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Abstract: The Chinese government has made great efforts to improve the scale efficiency of land
through various measures during recent years, hoping to realize the coordinated developing goal of
promoting agricultural benefits and protecting the environment. Statistics show that China’s land
scale efficiency has steadily increased, but agricultural nonpoint source (NPS) pollution has also
increased, which seems contrary to the expected outcome. Can increasing scale efficiency really curb
agricultural NPS pollution? This study uses provincial-level data from China, together with a panel
model and spatial econometric model, to investigate the relationship between scale efficiency and
agricultural NPS pollution. It is found that the increase of scale efficiency aggravates the agricultural
NPS pollution, and the conclusion still holds after considering spatial effect. The results of spatial
analysis shows that the agricultural NPS pollution is spatially dependent. Further decomposition
of the spatial effect shows that the scale efficiency not only intensifies the local agricultural NPS
pollution, but also has a spillover effect (though not statistically significant) on agricultural NPS
pollution in the surrounding areas. It is worth noting that financial policy, raising wage income and
upgrading industrial structure can effectively curb agricultural NPS pollution in this region and
adjacent areas, which also deserves our attention in the control of agricultural NPS pollution. In
addition, it is necessary to make financial and fiscal support policies specifically for the governance of
agricultural NPS pollution, adjust the distorted prices of input factors such as chemicals and pesticide,
and accelerate the transformation of small-sized farmers to family farms, in order to maximize the
inhibitory effect of scale efficiency on relieving agricultural NPS pollution.

Keywords: scale efficiency; agricultural NPS pollution; spatial effect; China

1. Introduction

Many developing countries are faced with low production efficiency and serious
environmental pollution. In order to improve sustainable development in agriculture,
many governments in developing countries have proposed to transform and upgrade
their agricultural systems. For example, the Chinese government has proposed achieving
high-quality development in agriculture many times, and the core content of high-quality
development is to increase total factor productivity (TFP). TFP includes pure technical
efficiency, scale efficiency and technological progress, among which scale efficiency is
repeatedly mentioned in policy level and highly promoted in practice. The Chinese
government has introduced a series of policies to encourage the farmers to expand the
cultivated area, purchase trusteeship of agricultural production and participate in contract
agriculture, increasing the scale efficiency steadily.

There are many ways to improve scale efficiency, and good results have been achieved
in agricultural production practice. In China, the most common ways to increase scale
efficiency are mainly divided into two categories. One type is driven by the transformation
of land, such as encouraging farmers to transfer their land to large professional family farm

Int. J. Environ. Res. Public Health 2021, 18, 8798. https://doi.org/10.3390/ijerph18168798 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-1666-7964
https://doi.org/10.3390/ijerph18168798
https://doi.org/10.3390/ijerph18168798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18168798
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18168798?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 8798 2 of 17

and cooperatives. The other type is the agricultural production trusteeship, which provides
farmers with the agricultural production service to realize the scale management at the level
of service. In addition, there is also the rapid development of contract-driven agriculture.
Relying on agricultural cooperatives, family farms and enterprises, adopting a pattern
of integrating cooperative, production and farmers can expand contracted agricultural
area. By the end of 2018, China’s land transfer rate reached 37%. In 2019, the country’s
area of agricultural production trusteeships exceeded 100 million ha, serving an area of
573 million ha of food crops, and organizations of trusteeships reached 440,000. All these
have promoted the improvement of agricultural scale efficiency, and played a positive role
in expanding agricultural production efficiency, promoting farmers’ income increase and
agricultural modernization.

At the same time, the improvement of scale efficiency brings some challenges and
risks to the development of agriculture. Some agricultural operating entities blindly pursue
expanding the planting area, ignoring scale efficiency, resulting in a waste of land resources
and reduction of income. In addition, due to the expansion of farmers’ planting scale, the
labor input under the traditional smallholder intensive farming production mode can no
longer match the current land element level. What is more, urbanization has led to the
outflow of rural labor. Farmers often adopt machinery and increase the input of chemicals
to make up for the shortage of labor. The excessive use of agricultural machinery, especially
chemical fertilizers and pesticides, has caused problems such as rising production costs and
destruction of the ecological environment. Among these problems, agricultural nonpoint
source (NPS) pollution is particularly prominent, which has serious consequences if not
effectively controlled. Agricultural NPS pollution accounts for approximately 12 per cent
of degraded land worldwide [1]. Therefore, it is of practical and theoretical significance to
pay attention to the impact of scale efficiency on agricultural NPS pollution.

There are controversies about the relationship between scale efficiency and agricultural
NPS pollution. On the one hand, increasing scale efficiency can curb agricultural NPS
pollution [2–4]. The improvement of scale efficiency means that the allocation of production
elements such as land, capital and labor inputs are more reasonable. The transformation of
production pattern to green and modern will be promoted, which will reduce agricultural
NPS pollution to a certain extent. For example, the trusteeship of agricultural production
contributes to the reduced use of chemical fertilizers in China [5]. Through trusteeship of
agricultural production, farmers can enjoy scientific and professional services provided by
relevant agencies, including unified prevention and control, soil testing and formulated
fertilization, and unified recycling of agricultural film, thereby reducing agricultural NPS
pollution. On the other hand, scale efficiency may aggravate agricultural NPS pollution.
The improvement of scale efficiency requires farmers to increase capital investment, such
as renting land and purchasing trusteeship of agricultural production. In order to recover
costs and obtain profits as soon as possible, farmers are very easy to adopt short-sighted
production behaviors to raise yield, such as increasing the input of fertilizers and pesticides.
Studies in Ethiopia and Ghana have also shown that trusteeship of agricultural production
increases the intensity of fertilizer use [6–8]. What is more, excessive use of fertilizers and
pesticides is the most important driver of agricultural NPS pollution in China [9,10]. Can
the improvement of scale efficiency inhibit agricultural NPS pollution in China? Does
agricultural NPS pollution show a spatial effect? This study attempts to answer the above
questions.

