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Abstract: River water quality is an important health issue as the water is utilised for drinking,
domestic and agricultural use in developing countries. This study aimed to investigate the effect
water from a major city has on the water quality of the Jukskei River that daylights in Johannesburg,
South Africa. The river water samples were analysed for physio-chemical properties, microbiology,
antibiotic resistance of bacterial isolates, genetic markers, and potentially toxic metals. Data analysis
revealed increased electrical conductivity, total dissolved solids, and turbidity since 2010. Total
Coliform and Escherichia coli detected were above the South African water quality guidelines for
domestic, recreational, and irrigation purposes. Additionally, sodium, zinc, nickel, lithium, and lead
exceeded the guidelines in domestic, recreational, and irrigation water. Pathogenic strains of E. coli
(aEPEC, EHEC, EIEC, and EAEC) were isolated from the water. Various other potentially pathogenic
organisms that have been implicated as causes of gastro-intestinal, and a wide range of other diseases,
were also detected and demonstrated multiple levels of resistance to antibiotics tested. The results
show that the river water is a potential health threat to downstream users. These results will feed
into the environmental management action plan for Water for the Future (NGO group).

Keywords: chemistry; Jukskei river; microbiology; molecular biology; water quality

1. Introduction

Safe drinking water remains inaccessible to several million people around the globe.
The ever-increasing human population places severe pressure on the quality and quantity
of sources of fresh drinking water and limits access to it [1]. The World Health Organization
(WHO) estimates about 1100 million people, globally, drink unsafe water, and the more
significant part of diarrhoeal disease (88%) is attributed to unsafe water, and inadequate
sanitation and hygiene [2].

In South Africa, the Jukskei River is one of the main rivers that confluence into the
western Crocodile River basin. It is one of the three largest rivers draining the northern
suburbs of the Witwatersrand and arises from an underground spring in the Bezuidenhout
Valley, east of Johannesburg (Gauteng Province). It passes through a range of urban settle-
ments such as Alexandra Township, Buccleuch, and Midrand before its confluence with the
Crocodile River and flows into the Hartbeespoort dam [3]. Due to both formal and informal
settlements in relation to the river, it has been subject to many water quality-related issues
in the past, in particular bacterial contamination and other types of pollution such as
industrial and mining effluent [4–6]. Since 1986, the Department of Water and Sanitation
(DWS) has been monitoring the water quality. Previously, this river was characterised as
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having low pH (3–4) and high concentrations of sulfate, chloride, fluoride, sodium, and ni-
trate [7]. The impact of the mining activities in the surrounding areas is possibly associated
with high sulfate concentrations and low pH [7]. The presence of high-density informal
settlements near Alexandra Township has been shown to increase nutrient concentrations,
sodium, chloride, and potassium [3,5].

Since DWS only monitors fundamental microbiological analysis (Total Coliform and
Escherichia coli), we hypothesised that bacteria isolated from the Jukskei River would be
resistant to one or more antimicrobials and be multidrug-resistant based on the occurrence
of increased antimicrobial resistance of potentially pathogenic bacteria isolated from vari-
ous sources in South Africa [8–10]. Recent publications regarding antimicrobial resistance
of potential pathogens isolated from environmental water sources in South Africa [8–10]
focused on the antimicrobial resistance of targeted bacterial species like Staphylococcus
aureus, Campylobacter jejuni, and vancomycin-resistant enterococci. In addition, the present
study investigated the antimicrobial resistance of a wider variety of potential bacterial
pathogens not previously studied.

The aim of the current study was to investigate the effect water from the city of
Johannesburg (Gauteng, South Africa) has on the Jukskei River water quality after it
daylights from the city centre. The specific objectives were to identify (a) what the chemical
pollution levels were, (b) identify potentially pathogenic bacteria and determine their
antibiotic resistance profile, and (c) if the river water could be used directly for agricultural
and recreational purposes at Victoria yards (Lorenzville, Gauteng Province, Johannesburg,
South Africa) where the river daylights.

2. Materials and Methods
2.1. Study Area and Sampling Site

The Jukskei River is one of the ten river catchments in Metropolitan Johannesburg and
forms part of the catchment of the Limpopo River, which flows into the Indian Ocean. It
flows north through the Bezuidenhout Valley, whereby the river is covered by stormwater
culverts [5]. It then flows through several residential areas and informal settlements with
no or limited access to municipal services. The Jukskei passes Alexandra, an informal
township—a severely overpopulated area, which creates pressure on infrastructure and
blocked sewers, causing overflow into the river [3]. The Jukskei flows in a northerly
direction where it joins the Crocodile River, which then flows into the Hartbeespoort Dam.
Three significant tributaries that join the Jukskei before it enters the Crocodile River are the
Braamfontein Spruit, Klein Jukskei Spruit, and the Modderfontein Spruit [3]. The Jukskei
River catchment receives effluent from industries and runoff in vast amounts from illegal,
unmanaged waste dumps, and agricultural practices [11]. The Jukskei River catchment is
largely urbanised and industrialised (Figure 1) [12].

