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Abstract: We report the use of bacteriophages for control of Salmonella Enteritidis in poultry produc-
tion. Phage was isolated by the double-agar plate assay from agricultural waste samples, and one
isolate, named SM1, was selected and propagated for application in poultry litter. Two experimental
protocols were tested: single treatment and repeated treatment (re-application of phage SM1 after
6 h and 12 h). Each treatment cycle involved 25 g of poultry litter placed in plastic boxes and
contaminated with 10° Colony Forming Units mL.~! (CFU mL~1) of S. Enteritidis, in independent
duplicates. The contaminated litter was treated with 10° Plaque Forming Units mL.~! (PFU mL 1)
of SM1 phage by dripping. Repeated application of phage SM1 reduced Salmonella counts by over
99.9%; the phage persisted in poultry litter for over 35 days. This study illustrates the application
of SM1 treatment as a promising technology for bacterial control in production matrices that could
allow safe and sustainable use of agricultural waste products as biofertilizers.

Keywords: environmental management; food safety; bacteriophage isolation; Salmonella; foodborne
pathogen control

1. Introduction

The sustained acceleration of population growth worldwide, modern lifestyles, and
eating habits have intensified human contact with animals and animal food-derived prod-
ucts, increasing the risk of the human population being infected by foodborne pathogens [1,2].
More than 70% of emerging and re-emerging diseases have zoonotic origin, and these dis-
eases cause about a million deaths per year and about a billion cases of human and animal
illness worldwide [3-5]. Some of the feeding and confinement methods used, and the
lack of disease-control protocols, contribute to the persistence and spread of zoonosis [6].
An aggravating factor is the increasing prevalence of bacterial antibiotic resistance, now
a global concern for human and animal health [7]. The inappropriate and extensive use
of antimicrobials in agriculture, associated with the livestock environment, promote the
spread of multi-drug resistant bacteria [8,9].
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Various species of Enterobacteriaceae family are major foodborne pathogens. They are
resilient and can survive in diverse conditions, e.g., a wide range of pH and temperature,
and consequently are present in numerous ecological niches [10,11]. The Enterobacteri-
aceae group includes over 50 genera and 210 species, some of which are of particular
public health concern as they are the main zoonotic pathogens associated with chronic and
acute gastrointestinal disease; the Salmonella genus causes a large number of infections,
for example 46,623 reported cases of salmonellosis in 2016 in the USA, and 87,923 cases in
2019 in Europe [12,13]. Salmonella spp. are also threatening global animal production [13].
Animals can be infected by bacteria from various sources, including insect vectors, contam-
inated food, or during traveling and trade; early detection could reduce economic losses,
especially in asymptomatic cases [14].

Several different approaches to preventing bacterial contamination have been pro-
posed, aiming to reduce environmental contaminations and promote animal health. Since
the discovery of viruses that are able to infect bacteria, known as bacteriophages or phages,
they have been applied successfully for various bacterial control purposes [15,16].

One of these applications is the use of phage for food sanitization. Indeed, phage
is being increasingly used in the food production chain for food products, such as meat
and vegetables [17-20]. Phage is potentially of value for environmental purposes, for both
bacterial control and as indicators of processing efficiency [21,22]. Phages have various
properties favorable for their application in the environment: they have self-regulating
activity, low toxicity to eukaryotic cells, and cannot regenerate the host target due to bacte-
rial lysis [23-25]. The One Health approach emphasizes the connection between animal,
environmental, and human health, aiming to reduce the problems that affect the system
at all levels [26]. The One Health strategy considers the multifactorial and multisectoral
aspects of the spread of antimicrobial resistance and promotes control through different
actions. The research for alternative tools to decrease the use of antibiotic drugs is therefore
important [27]. Here, we report a study of the stability and control of Salmonella enterica
serovar Enteritidis in poultry litter by application of a lytic bacteriophage isolated from
swine manure.