The main contributions of this study are as follows: (1) This study analyzes the
relationship between scale and agricultural NPS pollution from the efficiency level. In
previous studies, when discussing the relationship between the above, planting land scale
or service scale was often used. However, expanding scale does not mean improving
the efficiency of resource allocation. Scale efficiency can be closer to the actual and core
connotation of agricultural production, and it is more accurate and representative. (2)
Existing studies mostly regard different research areas as independent individuals, ignoring
the spatial spillover possibility of agricultural NPS pollution. This study considers the
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spatial correlation and interaction characteristics of agricultural NPS pollution among
provinces, and uses spatial econometric models to test and estimate its spatial effects.

The other parts of this study are as follows: The second part reviews the relevant
literature; the third part is the research method; the fourth part includes variables and data;
the fifth part is the results and discussion; the sixth part is a summary of the full text.

2. Literature Review

The concept of nonpoint source pollution originated from the Clean Water Act (CWA)
amendment in the United States. Although the concept of NPS pollution was put forward
earlier in the world, it was not until the 1960s that comprehensive understanding and
research were carried out successively [11]. With the continuous advancement of research,
the definition of agricultural NPS pollution is gradually improved and clear. From the
perspective of agricultural production, agricultural NPS pollution refers to the water
environment pollution formed by the surface runoff from farmland and the leakage of
nutrients such as nitrogen and phosphorus, pesticides, and other pollutants in agricultural
production activities [12]. Based on the analysis of the formation process of agricultural
NPS pollution, it means that dissolved pollutants and solid pollutants from non-specific
locations are absorbed into the receiving water body through runoff process under the
scouring action of precipitation or melting snow [13].

Agricultural NPS pollution is the negative environmental output of the agricultural
production system, which has the characteristics of large randomness in the formation
process, many influencing factors, wide distribution, long latent period and great harm. If
left untreated, it will have many undesirable consequences for the natural environment and
economic development, such as polluting the water environment and soil, endangering
the quality and safety of food, and declining economic returns. By the end of the twentieth
century, about 30% to 50% of surface water or water bodies worldwide had been affected
by NPS pollution [14]. The survey results of the Ministry of Health of China showed that
in the first quarter of 2004, the rate of high-toxicity and high-residue banned pesticides in
leafy vegetables nationwide was still 10.5%, and more than 90% of the food on the table of
urban residents had been directly or indirectly contaminated. Therefore, it is particularly
urgent and important to control agricultural NPS pollution.

To combat agricultural NPS pollution, governments around the world have adopted
a combination of legal, economic, technological and voluntary public participation mea-
sures. Regulatory means are one of the most effective measures against agricultural NPS
pollution in various countries. The United States first stipulated the treatment of NPS
pollution in the Clean Water Act of 1972. The Federal Water Pollution Control Act (FWCA)
proposed sustainable agricultural practices (SAPs). SAPs are environmental management
strategies that take scientific measures to reduce pollution when maximized crop output
is obtained. At the economic level, “Pigou means” and “Coase means” are mainly used
to control it. Taxes, subsidies, administrative intervention and so on constitute the main
content of “Pigou means.” Previous studies have proposed improving management of
agricultural NPS pollution by means of tax policy, subsidy policy and administrative
intervention [15–17]. Tools such as sewage charges and carbon emission rights trading
constitute the main content of the “Coase means.” Horan and Shortle conducted a quantita-
tive study on emissions trading between NPS pollution and point source pollution [18]. In
terms of technical control measures, the adoption of alternative technologies with low cost
and strong operability plays a positive role in the treatment of agricultural NPS pollution.
The United States encourages farmers to adopt environmentally friendly techniques in their
agricultural practices, such as soil testing, crop rotation, riparian buffers and vegetation
filters. The EU promotes ecological agricultural technology and bans the use of chemical
fertilizers and pesticides in agricultural production. At the level of public participation, the
public is encouraged to take the initiative to participate in various environmental actions.
Practice has proved that public participation in environmental management is a flexible
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and effective control measure, which can play an auxiliary role in the implementation of
other control measures [13].

In order to deal with agricultural NPS pollution more effectively, it is necessary
to identify the sources of NPS pollution and the factors controlling NPS pollution.
There are factors controlling agricultural NPS pollution, at both macro and micro level
scales. At the macro level, factors such as market, FinTech, economic development level,
agricultural land endowment and subsidy policies cannot be ignored. Labor market
and fertilizer price policies affect the level of fertilizer application, which has an effect
on agricultural NPS pollution emissions [19,20]. Jiang et al. conducted research from
a technical perspective, and believed that FinTech development can curb agricultural
NPS pollution [21]. Schreinemachers and Tipraqsa studied the influence mechanism of
agricultural land endowment on agricultural NPS pollution, and found that abundant
agricultural land endowment helps to reduce the intensity of chemical fertilizer input,
thus reducing NPS pollution [22]. Kurkalova et al. found that financial incentives,
such as paying extra insurance fees for farmers, can promote farmers to take protective
farmland protection measures, thus helping to reduce agricultural NPS pollution [23]. At
the micro level, agricultural NPS pollution is affected by the education level of farmers,
family income, land scale, difficulty in obtaining environmental protection technology,
agricultural production experience, awareness of pollution, agricultural technology
training and agricultural cooperation pattern [24–26].

There are three viewpoints on the relationship between scale efficiency and agricultural
NPS pollution. The first is that scale can effectively curb the level of agricultural NPS
pollution. A large number of studies based on China have shown that there is a negative
correlation between scale and agricultural NPS pollution [2,27,28]. The second is that the
improvement of scale efficiency will aggravate the degree of agricultural NPS pollution [3].
Similar findings have been found in studies of other developing countries [29–31]. What
is more, other studies have found that there is no significant promoting or inhibiting
relationship between the two [32].

However, studies to date have not reached a consensus on the relationship between
scale efficiency and agricultural NPS pollution. Second, researches on scale and agricultural
NPS pollution are relatively lacking, especially those from the perspective of efficiency.
Third, most previous studies have ignored the spatial correlation.