Two surface water samples (upstream and downstream) were collected each month
from June to August 2018 (winter and autumn season) at the section Jukskei River which
runs through Victoria Yards (Lorenzville, Central Johannesburg, South Africa). These sites
were selected because it was the only sites accessible to sample the daylight section of the
upper Jukskei River catchment. In this section, Victoria yards want to recycle the river
water for agricultural and recreational purposes. Figure 1 provides drone pictures of the
sampling sites and the geographical location of the catchment area.
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Figure 1. Drone visual and Geographical location of the upper Jukskei catchment study area (Courtesy of Joel Cruz and
Water for the future).

2.2. Sampling Collection

Six water samples were collected in sterile 250 mL sampling bottles with sodium
thiosulphate and kept at 4 ◦C en route to the laboratory. The water samples were sent
to SPECTRAU within the University of Johannesburg (UJ) to analyse the heavy metals,
also referred to as potentially toxic elements using inductively coupled plasma mass
spectrometry (ICP-MS). Water samples were sent to UJ Water and the Health Research
Centre (WHRC) for microbiology analysis.

The following physio-chemical parameters were analysed in this study, water temper-
ature, pH, electrical conductivity, total dissolved solids, and turbidity. The physio-chemical
analysis for temperature (◦C) (HI98129 pH/Conductivity/temperature, Hannah SA, Lux-
embourg), electrical conductivity (EC) (µs/m) (Hannah SA, Luxembourg), pH (Hannah
SA, Luxembourg), and total chlorine (mg/L) (Cyberscan TB1000, Eutech, Thermo Fisher
Scientific, Waltham, MA, USA) was performed on-site. Before taking measurements,
the instruments were calibrated according to the manufacturer’s instructions. Turbid-
ity (NTU) (YSI 900 Single Parameter Colorimeter, YSI, Yellow Springs, OH, USA) was
tested in the laboratory. Total dissolved solids (TDS) were calculated using the calculation:
TDS (mg/L) = [EC (µS/m)× 0.001 (dS/m)] [EC(dS/m)× 640 (EC < 5dS/m)] [13].

2.3. Microbial Analysis of Water
2.3.1. Isolation of Total Coliforms and E. coli

Samples were analysed within three hours of collection for bacterial quality using
the Colilert® Quanti-Tray/2000® (IDEXX, Westbrook, ME, USA). Enumeration of E. coli
from the water was carried out using 100 mL of water according to the manufacturer’s
instructions. The Colilert® Quanti-Trays®/2000 were incubated for 18 h at 35 ◦C. After



Int. J. Environ. Res. Public Health 2021, 18, 8537 4 of 19

incubation, the Quanti-Trays®/2000 were examined under a long wave (366 nm) ultraviolet
light, and wells that turned both yellow and fluoresced were counted as E. coli positive
(IDDEX, Westbrook, ME, USA) [14].

2.3.2. Isolation and Identification of Associated Bacteria

Water Samples were further cultured onto deoxycholate citrate agar (DCA), thio-
sulphate bile-salts sucrose agar (TCBS), and sorbitol MacConkey agar (SMAC) (Oxoid,
Hampshire, UK) at 37 ◦C aerobically for 24–48 h.

The resulting isolates were cultured onto Müller Hinton Agar (Oxoid, Hampshire,
UK) at 37 ◦C for 18–24 h. Samples were also cultured in duplicate on Campylobacter
blood-free selective agar and incubated at 42 ◦C (one aerobically and in 5–10% carbon
dioxide). Selected colonies from pure cultures were suspended in 0.45% saline solution
(bioMérieux Inc., Marcy l’Etoile, France), and the density was determined using the VITEK®

2 DensiCHEK™. Bacterial suspensions were adjusted to a 0.5–0.63 McFarland standard
for Gram-positive cocci and Gram-negative bacilli, and a 1.8–2.2 McFarland standard for
Gram-positive bacilli isolates.

Gram-positive bacilli and yeast isolated were identified using BCL and YST identifica-
tion cards, respectively, and the VITEK® 2 Compact automated system (bioMérieux Inc.,
Marcy l’Etoile, France). Antimicrobial susceptibility testing (AST) cards are unavailable
for yeasts and Gram-positive bacilli. Therefore, these isolates were not subjected to AST in
the present study. Gram-negative bacilli and Gram-positive cocci were identified using
GN and GP identification cards and subjected to AST using N256 and P645 AST cards,
respectively, and the VITEK® 2 Compact system (bioMérieux Inc., Marcy l’Etoile, France).
Details of categories and concentration ranges of antimicrobials tested using the AST-P645
and AST-N256 cards are shown in Tables S1 and S2 in the supplementary material.

The analysis was completed within 24 h, and isolates were identified using the VITEK®

2 Compact System software. Minimum inhibitory concentrations (MICs) for each antimi-
crobial tested against each isolate were interpreted as either susceptible (S), intermediately
resistant (I), or resistant (R). Isolates were then defined as exhibiting multidrug resistance
(MDR), extensive drug resistance (XDR), or pan drug resistance (PDR) according to the
guidelines set out by Magiorakos et al. [15].

