to benchmark the
performance (the ability to solve the above issues) of our proposed model, we introduced
health issues’ overall accuracy and AUC metrics. Meanwhile we introduced the ratio of
RMSE to MAE to diagnose the variation in the errors in a set of forecasts. Compared with
the traditional AutoEncoder model, shown in Table 2, the monitoring accuracy of health
issues was increased by 18.4% and the overall accuracy was increased by 11%. In analyzing
the performance on AUC metric, the results in Figure 22 indicate that the GRU-AE was
superior to the traditional AutoEncoder model (i.e., AUC increased by 15.9%). These results
reveal that our proposed model significantly improves the accuracy of health monitoring.
The increment in accuracy also indicates a better precision in health issue judgement. It



Int. J. Environ. Res. Public Health 2021, 18, 9037 21 of 23

can be seen that the improvement of monitoring accuracy can benefit from combining the
effective analysis of time series data and multi-dimensional data fusion analysis.

Compared to existing studies, such as the studies of [12,19,22], reference [12] used
an IoT-based health monitoring platform to track heart rate and body temperature, and
sent email/SMS warnings when these readings were higher than the main value, and
no biomedical fusion analysis was implemented. In reference [19], they extracted the
time series data of various biological signals separately, and then used CNN to perform
abnormality detections separately. No fusion analysis of multi-dimensional signals was
considered. In reference [22], they used the MDCA method to fuse a variety of biological
signals. However, they did not perform pre/post-correlation analysis based on time series
in achieving health monitoring. Our proposed model not only evaluates health from multi-
dimensional biomedical signals, but also combines time-series features to realize intelligent
monitoring As a consequence, our model achieves more accurate and efficient intelligent
health monitoring. The proposed framework uses IoT devices to collect data, while trans-
mitting data based on the 5G network causes latency in data transmission which is not
accepted in real-time monitoring applications. In addition, the GRU-AE model proposed
in this paper uses GRU units to increase the model’s time series sensitivity, using the AE
model to process multi-dimensional biomedical signals and achieve abnormal monitoring.
On this basis, the time-related parameters in the model and the fully connected output
layer are further optimized, thereby improving the accuracy of the monitoring results. It is
especially suitable for the intelligent monitoring of biomedical signals such as body temper-
ature in the COVID-19 pandemic. However, for realizing the application of the framework
in different scenarios (e.g., cardiovascular diseases monitoring using ultrasound images),
our framework is not suitable for health monitoring of biomedical images. Therefore,
a fully fledged remote biomedical signal monitoring framework can process biomedical
signal data with different structures, especially with the ability to process unstructured data
such as image data. Common image data include ECG, ultrasound images, and so on. We
can introduce deep learning models such as AlexNet, VGG19, GoogleNet, and ResNet [43]
to process this type of data, and perform fusion analysis with structured biomedical signal
data. We believe that after improvements, the health monitoring function will be more
systematic and perfect, and applied to more fields.

6. Conclusions

This paper proposes a biomedical signal monitoring framework based on deep learn-
ing in combination with the IoT, 5G communication, and artificial intelligence technique.
The main contributions are summarized as follows:

1. A biomedical signal monitoring framework based on deep learning is proposed. It
can collect, transmit and intelligently analyze multi-dimensional biomedical signals
in real time to realize remote health intelligent monitoring.

2. A GRU-AE biomedical signal monitoring model is proposed, which addresses the
time series biomedical signals data to realize personalized intelligent analysis.

3. The experimental platform of biomedical signal monitoring framework based on deep
learning is built. The experiment collected the biomedical signal data of 2000 subjects,
and successfully realized remote health monitoring. The experimental results show
that GRU-AE outperforms the traditional AutoEncoder model.

Considering the COVID-19 pandemic scenario, remote health monitoring can obtain
and analyze human body temperature or other biomedical signals while avoiding direct
body contact. Furthermore, it can reduce the risk of transmission and labor costs, and
improve monitoring efficiency and accuracy. In future work, this framework will be applied
to remote health monitoring of the COVID-19 pandemic, such as quarantining people. In
addition, the framework can also carry out intelligent remote health monitoring for the
elderly and those in a recovery period.
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