3. Research Methods
3.1. Basic Model Setting

Previous studies on environmental impact have revealed its main influencing factors,
which can be traced back to the IPAT model proposed by Ehrlich and Holdren [33]. This
model is mainly used to measure the relationship between environmental Impact(I) and
Population(P), Affluence(A) and Technology(T) with the following expression:

I = PAT (1)

In Equation (1), environmental changes are mainly driven by three factors: population,
economy development and technological level. It is impossible for a single factor to act on
the environment independently of other factors. The theory also points out that population
growth and human activities have a negative impact on the environment, and they vary
with the level of economic and technological development. Environmental Kuznets curve
(EKC) reveals a “U” shape between environmental pollution and economic development.
Similarly, in agricultural production, the activities of each person will have an impact on
the environment. At the same time, environmental impact will change with different levels
of income and agricultural management techniques. The improvement of scale efficiency
helps farmers to obtain benefits of scale economy, which can increase their income and
reduce its negative impact on the environment. What is more, scale efficiency is actually
determined by the production and management activities of farmers, and it represents
the level of agricultural production and management technology, which in turn has an
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impact on environmental pollution. Therefore, the theoretical connection between scale
efficiency and agricultural NPS pollution is established. Accordingly, we set the basic
model as follows:

NPSi,t = a0 + a1Sei,t + λControli,t + µi,t (2)

In Equation (2), NPS is the level of agricultural NPS pollution, Se is scale efficiency
and Control represents other variables which can affect the agricultural NPS pollution. a0
is constant term. a1 and λ are parameter terms to be estimated. µ is the random error term.

Studies reveal that agricultural NPS pollution can be also affected by factors such as
fiscal policies, financial policies, wage, urbanization and industrial structure. The “Pigou
means” is a common tool to control environmental pollution, and the fiscal policy is the
main component of it. Ribaudo and Griesinger et al. both advocated the implementation
of fiscal policies to guide farmers to adopt green production technologies, so as to achieve
the goal of reducing NPS pollution at source [16,17]. Financial policies can reduce the
financing costs of production entities [34], and provide financial support for their adoption
of green production techniques and other environmentally friendly behaviors [35]. Wage
also affects agricultural NPS pollution. In the IPAT model, affluence is closely related to
environmental impact [33], and the EKC also reveals the inverted “U-shaped” relationship
between environmental pollution and the economic development. Therefore, agricultural
NPS pollution will change with the increase of wage. Urbanization is one of the most
important changes in Chinese society over the past 40 years, which has a far-reaching
impact on agricultural development and the environment. The shortage of labor factors
caused by urbanization has increased the amount and extent of fertilizer application [36],
aggravating agricultural NPS pollution. The relationship between industrial structure
and environment is inseparable [37,38]. The influence of different industrial structure on
environment is different, and a reasonable adjustment of the industrial structure is crucial
to environmental protection. In order to make the model more reasonable, we introduced
the above 5 variables into model (2) and expand it into model (3):

NPSi,t = β0 + β1Sei,t + β2Fini,t + β3Pri,t + β4Wi,t + β5Urbi,t + β6Stri,t + µi,t (3)

In Equation (3), NPSi,t is the level of agricultural NPS pollution, i represents the
province and t represents the year. Sei,t, Fini,t, Pri,t, Wi,t, Urbi,t and Stri,t represent the
scale efficiency, financial policy, fiscal policy, wage, urbanization and industrial structure,
respectively. β0 to β6 are constant term and parameter terms to be estimated. µi,t is the
random error term.

3.2. Setting of Spatial Panel Model

There may be differences in agricultural NPS pollution levels among different regions,
and agricultural NPS pollution is mostly carried by water. In addition, the similar geo-
morphology, hydrological characteristics and climatic conditions between neighboring
provinces make the spatial transfer of agricultural NPS pollution possible. Therefore, we
need to consider the possible spatial spillover effects of agricultural NPS pollution. In
order to confirm whether agricultural NPS pollution has spatial correlation, this study uses
the Global Moran’s I index to conduct spatial autocorrelation test, and the expression is as
follows:

Moran′s I =
∑n

i=1 ∑n
i=1 wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=1 wij

(4)

S2 =
∑n

i=1(xi − x)2

n
(5)

In Equations (4) and (5), xi and xj represent the agricultural NPS pollution, i and
j represent the region. wij represents the adjacent relationship between the two regions. n
denotes the quantity of different areas and S2 represents the variance of regional agricul-
tural NPS pollution.
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Agricultural NPS pollution in adjacent areas may influence each other and eventually
form a balanced result. Accordingly, we improved Equation (3) to establish a spatial
autoregressive model (SAR). The expression is shown in Equation (6):

NPSi,t = β0 + ρWNPSi,t + β1Sei,t + β2Fini,t + β3Pri,t + β4Wi,t + β5Urbi,t + β6Stri,t + εi,t (6)

Among them, W is the spatial weight matrix, WNPSi,t represents the degree of spatial
dependence of agricultural NPS pollution. ρ, β0~β6 respectively denote the parameters
to be estimated, and ε is a random interference term. The other variables have the same
meanings as Formula (3).

4. Variables and Data
4.1. Variable Description
4.1.1. Dependent Variables

The dependent variable in this study is agricultural NPS pollution. The common
agricultural NPS pollution refers to the rural environmental pollution caused by the
unreasonable use of chemical fertilizers, pesticides, agricultural film, feed and veterinary
drugs in agricultural production, as well as the untimely or improper treatment of livestock
and poultry manure, crop straw, agricultural film domestic garbage and domestic sewage.
What needs to be explained here is that the pollution caused by livestock and poultry
farming waste, rural domestic sewage and domestic solid waste is quite different from the
planting industry. In order to make the research more pertinent, this study focuses on the
agricultural NPS pollution in the production of planting industry.