2.4. Molecular Detection of Identified Bacteria
2.4.1. DNA Extraction and Multiplex Polymerase Chain Reaction (m-PCR)

The E. coli results from the Colilert® Quanti-Tray®/2000 were further classified as
diarrhoeagenic or commensal E. coli. DNA was extracted as reported by Omar et al. [14],
and 11 gene m-PCR was performed as written by Omar et al. [16]. Briefly, a total of
2 mL of the media was removed from up to ten positive E. coli wells of the Colilert
Quanti-Trays®/2000 with sterile 1 mL Neomedic disposable syringes with a mounted
needle (Kendon Medical Supplies, Sandton, South Africa) and aliquoted into 2 mL sterile
Eppendorf tubes. The tubes were centrifuged for 2 min at 13,000× g to pellet the cells
and the supernatant was discarded. DNA was extracted from the collected bacterial cells
using an adapted version of the guanidium thiocyanate/silica method and homemade
spin columns reported by Omar et al. [14]. DNA was eluted from the celite with 100 µL
Qiagen® elution buffer (Southern Cross Biotechnology®, Randburg, South Africa). The
extracted DNA was used as a template in all PCR reactions.

All m-PCR reactions were performed in a Biorad MycyclerTM (Dubai, United Arab
Emirates) thermal cycler in a total reaction volume of 20 µL. A hotstart multiplex PCR kit
(Qiagen®, Hilden, Germany) was used for the m-PCR protocol. Each reaction consisted
of 1X Qiagen® PCR multiplex mix (containing HotstartTaq® DNA polymerase, multiplex
PCR buffer, and dNTP mix); 2 µL of the primer mixture (0.1 lM of mdh and lt primers
[Forward (F) and reverse (R)), 0.2 lM of ial, eagg primers, astA primers, bfp primers, and
gapdh primers (F and R), 0.3 lM of eaeA and stx2 primers (F and R), 0.5 lM of stx1 and st
primers (F and R) [16]; 2 µL of sample DNA, 1 µL of gapdh cDNA and 5 µL PCR grade water.
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The reactions were subjected to an initial activation step at 95 ◦C for 15 min, followed by
35 cycles consisting of denaturing at 94 ◦C for 45 s, annealing at 55 ◦C for 45 s, extension at
68 ◦C for 2 min and final elongation at 72 ◦C for 5 min. DNA was visualised using a 2.5%
(w/v) agarose gel in TAE buffer (40 mmol/L Tris-acetate; 2 mmol/L EDTA, pH 8.3) with
0.5 lg mL−1 ethidium bromide. Electrophoresis was performed for 1–2 h in an electric field
strength of 8 V cm−1 gel and the DNA was visualised with UV light (Syngene, Cambridge,
UK). This procedure was followed for all the experiments except where stated differently.
The relative sizes of the DNA fragments were estimated by comparing their electrophoretic
mobility with that of the standards run with the samples on each gel, either with a 1 kB or
100 bp marker (Fermentas, Waltham, MA, USA) [16].

The Vibrio spp. was further classified as Vibrio cholerae 01 or 0139 as reported by
Ntema et al. [17]. The m-PCR targeted V. cholerae O1 and V. cholerae O139 rfb genes, ctxA
(cholera toxin), and the 16S rRNA gene. The Vibrio spp. PCR product Genomic DNA
was sent to Inqaba Biotechnical Industries S.A. (Pretoria, South Africa) a commercial NGS
service provider, for sequencing. Briefly, genomic DNA samples were PCR amplified
using a universal primer pair 341F and 785R—targeting the V3 and V4 region of the 16S
rRNA gene. The resulting amplicons were gel purified, end-repaired and Illumina-specific
adapter sequences were ligated to each amplicon. Following quantification, the samples
were individually indexed, and another purification step was performed. Amplicons were
then sequenced on the Illumina MiSeq platform, using a MiSeq v3 (600 cycle) kit. 20 Mb of
data (2 × 300 bp long paired-end reads) were produced for each sample. The BLAST-based
data analysis was performed using an Inqaba in-house developed data analysis pipeline.

2.4.2. Potentially Toxic Elements

A total of six water samples was analysed for potentially toxic elements using (ICP-
MS). The potentially toxic elements analysed were lithium, beryllium, boron, sodium,
aluminium, vanadium, chromium, manganese, iron, copper, nickel, cobalt, zinc, arsenic,
selenium, molybdenum, cadmium, uranium, and lead.

2.5. Statistical Analysis

Descriptive statistical analysis of the physio-chemical and microbiological parameters
was analysed to summarise the data obtained for the three months. Variations in physical
chemistry and microbiological parameters across sampling for the 3 months were analysed
by one-way analysis of variance (ANOVA). The statistical analysis was performed using
GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA).