2. Materials and Methods
2.1. Environmental Sampling and Bacteriophage Isolation

Five liters of swine manure were collected from livestock farms in the West Region of
Santa Catarina, Brazil, one of the major meat production zones in Brazil. Manure samples
were stored at 4 °C until bacteriophage isolation. Bacteriophages were isolated from
samples according to ISO 10705-1:1995 [28], using Salmonella enterica serovar Typhimurium
(ATCC® 14028™) as host. Briefly, swine manure samples were diluted in PBS (phosphate
buffer, pH 7.0), and then filtered through 0.22 um cellulose filters; 1 mL of the filtrate
was mixed with 1 mL of log-phase S. Typhimurium culture (Optical Density 0.6) and the
samples were each added to 1 mL of solid BHI-agar (1.2% liquid at 50 °C). The solution
was incubated at 37 °C for 12-16 h to allow the appearance of plaques.

2.1.1. Bacteriophage Propagation and Selection

The plate containing different phage plaque profiles was picked, segregated in sterile
tube and mixed with 5 mL of SM buffer (50 mM Tris HCI, pH 7.4; 0.1 M NaCl; 8 mM MgSOy;
pH 7.5), incubated on a rocker at 4 °C for 12 h, and then eluted by centrifugation (10,000 x g
for 5min at 4 °C). Then, 1 mL of the filtered eluate was added to 25 mL of LB (Luria Bertani)
medium with 1 mL of S. e. Typhimurium (0.6 OD) as the host. The infection was performed
during 18h for bacteriophage propagation. After three rounds of propagation, the phage
titer was determined and expressed in plaque forming units (PFU). After this, the isolated
bacteriophages were evaluated as the lyse capacity and the natural titer increasing capacity
until 18 h. Among the five different PFU profiles, according to size and shape, one isolated
denominated phage SM1 was quantified (1.8 x 107 PFU mL™!), propagated and used for
bacterial control experiments being applied in contaminated poultry litter.
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2.1.2. Molecular Identification of the Bacteriophages

For the molecular identification of phage SM1, the culture medium solution (LB)
containing the phage was filtered through a cellulose filter (0.22 um) and then the viral
nucleic acid was extracted with the commercial kit PureLink Viral RNA/DNA (Invitrogen-
Life Technologies). Then the extracted genetic material was sent to Neoprospecta Inc.,
Florianépolis, Brazil, for the sequencing via MiSeq—Illumina, and analysis of the generated
data. The assembly of genomes and searching in databases was performed by trimming
the raw data with Prinseq and the search for families and viral species with specificity for
bacteria was done using the Kaiju taxonomic classification program, with RefSeq as the
sequence bank.

2.2. Poultry Litter and Eggshell Additive

Poultry litter were collected in six different poultry farms distributed in the West Re-
gion of Santa Catarina, Brazil. The poultry litter samples were homogenized, and random
samplings were performed in duplicates for their use in the treatment tests. A second
collection was carried out to obtain built up poultry litter, used during different broiler
flocks (one flock correspond to a poultry production cycle, that lasts about 4045 days, with
addition of 5% of limestone at its end). Poultry litter from 1, 3, 6, and 9 flocks were used
to test SM1 efficiency against S. e. Enteritidis, as well to test the SM1 stability in function
of time.

Eggshells residues were used as alternative carbon source additive to poultry litter
from 9 flocks. For this, eggshells were collected from agriculture chain production, dried at
280 °C and mills in sizes of 300 uM, being then added at 10% v/v at poultry litter for tests.

Poultry litter were known negative for Salmonella spp., and were artificially contami-
nated with S. e. Enteritidis wild type (isolated from contaminated poultry litter samples
as ISO 6579-1: 2017, identified using the commercial Painel G (Porobac) and propagated
in LB medium) [29]. All poultry litter were evaluated according to its physicochemical
characteristics, considering total, fixed, and volatile solids content, pH, and ammoniacal
nitrogen (NH3-N), according to APHA, 2012 [30].

2.3. Stability of Phage SM1 in Poultry Litter

The stability of phage SM1 was evaluated on built up poultry litter, considering litter
of 1, 3, 6, and 9 flocks. In addition, poultry litter from 9 flocks was added with 10% v/v
eggshells for carbonating purpose. For this, 100 £ 0.05 g (Gehaka AG-200 Analytical
balance-10 mg—199.999 g) of each poultry litter samples were placed in sterile plastic
recipients (forming a 1 cm layer), in duplicates. All poultry litter were tested for the
assurance of no Salmonella spp. Then, the litter were inoculated with 10 mL of the solution
containing 3 x 107 PFU mL~! of SM1. The stability of the phage was assessed by means
of the PFU counting, using the double-agar plate test according to ISO 10705-1: 1995, for
35 days [29].