Agricultural NPS pollution mainly refers to the pollution of water, soil, air and
agricultural products in the rural distracts caused by the unreasonable treatment of
chemical substances such as fertilizers, pesticides, and mulching films used by farm-
ers in agricultural production [1]. In this study, the main sources of agricultural NPS
pollution are chemical fertilizer, pesticide, agricultural plastic film and diesel oil used
in agricultural machinery. No matter whether these inputs are absorbed by crops or
are overused, they often pollute water and soil under the multiple effects of rainfall,
sediment and irrigation, and become the source of agricultural NPS pollution. In addi-
tion, because agricultural NPS pollution is scattered, concealed, random and difficult to
monitor, the measurement of agricultural NPS pollution in the past was more limited
to the single source of pollution. This can only reflect one aspect of agricultural NPS
pollution, which is one-sided. In order to carry out a more comprehensive measurement
of agricultural NPS pollution, this study adopted the unit survey method, and divided
it into four units: fertilizer, pesticide, agricultural films and diesel according to the
main pollution sources of agricultural NPS pollution. At the same time, drawing on the
weight processing method of the United Nations human development index (HDI) and
economic vulnerability index (EVI), a simple and transparent weight setting method was
adopted. That is, the weight of fertilizer (CF), pesticide (PE), agricultural mulch (MF)
and diesel usage amount (DF) is set to 0.25. And the level of agricultural NPS pollution
in China can be expressed as Equation (7):

NPSi,t = 0.25× CFi,t + 0.25× PEi,t + 0.25×MFi,t + 0.25× DFi,t (7)

4.1.2. Independent Variables

Scale efficiency (Se): The scale efficiency in this study is mainly measured by scale
efficiency change index (SECH). The Chinese government has continuously encouraged
farmers to transfer land, purchase trusteeship of agricultural production and participate
contract agriculture. However, whether it is expanding the area of arable land, purchasing
trusteeship of agricultural production or participating in contract farming, the logic behind
it is to improve the scale efficiency of agriculture. Therefore, the scale efficiency is closer to
the reality of agricultural production. In addition, scale efficiency can accurately measure
the implementation effect of various ways, thus making the measurement indicators more
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accurate, scientific and representative. In order to measure the SECH, this study used
two steps. One is to set input and output variables. Agricultural added value is set as
the output variable, and the sown area of crops and rural population are set as the input
variable. Second, DEA-Malmquist method is used to measure the total factor productivity
change index (TFPCH) and is decomposed, which is shown in Equation (8).

M
(

xt+1, yt+1, xt, yt
)

︸ ︷︷ ︸
TFPCH

=

[
Dt

0(xt+1,yt+1)
Dt

0(xt ,yt)
× Dt+1

0 (xt+1,yt+1)
Dt+1

0 (xt ,yt)

] 1
2

=
Dt+1

0
(
xt+1, yt+1)

Dt
0(xt, yt)︸ ︷︷ ︸

EFFCH︸ ︷︷ ︸
=SECH×PECH

×
[

Dt
0
(

xt+1, yt+1)
Dt+1

0 (xt+1, yt+1)
×

Dt
0
(
xt, yt)

Dt+1
0 (xt, yt)

] 1
2

︸ ︷︷ ︸
TECHCH

(8)

Financial policy (Fin): Financial policy is an important means to solve agricultural
NPS pollution, and funds to support agriculture can promote the green development of
agriculture. Financial support for agriculture can reduce the financing costs of operating
entities and thus promote green investment in agriculture, especially green credit, which
has a moderating effect on market failure [34]. However, China has not separately counted
and listed the scale of green credit and green bonds presently. Therefore, this study uses
the total agricultural credit scale to measure the strength of financial policy.

Fiscal policy (Fis): Policies and financial investment related to environmental gover-
nance can reduce pollutant emissions [39]. Agricultural NPS pollution has increasingly
become focus of many governments. In order to alleviate agricultural NPS pollution,
the state has issued a series of fiscal policies. For example, the Chinese government has
implemented subsidies and tax exemptions for selling organic fertilizer products and
using fewer chemical fertilizers and pesticides these years. These fiscal policies mainly
include price subsidies and tax exemptions, and expenditures on agriculture, forestry
and water supplies are an important means for the Chinese government to support the
green development of agriculture. Therefore, this study uses local agriculture, forestry
and water affairs expenditures to measure the intensity of fiscal policy to support for
agriculture.

Wage (W): Wage affects the level of agricultural NPS pollution. The level of eco-
nomic development directly determines the farmers’ pattern of production, management
capabilities and environmental awareness, thus affecting agricultural NPS pollution.
From the EKC, it can be seen that there is an inverted “U-shaped” relationship between
country’s economic development level and environmental pollution. When the level of
economic development is low in the early stage, agricultural NPS pollution increases
with the promotion of residents’ wage, and eases with the increase of wage after reach-
ing the critical point. The adoption cost of environmentally friendly technologies is
relatively high, and the level of wage determines whether the farmer is able to bear the
cost to some extent. This study uses the disposable income of rural residents to measure
the farmers’ wage.

Urbanization (Urb): There is a link between urbanization and agricultural NPS pollu-
tion that cannot be ignored. The off-farm shift of labor force brought about by urbanization
has increased the opportunity cost of labor. In addition, the relative changes in the prices of
agricultural factors have driven farmers to choose more labor-saving and farmland-saving
technologies such as chemical fertilizers and pesticides. Additionally, due to farmers’
awareness of production risk avoidance [40] and lack of scientific fertilization knowledge
and technology, it is also easy to cause excessive use of chemical fertilizers and pesticides,
which intensifies agricultural NPS pollution. At the same time, the development of ur-
banization will increase the income and education level of migrant rural workers. On the
one hand, it is helpful to improve the awareness of green production of farmers. On the
other hand, it can provide financial support for the adoption of environmentally friendly
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technologies such as soil testing and formula fertilization technology, and alleviate agricul-
tural NPS pollution. However, whether urbanization will curb or aggravate agricultural
NPS pollution remains to be tested. This study uses the ratio of urban population to total
population to measure urbanization.

Industrial structure (Str): The industrial structure affects the level of agricultural
NPS pollution. Generally speaking, extensive industrial structure tends to gain economic
benefits at the expense of the environment, and moving towards resource-saving and
environment-friendly industrial structure will have a positive impact on environment.
Therefore, the transformation of industrial structure can improve environmental pollution
to a certain extent. This study uses the ratio of added value of agriculture to sum of the
added value of the secondary and tertiary industries to measure changes in the industrial
structure.