3. Results and Discussion
3.1. Physio-Chemical Analysis

All the analysed physio-chemical parameter levels for recreational and irrigation water
were within acceptable limits according to the South African Water Quality guidelines [18].
No significant statistical variation was observed (p < 0.05) for the physio-chemical parame-
ters between the two sites (upstream and downstream). The water temperature ranged
from 13.07 to 19 ◦C (mean 15.9 ◦C) and did not show any significant variation (p = 0.184) for
June–August 2018. Although the water temperature is highly variable, it is an important
parameter in aquatic systems as it affects the rate of metabolic activities in organisms, it
can also increase the toxicity of certain chemicals in the water [18,19]. The temperature
recorded was within the range for aquatic ecosystems in the Jukskei catchment of 11.9 to
29.9 ◦C [5]. The pH ranged from 7.11 to 7.38 (mean 7.31) and did not show any significant
variation (p = 0.576). The pH stayed relatively consistent at the Jukskei River from 2009
as reported by Matowanyika et al. [5], with the same trend in pH also reported in the
Senqu–Orange River and Mohokare River [20]. The electrical conductivity ranged from 420
to 472 µS/m (mean 441 µS/m) with no significant variation (p = 0.148) shown. For most
freshwaters, EC ranges from 10 to 1000 µS/m, and elevated levels of above 1000 µS/m
can be seen in polluted water that receives large volumes of land runoff [21]. In streams
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and rivers, conductivity is affected by various factors such as type of soils, bedrocks, pres-
ence of inorganic dissolved solids sewage, and wastewater. The EC increased from 1994
to 2008 (30–80 µS/m) as reported by Matowanyika et al. [5] to 441 µS/m in the current
study. Total dissolved solids (TDS) ranged between 269 to 302 mg/L (mean 282 mg/L)
and did not show significant variation (p = 0.193). TDS increased from 10–104 mg/L in
2010 to 260–302 mg/L [5]. TDS is directly proportional to the concentration of EC and this
relationship concurs with the report from Chatanga et al. [20]. Total chlorine was 0 g/L and
turbidity ranged from 35.9 to 85.7 NTU (mean 50.4 NTU) (Table 1). Turbidity did not show
significant variation (p = 0.153) for June to August 2018. However, the turbidity increased
from 27.1 NTU in 2010 to a mean of 50.3 NTU [5]. Turbidity normally increases in South
African rivers during the rainy season. However, June–August is cold and dry. Increased
microbial load and anthropogenic activities such as road and bridge construction can result
in increased levels of turbidity and TDS [5,22].

Table 1. Descriptive statistics for the physio-chemical and microbiology results from June to August 2018.

Test Unit Min Max Mean Standard
Deviation

Physio-Chemical Analysis

pH 7.11 7.38 7.31 0.09

Turbidity NTU 35.9 85.7 52.4 5.5

Electrical conductivity µS/m 420 472 441 15.8

Temperature ◦C 13.8 19 15.9 0.64

Total dissolved solids mg/L 269 302.1 282 9.91

Microbiology Analysis

Total coliforms MPN/100 mL 4.1 × 106 3.9 × 107 1.8 × 107 3.5 × 106

Escherichia coli MPN/100 mL 8.9 × 105 4.0 × 106 2.1 × 106 1.3 × 105

3.2. Microbiology Analysis
3.2.1. Isolation of TC (Total Coliforms) and E. coli

Six water samples were analysed with the Colilert® Quanti-Tray®/2000 method for
the presence and microbial load of TC and E. coli. The TC counts ranged from 3.2 × 106

to 4.0 × 107 Most Probable Number (MPN/100 mL) (mean 1.8 × 107 MPN/100 mL) and
did not show any significant statistical variation (p = 0.103) for June–August 2018. E. coli
counts ranged between 8.9 × 105–4.0 × 106 MPN/100 mL (mean 2.1 × 106 MPN/100 mL)
(Table 1) and showed significant statistical variation (p = 0.048). These values are above
the South African Water Quality guidelines [19] for irrigation and recreational use. No
significant statistical variation was observed (p < 0.05) for TC and E. coli between the two
sites (upstream and downstream). The E. coli values detected in 2003 were in the range of
3 × 105 cfu/mL and in 2010 the values were 1 × 105 cfu/mL [5]. Microorganisms have
been reported to be positively related to turbidity, total suspended solids, and TDS [20].
This can be seen with the high levels of turbidity and TDS reported in Section 3.1. An
important factor that should be considered in disinfection is the turbidity of the water; the
reason is that when water contains colloidal particles, they may shield the microorganisms
from the action of the disinfection or react with the chlorine and in this way prevent
effective disinfection [23]. E. coli is generally regarded as a specific microbial indicator of
faecal pollution from humans and warm-blooded animals [24] but also have various highly
pathogenic types within the group capable of causing diseases such as diarrhoea, dysentery,
kidney failure, bladder infections, septicaemia, pneumonia, and meningitis [25,26].
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3.2.2. Isolation and Identification of Associated Bacteria
Microbiology Analysis