2.4. S. e. Enteritidis Inactivation in Poultry Litter Using Phage SM1

On the S. e. Enteritidis inactivation test, for each treatment, 25 g &= 0.05 g of poultry
litter (free of Salmonella spp.) were weighed in a Gehaka AG-200 Analytical balance-10 mg-
199.999 g. The poultry litter was placed in boxes to form a 1 cm layer, artificially contam-
inated by dripping with 2,5 mL of S. e. Enteritidis solution, containing 1 x 106 colonies
forming units (CFU mL '), in duplicates. After 1 h at 25 °C for acclimation, the poultry
litter were treated by dripping 10 mL of the phage SM1 solution, with the viral title of
1.8 x 10° PFU mL~!. The controls of the experiment were poultry litter without S. e. En-
teritidis inoculation (phage control) and poultry litters with S. e. Enteritidis inoculation
without phage SM1 application (bacterial control).

For S. e. Enteritidis and SM1 phage enumeration from poultry litter, 1 + 0.01 g of
samples (weighed on a Shimadzu AUW220D-1 mg-220 g analytical balance) was randomly
collected with a sterile spatula to be evaluated as a function of treatment time of poultry
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litter, considering samples treated with Phage SM1 and control of the tests). S. e. Enteritidis
concentration was determined using the XLD agar (Xylose, Lysine Deoxycholate agar—
Kasvi), as selective and differential medium on 1:10 and 1:100 dilutions, after 24 h and 48 h
of incubation in a bacteriological incubator at 37 °C, according to ISO 6579-1: 2017 [29]. The
phage SM1 in experiment were enumerated by the double-layer agar overlay method, in
function of the time, using S. e. Typhimurium as the host. The PFU plates were incubated
in a bacteriological incubator at 37 °C until 6 h, and the PFU were enumerated (Figure 1).

Phage SM1 control ]
1) Treatment
= R p——— 105 PFUmL"
SR T R A R i i ippi
tom [ PR \gﬁiﬁ-‘y ,I’i; Phage SM1 Phage SM1 inoculation br dripping
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Figure 1. Scheme of the experimental system, with the treatments and controls.

2.5. Phage SM1 Re-Treatment of Poultry Little

A re-treatment assay was performed using low bacterial concentration (3.0 x 103 CFU/mL 1)
due to the resurgence of the bacterial colonies after the first phage SM1 treatment. For
this purpose, a second dose of phage SM1 was added 6h after the first SM1 application by
dripping (10 mL of the Phage SM1 solution, 1.8 X 10® PFU mL 1), as shown in Figure 1.
The bacteriophage and bacterial quantification along the time were performed as described
previously on item 2.5.

2.6. Statistical Analysis

A linear regression test was applied to evaluate the behavior of phage SM1 and S.
e. Enteritidis reduction on poultry litter in function of the time (h). ANOVA tests were
performed to compare the groups—treated with phage and untreated. The T test was used
for physicochemical parameters analyses between the different flocks, treated with phage
and untreated. All tests were performed in the software Prism 6 (GraphPad, San Diego,
CA, USA), and significant differences were considered when p > 0.05.

3. Results and Discussion
3.1. Bacteriophage Isolation, Propagation and Selection

The isolation process resulted in five distinguished plaque profiles, amongst which
after three replication rounds, one was selected. This phage was denominated SM1 due
to its isolation from a swine manure sample. It is important to consider that swine ma-
nure possesses a rich microbial composition. This approach demonstrates the integrated
agriculture concept, using organisms and/or molecules from the husbandry environment
as a way of waste valorization within the production chain. Phage SM1 titter was quan-
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tified in 1.8 x 10 PFU mL~! and aliquots were prepared for application and storage on
—80 °C freezer.

3.2. Molecular Identification of Bacteriophage

The molecular identification of the phage SM1 showed its taxonomic classification as
part of the Caudovirales order, Siphoviridae family (GenBank number 2478666). The genetic
analyses enabled the phage SM1 host range identification, endorsing its classification as a
Salmonella virus, or F-specific phage. In addition, any integrase sequences were found,
reassuring the phage SM1 lytic profile.