4.2. Data Sources and Description

The data used in this study are panel data of 31 provinces in the mainland of China
from 1999 to 2018. These data are all collected from official databases in China such as the
China Statistical Yearbook, China Rural Statistical Yearbook, China Financial Yearbook, and
Compilation of Statistical Data for the Sixty Years of New China: 1949–2008. In addition,
this study replaced and supplemented missing data with the average value of the two
years before and after.

As shown in Table 1, the standard deviation of agricultural NPS pollution in all
provinces is large, which is 188.928. The maximum value is 859.86, the minimum value is
3.221, and the average value is 240.134, indicating that China’s agricultural NPS pollution
levels are relatively high. In addition, there are big differences between different provinces.
Considering that there are obvious differences in agricultural NPS pollution among dif-
ferent provinces, and due to natural, economic and social conditions, they may influence
each other to reach the final equilibrium state. Therefore, this study will also choose an
appropriate spatial model for further discussion.

Table 1. Definitions and summary statistics of the variables used in the analysis.

Variable Definition Mean Maximum Minimum Standard Deviation

NPS Levels of agricultural NPS
pollution 240.124 859.860 3.221 188.928

Se Scale efficiency 1.184 7.777 0.107 0.814
Fin Total agricultural credit scale 3.15 × 107 3.10 × 108 8705 4.90 × 107

Fis
Expenditures of local

agriculture, forestry and
water affairs

242.756 1310.890 1.250 259.742

W Disposable income of rural
residents 6780.941 30,374.73 1258.000 5048.142

Urb Ratio of urban population to
total population 0.490 0.896 0.220 0.152

Str

Ratio of added value of
agricultural industries to the

sum of added value of
secondary and tertiary

industries

0.087 0.283 0.002 0.053

The standard deviation of scale efficiency is 0.814, and the difference between the
maximum value of 7.777 and the minimum value of 0.107 is more than 70 times. This
indicates that there is a gap in the scale efficiency of various regions in China, which may
be an important reason of agricultural NPS pollution. In terms of financial policies and
fiscal policies, their standard deviations are 4.90 × 107 and 259.742, respectively. This
means that different provinces and regions have significant differences in financial poli-
cies and fiscal policies for supporting agricultural development. The standard deviation
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of the wage is 5048.142 yuan. Judging from the difference between the maximum value
of 30,374.73 yuan and the minimum value of 1258 yuan, there is a large imbalance in av-
erage wage of farmers in various provinces. The province with the highest urbanization
rate has reached 89.6%, while the lowest province is only 22%. The national average is
49%, and its standard deviation is 0.152. The gap of urbanization among provinces still
exists. The average value of the industrial structure is 0.087, which indicates that there
is huge space for upgrading agricultural industrial structure from the national average
level.

5. Results and Discussion
5.1. Results of Panel Model

In order to explore the relationship between scale efficiency and agricultural NPS
pollution level, this study first applied the panel model to estimate it based on the collected
panel data, and reported the results of mixed effect model, fixed effect model and random
effect model in Table 2, respectively. In addition, the F test (Prob > F = 0.0000,) showed that
the null hypothesis was rejected. In other words, the fixed effects regression model was
significantly better than the mixed regression model. The results of Hausman test (Prob >
chi2 = 0.0005) indicated that the fixed effects regression model was significantly better than
the random effects regression model. Therefore, this section mainly explains the regression
results of the fixed effects model.

The regression results of fixed effect model show that the effect of scale efficiency on
agricultural NPS pollution is positive, but the significance test is not passed. This means
the improvement of scale efficiency aggravates the degree of agricultural NPS pollution.
The possible reasons are the following three aspects. First, the Chinese government still
emphasizes on “food security” at the strategic level and requires storing grain in the
ground, which means giving priority to output. In addition, the rapid development of
industry in recent years has greatly reduced the prices of chemical fertilizers, pesticides and
other production factors, gradually becoming the best choice for agricultural producers to
increase output. However, excessive use of input elements such as fertilizers and pesticides
will lead to an increase in undesired output and limit the room for efficiency improvement.
Second, farmers at the micro level lack the enthusiasm for adopting green production
technologies. It is well known that although the adoption of green production technology
has positive externalities for the environment, its short-term return on investment is low,
and most farmers pursue short-term profit maximization. In order to obtain more profits
and avoid yield risks, farmers will choose to use excessive chemicals, thereby exacerbating
agricultural NPS pollution. Third, although the government has encouraged land transfer
and trusteeship of agriculture production to improve scale efficiency, the number of small
farmers in China accounted for more than 98% of agricultural business entities according
to the data of the third national agricultural census. Among them, small farmers account
for 90% of the agricultural employees, and the cultivated land operated by small farmers
accounts for 70% of the total cultivated land area. Due to China’s national conditions, small
and medium-sized farmers will still be the main body in the present and future for a long
period of time. These farmers have little room for improvement in scale efficiency, and may
not be able to leverage the levers of their agricultural green leading functions, which will
also limit scale efficiency to improve the mitigation effect on agricultural NPS pollution. In
addition, the reason why scale efficiency did not pass the significance test may be that the
spatial effect of agricultural NPS pollution was not taken into account, leading to biased
regression results. In the next part, we will explore this.
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Table 2. Estimation results of panel data model.

Variable

Model

Pooled OLS Fixed Effects Random Effects

(1) (2) (3)

Constant 197.505
(7.09)

187.382
(10.37) ***

197.505
(7.09) ***

Se 2.901
(1.54)

2.914
(1.61)

2.901
(1.54)

Fin −5.07 × 10−7

(−6.14) ***
−5.26 × 10−7

(−6.62) ***
5.07 × 10−7

(−6.14) ***

Fis 0.222
(10.95) ***

0.216
(11.01) ***

0.222
(10.95) ***

W −0.004
(−5.49) ***

−0.004
(−5.58) ***

−0.004
(−5.49) ***

Urb 107.145
(2.96) ***

131.779
(3.73) ***

107.145
(2.96) ***

Str −258.822
(−4.14) ***

−264.09
(−4.38) ***

−258.82
(−4.14) ***

Adjusted R2 0.467 0.468 0.467
F/Wald 473.2 *** 85.4 *** 473.2 ***

Obs 620 620 620
Note: *** indicates significant levels of significance at 1%. Non-marked is not significant.