The WHO released its priority list of antibiotic-resistant bacteria grouped into three
tiers: critical high priority (Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneu-
moniae, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., Providencia spp., and
Morganella spp.), high priority (Enterococcus faecium, Staphylococcus aureus, Helicobacter pylori,
Campylobacter, Salmonella spp., and Neisseria gonorrhoeae) and medium priority (Streptococ-
cus pneumoniae, Haemophilus influenzae, and Shigella spp.) [27] Within these tiers, a group
of bacterial pathogens commonly referred to as the ‘’ESKAPE” pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter spp.) contribute significantly to the burden of disease in both
developed and developing countries due to their ability to carry and easily acquire multiple
antibiotic-resistant genes [28–31]. The organisms are opportunistic pathogens implicated in
both nosocomial infections and community-acquired outbreaks [32]. These pathogens are
of concern especially for vulnerable groups using untreated water. In Table 2, 129 isolates
were identified and confirmed with the VITEK® 2 Compact System, these isolates belong
to 35 different bacterial species. From Table 2, it can be seen that four out of six of these
‘’ESKAPE” pathogens were present in the water, namely Acinetobacter baumannii, Pseu-
domonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus. The table further shows
potential infections various other organisms can cause such as meningitis, gastroenteritis,
urinary tract infections, corneal infections, bloodstream infections, soft tissue, and skin
infections, etc.

Table 2. List of bacterial species (n = 35) identified and confirmed with the VITEK® 2 Compact System.

Organism Nr. of Isolate/s per Specie Associated Human Disease Reference

Acinetobacter baumannii 2

Bloodstream infection, Endocarditis, Meningitis,
Ophthalmitis/keratitis, Peritonitis, neumonia, Soft

tissue/skin infections, Urinary tract infections,
Wound infections

[33–35]

Acinetobacter lwoffii 1 Gastroenteritis, Meningitis, Pneumonia, Septicaemia,
Skin infections, Urinary tract infections [36]

Aerococcus
viridans 2 Bacteraemia, Cellulitis, Endocarditis, Soft tissue

infection, Urinary tract infections [37–41]

Aeromonas
sobria 10 Bacteraemia, Sepsis, Traveller’s diarrhoea, Urinary

tract infections [42,43]

Aeromonas
hydrophila 22 Gastroenteritis, Peritonitis, Sepsis, Septicaemia,

Traveller’s diarrhoea [42,43]

Aeromonas
caviae 22 Keratitis, Traveller’s diarrhoea, Urinary tract

infections [42,43]

Bacillus
pumilus 1 Catheter infection, Necrotic skin infection, Sepsis,

Septic arthritis [43–47]

Candida
lusitaniae 1 Fungemia and Prosthetic joint infection [48,49]

Citrobacter braakii 4 Bacteraemia and Urinary tract infections [50,51]

Citrobacter freundii 4 Bacteraemia, Diarrheal, Urinary tract infections [52–54]

Comamonas
testosterone 1 Appendicitis, Bacteraemia, Catheter-related infection,

Cholesteatoma, Endocarditis, Gastroenteritis [55–58]

Enterobacter asburiae 1 Bloodstream infections, Osteomyelitis, Pneumonia,
Soft-tissue and skin infections, Urinary tract infections [59]

Enterococcus faecalis 8 Sepsis and Urinary tract infection [60]

Enterococcus
hirae 1 Bacteraemia, Pyelonephritis, Urinary tract infection [61–64]
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Table 2. Cont.

Organism Nr. of Isolate/s per Specie Associated Human Disease Reference

Escherichia coli 14 Diarrheal, Gastroenteritis, Urinary tract infections [53,54,60,65]

Gemella
haemolysans 1 Bacteraemia, Brain abscess, Endocarditis [66–68]

Gemella
morbillorum 1 Brain abscess, Endocarditis, Keratitis [69–71]

Klebsiella
pneumoniae 1

Bacteraemia, Cystitis, Meningitis, Pneumonia,
Pyelonephritis, Pyogenic liver abscess, Sepsis,

Septicaemia, Soft-tissue infections, Urinary tract
infections, Wound infections

[72–75]

Kluyvera
ascorbate 2 Diarrheal, Sepsis, Urinary tract infection [76,77]

Kluyvera
cryocrescens 1 Bacteraemia, Cholecystitis, Sepsis, Soft-tissue

infections [76–78]

Micrococcus
luteus 4 Brain abscess, Meningitis, Myocarditis, Periprosthetic

joint infection, Pyogenic liver abscess [79–81]

Providencia
alcalifaciens 1 Diarrheal, Gastroenteritis, Keratitis [82–85]

Pseudomonas
aeruginosa 2 Respiratory tract infections, Soft-tissue infections [86]

Pseudomonas fluorescens 2 Bloodstream infection and Meningitis [87–89]

Pseudomonas stutzeri 2 Corneal infection, Endocarditis, Prosthetic joint
infection, Urinary tract infection [90–94]

Raoultella planticola 2
Bacteraemia, Bloodstream infections, Cholecystitis,

Necrotizing fasciitis, Pancreatitis, Pneumonia, Urinary
tract infection

[95–99]