3.3. Stability of Phage SM1 in Poultry Litter

In order to investigate the long-term permanence of phage SM1 in poultry litter, phage
titration was monitored for a period of 35 days, considering built up poultry litter from
1, 3, 6, and 9 flocks of poultry production, and thus poultry litter from 9 flocks added
with eggshell as alternative alkalinizing treatment (Figure 2). The SM1 in poultry litter
from 9 flocks added with 10% of eggshell showed a subtle decay after 20 days of the test.
However, there were no significant differences of SM1 stability among the poultry litter
flocks treatments (p > 0.05).

108
107
— 1063
e L
> I
S 105
g
£ 0 - 1 Flock
e 3 Flocks
103
6 Flocks

-+ 9 Flocks
—— 9 Cycles + Eggshell

102

101 T T T T T T T 1
0 5 10 15 20 25 30 35

Time (days)

Figure 2. Phage titer over the time after application of phage SM1 in poultry litter with different
built-up levels and the addition of an alternative carbonate (eggshell).

In addition, the physicochemical characterization of the poultry litter after the phage
SM1 application is presented in Table 1. There were no significant differences among
treatments (p > 0.05).

Table 1. Physico-chemical characterization of poultry litter before and 35 days after phage SM1 application.

Samples pH gf;;ll\i TS (gkg~1) VS (gkg™1) N (mg kg—1) P (mg kg—1) K (mg kg—1)

1 Flock poultry litter 8.16 £ 0.06 1687 £ 8 892.08 + 1.46 748.51 + 3.01 34,450 + 228 21,316 + 220 10,183 + 78

3 Flocks poultry litter 7.73 £0.04 1711 £ 45 890.72 + 23.55 691.04 £19.18 36,054 + 140 22,601 + 230 11,672 £57

6 Flocks poultry litter 8.43 £ 0.04 2091 £ 20 866.69 + 10.89 678.53 + 35.83 35,963 £ 178 23,670 £195 11,757 £+ 38

9 Flocks poultry litter 8.61 £0.13 3545 + 158 880.02 + 0.14 652.48 + 2.65 28,883 £ 120 27,992 + 165 14,279 +46

1 Flock poultry litter + SM1 8.38 £0.11 2468 + 18 892.17 + 1.95 626.13 + 13.80 32,906 £ 200 23,700 +£ 209 12,026 +29
3 Flocks poultry litter + SM1 7.724+ 0.01 2274 + 65 884.57 + 6.44 719.68 + 15.40 38,383 £ 190 21,641 + 187 12,060 + 69
6 Flocks poultry litter + SM1 7.79 £0.07 1887 + 124 895.16 + 1.33 751.26 + 4.64 35471 £179 18,878 + 267 10,718 + 58
9 Flocks poultry litter + SM1 8.88+ 0.01 3838 £ 165 885.71 + 0.58 636.95 + 16.03 24,096 £ 250 25,349 + 278 15,127 + 110
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3.4. S. Enteritidis Inactivation in Poultry Litter Using Phage SM1

The poultry litter used was tested before the addition of phage SM1 and did not contain
bacteriophages capable of infecting S. enterica serovar Enteritidis. Thus, the bactericidal
effects observed were due to phage SM1. Numerous studies have already shown that
phages can be used effectively for Salmonella spp. control in poultry, although in most of
these studies, administration is through drinking water; and some use phage directly for
meat sanitization [18-20]. Other phage applications for Salmonella spp. control in foods,
such as vegetables and juices, indicated the potential of phages as options to reduce the use
of chemical additives in the control of food bacteria [17,19,31]. Our study demonstrates
that SM1 phage treatment is effective against S. enterica in contaminated poultry litter. S.
Enteritidis counts fell by 3logg following phage SM1 applications. However, we followed
S. Enteritidis in the treated poultry litter for 12 h—three-phase of bacteria behavior was
observed, one with significant reduction of bacteria (3 £ 0.3 logjg reduction), between 2 h
and 6 h after treatment (p = 0.0016), one of regrowth phase (1.5 & 0.2 log increase) between
67 h after the phage application and, one new bacterial control (3 &+ 0.3 logjg reduction)
between 8-12 h after treatment. All experiments were run with untreated samples (without
phage SM1 inoculation) as controls (Figure 3).