According to the regression results of control variables, financial policy can signif-
icantly inhibit agricultural NPS pollution, which is mainly related to the rapid devel-
opment of green finance in China. Green finance aims to regulate the capital supply
structure, improve the green development space of agriculture and other industries, and
guide the environment-friendly development pattern [41], which is conducive to the
realization of green development of agriculture. The effect of fiscal policy on agricultural
NPS pollution is significantly positive. Although financial support for agriculture has in-
creased year by year in recent years, the lack of funds directly targeting agricultural NPS
pollution, especially inadequate investment in agricultural ecological infrastructure, is
not conducive to the effective control of agricultural NPS pollution. Wage can effectively
reduce agricultural NPS pollution level. With the increase of wage, it can effectively
stimulate farmers’ awareness of environmental protection and promote their adoption of
green production behavior, thus reducing agricultural NPS pollution. Urbanization has
exacerbated the level of agricultural NPS pollution. On the one hand, urbanization has
aggravated agricultural NPS pollution by changing land use patterns. The demand for
urban construction land brought by urbanization has occupied a large amount of arable
land. In order to ensure agricultural output and profit, it is necessary to increase the
input of chemical fertilizers and pesticides and other factors, which intensifies agricul-
tural NPS pollution. On the other hand, the transfer of off-farm labor brought about by
urbanization has increased the degree of agricultural NPS pollution. Urbanization leads
to the increase of opportunity cost of agricultural labor, which induces farmers to adopt
labor-saving production technology to make up for the shortage of labor. Chemical
fertilizer and pesticide become the best choice because of their low cost. The effect of
industrial structure on agricultural NPS pollution is negative. The gradual upgrading
from extensive industrial structure is beneficial to the reduction of agricultural NPS
pollution.

5.2. Estimation Results of the Spatial Effect

The premise of using spatial model is the existence of spatial dependence. Therefore,
this study uses Moran’s I index mentioned above to test the spatial correlation. The
results show that Moran’s I index is all positive and passed the significance test at the
1% level except for a few years. The results indicate that agricultural NPS pollution is
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spatially dependent, and it is necessary to use spatial models to estimate spatial effects.
In this study, we used spatial autoregression (SAR) to analyze the spatial effects.

Table 3 is the regression results of considering the inter-provincial spatial interaction
effects of agricultural NPS pollution. At the same time, in order to eliminate the problem
of multicollinearity that may exist in the model, this study adopted the method of
gradually introducing explanatory variables into the model during regression. As
if shown in regression results, it can be found that the coefficients ρ of model (4) to
model (9) are all significantly positive, indicating that agricultural NPS pollution has an
inter-provincial spatial interaction effect. The coefficient signs and significance levels of
explanatory variables in the six models are basically the same, meaning that the empirical
results are robust to a certain extent. What is more, considering the R2 of Model (9) is the
largest and the explanatory power is also the strongest after the explanatory variables
are gradually added, so this study mainly focused on regression results based on model
(9).

Table 3. Estimation results of spatial effect by using SAR model.

Variable
SAR Model

(4) (5) (6) (7) (8) (9)

Constant 54.087
(1.52)

79.296
(2.25) **

127.289
(3.6) ***

110.488
(3.22) ***

87.663
(2.43) **

124.584
(3.15) ***

Se 3.938
(1.95) *

3.701
(1.87) *

2.823
(1.53)

3.137
(1.77) *

3.118
(1.76) *

3.027
(1.72) *

Fin 2.55 × 10−7

(5.8) ***
−4.14 × 10−7

(−5.2) ***
−4.8 × 10−7

(−6.38) ***
−5.2 × 10−7

(−6.8) ***

−4.88 ×
10−7

(−6.28) ***
Fis 0.154

(9.93) ***
0.23

(12.5) ***
0.228

(12.39) ***
0.216

(11.3) ***
W −0.005

(−7.03) ***
−0.005

(−7.49) ***
−0.005

(−6.73) ***
Urb 92.262

(2.64) ***
74.265

(2.07) **
Str −148.335

(−2.33) ***
ρ 0.7152

(17.91) ***
0.585

(11.49) ***
0.336

(5.55) ***
0.468

(7.96) ***
0.4

(6.1) ***
0.337

(4.64) ***
Lgt_theta −2.998

(−21.88) ***
−2.979

(−21.68) ***
−3.035

(−22.18) ***
−3.055

(−22.34) ***
−3.081

(−22.52) ***
−3.087

(−22.56)
Sigma2 1626.038

(16.97) ***
1573.556

(17.03) ***
1471.582

(17.13) ***
1258.292

(17.09) ***
1247.165

(17.11) ***
1240.055

(17.12) ***
Adjusted R2 0.0084 0.2708 0.3905 0.4264 0.4538 0.4679

Note: *, ** and *** indicate significant levels of significance at 10%, 5% and 1%, respectively. Non-marked is not
significant.

It can be seen from model (9) that the coefficient of ρ is 0.337, and it has passed the
significance test at 1%. The results show that agricultural NPS pollution in one province is
affected by the level of agricultural NPS pollution in neighboring provinces. The possible
reasons are as follows: First, from the perspective of natural endowments, similar climatic,
geomorphological and hydrological characteristics between neighboring provinces pro-
vide the possibility for spatial diffusion of agricultural NPS pollution. Agricultural NPS
pollution is mostly carried by water, and it can enter the water body through diffusion, con-
fluence and diversion. For example, rainfall can bring agricultural NPS pollution sources
to rivers and lakes in neighboring provinces, so that agricultural NPS pollution can realize
spatial transfer. Secondly, from the perspective of environmental regulation conditions,
different provinces have differences in the ability and intensity of environmental supervi-
sion, which provides institutional conditions for the spatial spillover of agricultural NPS
pollution. Neighboring provinces have convenient transportation and similar agricultural
infrastructure, and agricultural production entities tend to seek advantages and avoid
disadvantages. When facing relatively strict environmental regulations, it is easy for them
to choose to transfer agricultural industries to nearby areas with smaller environmental
regulations. Finally, the demonstration of agricultural production activities in adjacent
provinces strengthens the spatial interaction of agricultural NPS pollution. Agricultural
production activities in one area have a strong demonstration effect on neighboring areas.
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For example, the spillover of agricultural land use mode, intensity and technology helps
to form the spatial agglomeration of factors, thus affecting the agricultural production
activities and NPS pollution emission intensity in the neighborhood.