Serratia
plymuthica 2 Osteomyelitis, Sepsis, Urinary tract infection [100,101]

Shewanella
putrefaciens 2 Bacteraemia, Ear infection, Skin, and soft-tissue

infections [102]

Staphylococcus aureus 1

Endocarditis, Food poisoning, Meningitis,
Osteomyelitis, Pneumonia, Prosthetic joint infection,

Septic arthritis, Septic shock, Septic Thrombophlebitis,
Skin and soft-tissue infections, Skin disease,

Staphylococcal scalded skin syndrome, Systemic
infections, Toxic shock syndrome, Urinary tract

infections

[47,65,103–
107]

Staphylococcus
auricularis 1 Bacteraemia, Periprosthetic joint infection, Vaginitis [108–110]

Staphylococcus cohnii 4 Bacteraemia, Meningitis, Urinary tract infections [111–113]

Staphylococcus
haemolyticus 2

Bloodstream infections, Endocarditis, Meningitis,
Peritonitis, Prosthetic joint infection, Urinary tract

infections, Vaginitis

[103,106,107,
110,114,115]

Staphylococcus
vitulinus 2

Bloodstream infections, Endocarditis, Pelvic
inflammatory disease, Peritonitis, Prosthetic joint
infection, Septic shock, Urinary tract infections,

Wound infections

[114,116]

Staphylococcus
warneri 1

Bloodstream infections, Discitis, Endocarditis,
Infection of CSF shunts, Meningitis, Osteomyelitis,

Peritonitis, Prosthetic joint infection, Sepsis, Subdural
empyema, Urinary tract infections

[103,106,108,
114,117–121]

Vibrio cholerae 1 Cholera and Gastroenteritis [65,105,122]
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Figure 2 provides the antibiotic resistance profile for the 33 isolates (16 bacterial
species) isolated and identified from the water samples. The bacteria selected are from a
community of bacteria that are present in the water; the antibiotic profile does not indicate
that all the genus or species in the water are resistant or susceptible to the antibiotics, only
the selected colonies have the below antibiotic profile (Tables S3 and S4).

Figure 2. Percentage of bacterial isolates (n = 33) that are susceptible (S), intermediately resistant (I),
or resistant (R) to each of the listed antibiotics.
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High levels of resistance were noted in the 25 isolates subjected to antimicrobial
susceptibility testing (Figure 2). Of these, 8% (2/25) showed resistance to none of the
antimicrobials in any of the categories tested, and 20% (5/25) showed resistance to an-
timicrobials in either one or two categories. A further 72% (18/25) were identified as
MDR isolates and were resistant to one or more antimicrobials in between three and ten
categories of antibiotic drugs. No XDR or PDR isolates were identified after susceptibil-
ity testing and interpretation. Of the 18 MDR isolates, 44% (8/18) were categorised as
extended-spectrum β-lactamase (ESBL) producers, 33% (6/18) of isolates showed a high
level of Amp C resistance, and 22% (4/18) were shown to be extended-spectrum carbapen-
emase producers or carbapenem impermeability. The resistance of two isolates to colistin is
worrying as this is an antimicrobial of last resort for the treatment of MDR and XDR organ-
isms [123,124]. The results of the present study correlate with those of Müller et al. [125],
which show these highly antimicrobial-resistant organisms to be present in wastewater
and environmental water sources. The majority of MDR isolates were clinically significant
species—i.e., those capable of causing infection in humans. This is problematic as treatment
of infection with organisms that are resistant to antibiotics is more complex and increases
morbidity and mortality of infected patients [126]. The most common antibiotic-resistant,
clinically relevant gram-negative species comprise ESBL- and carbapenemase-producing
Enterobacteriaceae, such as Klebsiella pneumoniae and E. coli, as well as non-fermenters
such as Pseudomonas aeruginosa and Acinetobacter baumannii [127], some of which form part
of the ‘’ESKAPE” pathogens and the WHOs priority list of antibiotic-resistant bacteria.
The high prevalence of multidrug resistance (MDR) in the isolates subjected to AST is of
concern as the bacteria isolated are responsible for community and nosocomial infection.
Antimicrobial resistance increases patient morbidity and mortality and increases [126] the
financial burden of disease, which is especially significant in low-income countries such
as South Africa [128]. MDR was defined as non-susceptibility to one or more antimicro-
bials in three or more drug categories. Extensive drug resistance (XDR) was defined as
non-susceptibility to one or more antimicrobials in all but two drug categories. Pan drug
resistance (PDR) was defined as non-susceptibility to one or more antimicrobials in all
drug categories. These definitions do not include intrinsic resistances displayed by some
genera to specific antibiotics, and, therefore, only consider acquired resistance [15].

Molecular Biology Analysis

All six water samples detected the following potential pathogenic E. coli: Atypical
Enteropathogenic E. coli (EPEC), Enterohaemorrhagic E. coli (EHEC), Enteroinvasive E. coli
(EIEC), Enteroaggregative E. coli (EAEC), and toxin astA that can be detected in both
commensal and pathogenic E. coli.