Positive control

Treated with phage SM1

Controling phase

sl Regrowth phase

CFU/g™ (log4o)

Time (hours)

Figure 3. S. e. Enteritidis colonies counting after phage SM1 application on poultry litter. The
three-phase behavior of the bacterial count after a single phage use shows the S. e. Enteritidis
regrowth potential.

Bacterial regrowth is a problem even for antibiotic treatments and may require subse-
quent doses. Populations of some bacterial species, including S. enterica serovar Enteritidis,
present persistent cells, which may be a cause of antibiotic failure. Indeed, repeated antibi-
otic administration favors selection of resistance, and this may result in lack of success of
the drug treatment [32-34]. One of the determining factors for interaction between phage
and bacteria is bacterial motility, so infection of the bacteria by phage may be hampered in
drier conditions such as those in poultry litter (45 £ 10%) [35-37].

3.5. Phage SM1 Re-Treatment of Poultry Litter

Due to the observation of the S. e. Enteritidis colonies regrowth, a new experimental
set was performed, with the reapplication of the initial dose (1.8 x 10° PFU mL™!) of the
phage SM1, 6 h after its first application. In this experiment, the untreated control showed
the same S. e. Enteritidis regrowth behavior, with a reduction of 3 £ 0.1 log;o followed by
an increase of 2 & 0.3 logyg in the bacterial count. However, the second application of the
phage SM1 was able to avoid the resurgence of S. e. Enteritidis colonies, which reached an
undetectable value (p = 0.0043). Thus, the reapplication of the phage was able to maintain
the reduction of 3logjo reached 6 h after the first contact with the poultry litter (Figure 4).
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c"e =¥ Positive control
o -8— Treated with phage SM1
] First application
§ Second application
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[TH
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'1 |.-' T T T T 1

0 4 8 12 16 20

Time (hours)

Figure 4. Efficacy of two sequent applications of phage SM1 for S. e. Enteritidis reduction on poultry
litter. The positive S. e. Enteritidis control is presented by triangles, indicating the S. e. Enteritidis
colonies enumeration on poultry litter without phage SM1 addition.

The Salmonella population dynamics described above show the importance of high
bacteriophage titers for effectiveness. The multiplicity of infection used in this study was
10 phage particles for each bacterial cell (MOI 10:1). A single phage application did not
prevent regrowth, although re-application 6h after the first treatment did (3logj reduction).
Similarly, Ahmadi et al. reported that administration of bacteriophages (10° PFU/mL 1)
on 3 consecutive days were able to eliminate S. Enteritidis [37]. The protective effects of
phage against S. Enteritidis and S. Typhimurium have also been reported in analyses of
their combined action with probiotics or when added to poultry food [38—40]. On the other
hand, the environmental survival of the phage must be accessed because it depends on the
nature of the virus itself, being influenced by the surrounding conditions, such as the pH,
sunlight, ionic strength, or temperature [41].

Phages, such as phage SM1, could be useful for maintaining a healthier environment
for livestock, because used poultry litter tends to be contaminated with Salmonella spp., and
these pathogens can persist 6 months or more in soils amended with this residue [42,43].
Such persistent bacterial contaminations hamper implementation of integrated agriculture,
as reflected by the One Health Approach: clearly, it is unsafe to grow food in contaminated
environments. Fortunately, the advent of phage-based techniques is promising to combat
antimicrobial resistance, and could also contribute to the safety of using poultry litter and
other agricultural waste products. This use would be beneficial for nutrient recovery and
could consequently have economic benefits in the production chain, reducing the use of
chemical fertilizers, while decreasing the use of antimicrobial drugs in animal husbandry.

4. Conclusions

We report the application of SM1 phage to poultry litter to reduce the prevalence of
Salmonella in poultry production environments (poultry litter). Our study contributes to
the progress towards the use of bacteriophage in the agro-food sector: in particular it may
be possible to convert agricultural animal waste, in this case poultry litter, into a useful
and safe product (fertilizers), and thereby improve recycling of nutrients in the context of a
circular economy:.
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