From the regression results of core explanatory variables, the effect of scale efficiency
on agricultural NPS pollution is positive, and the estimated coefficient also becomes
significant. This shows that, when discussing the relationship between scale efficiency and
agricultural NPS pollution, it is necessary to consider its spatial effect. In terms of control
variables, after considering the spatial interaction effect, the estimated results of financial
policy, fiscal policy, wage level, urbanization and industrial structure are consistent with
the above part. Therefore, the reasons are not discussed in this section.

5.3. Estimated Results of Decomposed Spatial Effect

In order to further measure the complex spatial correlation between adjacent areas, it
is often necessary to split the spatial effects when using spatial models. Lesage et al. [42]
proposed that direct effect and indirect effect can be used to describe the spatial marginal
effect of adjacent areas, and the coefficient can be obtained by calculating partial derivatives.
In this study, the direct effect refers to the influence of explanatory variables in local
province on agricultural NPS pollution, and the indirect effect refers to the influence of
explanatory variables in the neighboring province on agricultural NPS pollution. The total
effect obtained is equal to the sum of direct effect and indirect effect. Among them, the
direct effect includes two influence paths. The first path refers to the direct impact of the
explanatory variables on local area’s agricultural NPS pollution. The second is a feedback
path. When explanatory variables in local province change the level of agricultural NPS
pollution in the neighboring regions by affecting the explained variables in the neighboring
regions, the change of agricultural NPS pollution will eventually feedback back to the local
region. Indirect effects also include two paths. One refers to the influence of explanatory
variables in adjacent provinces on agricultural NPS pollution in local province. The other
refers to the influence of explanatory variables in neighboring provinces on agricultural
NPS pollution in the neighboring provinces, which in turn affects the agricultural NPS
pollution in local province.

As shown in Table 4, the spatial decomposition effect results of driving factors on
agricultural NPS pollution are presented. The direct and indirect effects of scale efficiency
on agricultural NPS pollution are both positive, indicating that the improvement of scale
efficiency will aggravate the degree of agricultural NPS pollution. At the initial stage, the
improvement of scale efficiency is helpful to the reasonable allocation of various input
elements, especially to make the application of chemicals more reasonable, thus reducing
agricultural NPS pollution. However, with the improvement of scale efficiency, it is easy
to face the problems of labor shortage and high cost of local labor. In this situation, it is
natural to produce the “substitution effect” of agricultural chemicals to make up for the
labor shortage. In addition, profit maximization is still the primary goal of most agricultural
business entities. Improving scale efficiency requires capital investment. In order to recover
costs as soon as possible and avoid production risks, intensive application of chemicals
may be used by farmers to ensure the increase of production. This will cause the chemical
“reduction effect” at the initial stage to be gradually offset, and further aggravate the local
agricultural NPS pollution. What is more, the indirect spillover effect of scale efficiency
is not significant. This is mainly due to the differences in the ways and policy contents of
improving scale efficiency among neighboring provinces, and the transformation cannot
be achieved overnight.
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Table 4. Estimation results of decomposed spatial effect.

Variable Direct Effect Indirect Effect Total Effect

Se 3.12
(1.71) *

1.613
(1.41)

4.734
(1.66) *

Fin −4.95 × 10−7

(−6.56) ***
−2.56 × 10−7

(−2.72) ***
−7.51 × 10−7

(−5.23) ***

Fis 0.22
(11.8) ***

0.113
(2.87) ***

0.333
(6.89) ***

W −0.005
(−7.27) ***

−0.003
(−2.45) **

−0.008
(6.89) ***

Urb 74.807
(2.19) **

37.245
(1.86) *

112.051
(2.21) **

Str −144.295
(−2.26) **

−70.002
(−2.05) **

−214.297
(−2.33) **

Note: *, ** and *** indicate significant levels of significance at 10%, 5% and 1%, respectively. Non-marked is not
significant.

The direct and indirect effects of financial policies on agricultural NPS pollution
are negative, and both of them pass the significance test of 1%. Financial policy can
reduce agricultural NPS pollution mainly because of the rapid development of green
finance in China in recent years. Green finance can play a synergistic effect with existing
environmental regulations, and guide the upgrading of agricultural green production
technology to reduce the agricultural NPS pollution in local region. The indirect effect
is negative, which indicates that financial policy has spatial spillover effect. Financial
policies guide the upgrading of local agricultural green production technology, which can
be spread to adjacent areas, thereby helping to alleviate the agricultural NPS pollution in
surrounding areas.

The direct and indirect effects of fiscal policy on agricultural NPS pollution are sig-
nificantly positive. First of all, fiscal policies have increased the intensity of the use of
agricultural machinery. For example, farm machinery purchase subsidy encourages farmers
to use large agricultural machinery, which promotes the use of fossil fuels and aggravates
agricultural NPS pollution in local region. Second, although there are special subsidies
linked to grain planting areas, such as direct grain subsidies and producer subsidies, the
income of cash crops is significantly higher than that of grain crops. Therefore, the trend
of non-grain-oriented planting structure has become gradually prominent. Although
cash crops have more benefits, the pollution generated during the production process is
generally higher than grain crops, especially in the use of chemical fertilizers [43]. The
transformation of planting structure will aggravate the agricultural NPS pollution in local
region. Finally, the existing fiscal policies for direct treatment of agricultural NPS pollution
are insufficient, especially the lack of public investment, which also leads to the failure of
fiscal policies to achieve the established goals. The indirect effect is positive, indicating
that local fiscal policy has aggravated the level of agricultural NPS pollution in neighbor-
ing provinces. The agricultural industry in the adjacent area is demonstrative, and the
transformation of local agricultural production activities caused by fiscal policies has a
demonstrative and leading role in surrounding areas. For example, the surrounding area
and the local area are consistent in the non-grain-oriented planting structure, which will
increase the degree of agricultural NPS pollution in the neighborhood.