E. coli is one of the best known and earliest described human opportunistic pathogenic
bacteria. It is also a specific microbial indicator of faecal pollution from humans and warm-
blooded animals [24]. E. coli is divided into intestinal pathogens [Diarrhoegenic E. coli
(DEC)] and extraintestinal E. coli (ExPEC), causing a variety of infections in both animals
and humans, including urinary tract infections, meningitis, and septicaemia [129,130].
There are at least eight DEC pathotypes and four ExPEC [131,132]. Eight pathotypes are
diarrhoeagenic, based on their pathogenic mechanisms; however, five DEC were selected
for this study based on their importance for surface-water pathogenicity. These include the
EPEC, ETEC, EHEC, EAEC, and EIEC [133,134].

The Vibrio cholerae was confirmed with m-PCR and 16S rDNA sequencing as a non-
pathogenic environmental isolate. Vibrio spp. has been associated with domestic sewage in
the river and most Vibrio spp. enumerated are of animal origin [135].

Potentially Toxic Elements

A total of six water samples was sent to SPECTRAU within the UJ (the University
of Johannesburg) to analyse the potentially toxic elements. Table 3 provides the results
compared to the specified drinking, recreational, and irrigation water guidelines [18,19].



Int. J. Environ. Res. Public Health 2021, 18, 8537 11 of 19

The results show that the potential toxigenic elements were within the DWS water quality
guidelines for irrigation, recreation, and drinking purposes, except for Li, Ni, Zn, Pb, and
Na for irrigation, recreation, and drinking purposes [18,19].

The concentration of uranium is very low, which means that the water is non-
radioactive. Sodium is above the guideline for drinking water and irrigation water.
The guideline for drinking water is <200 µg/L, and the guideline for irrigation water
is 2000 µg/L, but the average concentration for sodium is 45,545 µg/L. Sodium is not
suitable for irrigation; it causes a shortage of calcium and potassium in the soil. These
are essential nutrients for plants. The deficiency of these nutrients results in the poor
growth of plants. Sodium is also bad for the body if it is used excessively. It causes nausea,
vomiting, and can cause heart failure [2]. According to da Silva et al. [3], high levels of
sodium, above 400 mg/L with an alkaline pH and an increased level of phosphate, is a
suitable environment for Faecal Coliforms, thus elevating the number’s present in the
Jukskei River. The contribution of increased levels of sodium in the water could be from
soaps and sodium salts [3].

Zinc is above the guideline for drinking, recreation, and irrigation water. The guideline
for drinking water is <5 µg/L, and the guideline for irrigation water is 100–2000 µg/L,
whereas the average concentration for zinc is 116.68 µg/L. Toxicity in humans may occur if
zinc concentration approaches 400 mg/kg and 3 mg/L in soil and water, respectively. This
is characterised by symptoms of irritability, muscular stiffness and pain, loss of appetite,
and nausea [22,136].

Lead is above the guideline for drinking water. The guideline for drinking water
is <10 µg/L, whereas the concentration of lead in different samples was higher than the
guideline. It has concentrations of 15.2 µg/L and 21.6 µg/L. Lead is highly toxic, and its
widespread use has caused extensive environmental contamination and health problems in
many parts of the world [22]. The common symptom of lead poisoning is anaemia because
lead interferes with the formation of haemoglobin, and prevents iron uptake. Higher levels
of lead may induce permanent brain damage and kidney dysfunction. Over time, the
lead substitutes Ca in the bones which acts to store the lead. Then in old age, the lead is
reactivated by the slow dissolution of the bones [22].

Lithium is above the guideline for irrigation, recreation, and drinking. The guide-
line for irrigation and recreation is <2500 µg/L, whereas the average concentration is
2710 µg/L. Lithium is a naturally occurring element in drinking water mainly originating
from weathering of minerals in the subsurface. Lithium, in most of the world’s major
rivers, is derived predominantly from silicate weathering, and the fraction is derived from
carbonate rocks [137].

Nickel is above the guideline for drinking, irrigation, and recreation water. The
guideline is 200–2000 µg/L, whereas the average concentration for nickel was 2279 µg/L.
Nickel is noted in exceptional cases of release from natural or industrial nickel deposits
in the ground. Nickel has an extensive range of carcinogenic mechanisms, which include
regulation of transcription factors, controlled expression of specific genes, and generation
of free radicals [22]. Nickel is implicated in regulating the expression of specific long
non-coding ribonucleic acids (RNA). It has also been demonstrated that nickel can generate
free radicals, contributing to carcinogenic processes [138].