The direct and indirect effects of wage on agricultural NPS pollution are both signifi-
cantly negative. Increasing wage is helpful to stimulate the environmental awareness of
agricultural production entities, and realize the transformation from traditional produc-
tion mode to green production mode, thereby reducing the intensity of agricultural NPS
pollution. In addition, small farmers are still the main operating entities of agricultural
production in China. Compared with new operating entities, small farmers’ cost of adopt-
ing environmentally friendly technologies is higher, and the increase in wage can provide
financial support for the adoption of such technologies. The indirect effect is negative,
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meaning that an increase in wage of farmers in local province can reduce agricultural NPS
pollution in neighboring provinces. If there is a wage gap between neighboring provinces,
the labor force will flow from the “income depression” to the “income plateau” and eventu-
ally reach an equilibrium state. As long as the wage gap exists, this phenomenon of labor
immigration will occur. The inter-provincial immigration of labor has two benefits. On
the one hand, it can increase the wages and make farmers in surrounding provinces less
sensitive to the cost of adopting environmentally friendly technologies. On the other hand,
farmers coming from adjacent backward provinces working in developed provinces can
broaden their horizons, contact the new green development concept and practice it in actual
agricultural production, thereby reducing the agricultural NPS pollution in neighboring
provinces.

The direct and indirect effects of urbanization on agricultural NPS pollution are
both significantly positive. Urbanization has changed the way of land use and affected
agricultural production activities. Urbanization has provided a large number of local
farmers with off-farm employment opportunities, resulting in the reduction of time spent
in local agricultural labor. Therefore, it is easy for farmers to choose the former between
chemical fertilizer which is time-saving and labor-saving, and organic fertilizer, which is
time-consuming and labor-consuming. Chemical fertilizer can increase agricultural NPS
pollution in local province. The indirect effect is positive, indicating that the advancement
of urbanization is conducive to the inter-provincial transfer of agricultural NPS pollution.
For the developed provinces, urbanization largely benefits from the cross-regional optimal
allocation of labor from the backward provinces. As a result, the labor cost of agricultural
production in backward areas continues to rise. Driven by profit maximization, farmers
in neighboring provinces are more inclined to choose low-cost fertilizers to replace labor
with high costs, which intensifies the degree of agricultural NPS pollution in neighboring
provinces.

The direct and indirect effects of industrial structure on agricultural NPS pollution
level are both negative and pass the significance test at 5%. It means that industrial
structure is an important factor affecting agricultural NPS pollution. The adjustment of
industrial structure means mutual integration and optimal allocation of resources between
industries, which promotes the transformation of agriculture from a resource-consuming
pattern with high energy consumption and low output to a resource-saving pattern. Such
transformation can reduce the use of chemicals such as pesticides and fertilizers at the
source, and thus alleviate agricultural NPS pollution in local provinces. The indirect effect is
negative, indicating that industrial structure has a demonstration effect among neighboring
provinces. In addition, the spillover effect of the demonstration effect is obvious, which
can effectively reduce the agricultural NPS pollution in neighboring provinces.

6. Conclusions

From the perspective of efficiency, this study constructed a theoretical model of the
impact of scale efficiency on agricultural NPS pollution. Based on the data collected of
different provinces in China, the panel fixed effects regression model was firstly used to
estimate the impact. Then, considering the spatial correlation of agricultural NPS pollution,
the spatial econometric model was used. Finally, the spatial effect is further decomposed
into direct effect and indirect effect for specific analysis. The research results of this study
mainly include the following aspects:

(1). The improvement of scale efficiency intensifies the degree of agricultural NPS
pollution. As the Chinese government currently emphasizes “food security” at the strategic
level, it is required to ensure the necessary grain planting area and stable grain production.
In addition, the farmers pursue maximizing profit and avoid production risk, resulting
in the “substitution effect” of chemicals to offset the “rational allocation effect” of input
elements brought about by improving scale efficiency. Gathering these reasons, the im-
provement of scale efficiency has not been able to effectively suppress agricultural NPS
pollution.
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(2). Agricultural NPS pollution has spatial correlation. Agricultural NPS pollution
can be transferred across provinces due to their similar natural conditions such as climate
and terrain, differences in environmental regulations and demonstration of agricultural
production. In other words, the increase of agricultural NPS pollution level in one province
will lead to the increase of agricultural NPS pollution intensity in the surrounding areas.

(3). The scale efficiency of this region not only aggravates the degree of local agri-
cultural NPS pollution, but also has a spillover effect on agricultural NPS pollution in
neighboring area, but this spillover effect is not significant.

(4). Financial policies, raising wage and upgrading of industrial structure can ef-
fectively restrain agricultural NPS pollution in this area and adjacent areas, which also
deserves our attention in reducing agricultural NPS pollution.

In summary, improving scale efficiency is an inevitable requirement for the realization
of agricultural transformation and green development. It can not only improve the allo-
cation efficiency of agricultural production factors, but also help to increase agricultural
income. At the same time, agricultural NPS pollution is one of the important problems
faced by many developing countries. Fortunately, some studies have begun to focus on the
promotion effect of scale efficiency on green agricultural development, but whether the
goal of curbing agricultural NPS pollution can be achieved by improving scale efficiency is
still controversial. Therefore, this study constructs a theoretical framework for the impact
of scale efficiency on agricultural NPS pollution, and conducts an empirical test based
on China’s statistical data. In the future, there are many directions to be further studied.
First, there are many ways to improve scale efficiency. We can move the starting point
of research forward and focus on the impact of different scale efficiency improvement
methods on agricultural NPS source pollution. Second, explore the conditions under which
scale efficiency can inhibit agricultural NPS pollution, and further enrich the toolbox of
agricultural NPS pollution treatment. Third, extend the research perspective to farmers at
the micro level.
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