Between 1987 and 1990, the Urban Renewal Plan was implemented at the Jukskei River
to reduce pollution load. A water reticulation system, water-borne sewage pipes, electrical
reticulation, and ablution facilities were provided to all dwelling units in Alexandra Township
within the Jukskei River catchment. This increased the number of residents, thus increasing
the urban runoff and pollution load in the river [139]. Furthermore, a potential source for
water pollution includes wastewater effluent and hazardous waste from manufacturing
industries, and the collapse of the stormwater and wastewater infrastructure, which lies above
each other, thus flowing as one when flowing out of the city centre [140]. This has several
environmental impacts, such as excess storm-runoff which reaches the river bringing along
the pollutants and toxicants from neighbouring land uses including industry or mining [3].
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Table 3. Results of the ICP-MS potentially toxic elements.

Sample Id Li 7
µg/L

Be 9
µg/L

B 11
µg/L

Na 23
µg/L

Al 27
µg/L

V 51
µg/L

Cr 52
µg/L

Mn 55
µg/L

Fe 57
µg/L

Co 59
µg/L

Ni 60
µg/L

Cu 63
µg/L

Zn 66
µg/L

As 75
µg/L

Se 82
µg/L

Mo 98
µg/L

Cd 111
µg/L

Pb 208
µg/L

U 238
µg/L

Upstream 1st 4.097 <0.1 35.5 48,282 68.9 1.3 0.6 52.4 211 0.6 3.403 15.2 23.8 0.8 <0.1 0.5 <0.1 1.1 0.5

Downstream 1st 3.254 <0.1 45.0 49,581 77.1 1.4 0.6 50.6 173 0.6 3.121 25.0 37.6 0.6 <0.1 0.5 <0.1 0.9 0.7

Upstream 2nd 4.340 <0.1 12.7 39,586 85.3 1.5 0.6 51.8 220 0.6 3.470 28.5 267 0.7 <0.1 1.4 0.2 21.6 1.1

Downstream 2nd 4.507 <0.1 8.7 44,734 112 2.3 0.8 55.6 257 0.7 3.665 24.2 255 1.0 <0.1 1.4 0.2 15.2 1.0

Upstream 3rd 2.9 95.6 <0.1 54,168 74.3 1.2 0.8 53.1 166 0.6 5.0 10.2 40.3 0.3 <0.1 0.5 <0.1 1.2 0.7

Downstream 3rd 3.2 106.6 <0.1 46,958 64.8 1.1 0.7 54.3 221 0.5 7.8 9.6 48.7 0.2 9.4 0.5 <0.1 1.6 0.6

SANS 241 Drinking water
Guideline (SABS, 2015) <2400 * * <200 <300 * <50 <100 <2000 * <70 <2000 <5 <10 <40 * <3 <10 <30

SA Irrigation water
guideline (DWAF, 1996) <2500 100–

5000
500–
1000 2000 5–

20,000
100–
1000 100 20–

10,000
500–

20,000 50–500 200–
2000

200–
5000

100–
2000 100 20–

50 10–50 10–50 200–
2000 10–100

Note: * no value provided from guideline.
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4. Conclusions

The aim was to investigate the effect water from the city of Johannesburg has on the
water quality flowing to the lower Jukskei River catchment. The results show that even
though the physical chemistry was within the South African guideline limit, the detection
levels have increased from 2010 to 2018 for EC, TDS, and turbidity. Microorganisms have
been reported to be positively related to turbidity and TDS. This can be seen with the TC
and E. coli and the identification of associated bacteria. The TC and E. coli values were
above the DWS 1996 guidelines for recreational and agricultural use and SANS 241-2:2015
guidelines for drinking water. Potential pathogenic E. coli, the ‘’ESKAPE” pathogens,
and various associated pathogenic organisms have also been detected that can cause
gastrointestinal diseases, traveller’s diarrhoea, skin, wound, and urinary tract infections,
pneumonia, and various other diseases. These organisms detected have various levels of
resistance when subjected to antimicrobial susceptibility testing. Most published articles
on river water quality analysis analyse the microbial indicators to determine the extent of
the pollution load and assume that pathogenic bacteria are present. In this study, results
show the importance of microbial pollution in the Jukskei River in which the potential
source includes domestic sewage and wastewater effluent.

For the potentially toxic elements analyses, Lithium, Nickel, Zinc, Lead, and Sodium
were above the South African irrigation, recreation, and drinking water quality guidelines
if the water is used for these purposes. Lead is highly carcinogenic, and Nickel causes cell
damage and affects carcinogenic processes. The toxicity of potentially toxic elements could
be acute, while others could be chronic after long-term exposure.

The water quality of river systems is crucial, given that rivers are systems that connect
communities in space. Activities upstream have consequences on downstream users
and systems. The Jukskei River water is a potential threat to people using the river as a
source of recreational, agricultural, and domestic water. Furthermore, bioaccumulation
of pollutants can occur in the food chain. The water is also a threat to aquatic ecosystem
health and integrity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18168537/s1, Table S1: Details of categories and concentration ranges of antimicrobials
tested using the AST-P645 card, Table S2: Details of categories and concentration ranges of antimicro-
bials tested using the AST-N256 card, Table S3: Antimicrobial susceptibility profiles Gram-positive
cocci subjected to AST, and Table S4: Antimicrobial susceptibility profiles Gram-negative bacilli
subjected to AST.
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