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Abstract: Knowledge of the kilometers traveled by vehicles is essential in transport and road safety
studies as an indicator of exposure and mobility. Its application in the determination of user risk
indices in a disaggregated manner is of great interest to the scientific community and the authorities
in charge of ensuring road safety on highways. This study used a sample of the data recorded
during passenger vehicle inspections at Vehicle Technical Inspection stations and housed in a data
warehouse managed by the General Directorate for Traffic of Spain. This study has three notable
characteristics: (1) a novel data source is explored, (2) the methodology developed applies to other
types of vehicles, with the level of disaggregation the data allows, and (3) pattern extraction and
the estimate of mobility contribute to the continuous and necessary improvement of road safety
indicators and are aligned with goal 3 (Good Health and Well-Being: Target 3.6) of The United
Nations Sustainable Development Goals of the 2030 Agenda. An Operational Data Warehouse was
created from the sample received, which helped in obtaining inference values for the kilometers
traveled by Spanish fleet vehicles with a level of disaggregation that, to the knowledge of the authors,
was unreachable with advanced statistical models. Three machine learning methods, CART, random
forest, and gradient boosting, were optimized and compared based on the performance metrics of
the models. The three methods identified the age, engine size, and tare weight of passenger vehicles
as the factors with greatest influence on their travel patterns.

Keywords: kilometers traveled; passenger vehicles; CART; random forest; gradient boosting; predic-
tion; mobility pattern

1. Introduction

Spain, similarly to other countries in Europe and the world, has intensified the ap-
plication of policies aimed at the reduction of the number of road accidents and victims,
and has been highly successful. The country has been among the lowest in ranking for the
deaths per million inhabitants indicator for EU-28 countries since 2013 [1]. For exposure, an
analogous indicator does not exist in Europe since the denominator (exposure) is generally
a quantity estimated globally and is difficult to obtain if it is related to values from groups
of interest.

The achievement of new road safety goals requires specific measures aimed at areas
and groups with different characteristics, and this creates the need to improve knowledge
on the real risk levels of user groups, defined by gender or age criteria, and of types and
construction characteristics of vehicles, performance, and effectiveness of security systems,
among other factors. This more disaggregated analysis approach faces the problem and
difficulty of having data available to assess the real exposure levels of the specific groups
as a starting point for the adoption of more appropriate measures for each situation.
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In road safety analysis, three dimensions are considered: exposure, accident risk, and
loss [2,3]; where accident risk is determined by the ratio between the number of accidents
and exposure. The DRAG (Demande Routière, Accidents et Gravité) methodology has
developed models in a multi-layer structure integrating the three main road safety dimen-
sions (exposure, accident frequency, and severity). It was first used by Gaudry [4] for the
province of Quebec under the name DRAG-1; it was also applied in the study of accidents
on Spain’s interurban network [5] and specifically in vans [6]; in Algeria it was used in
the construction of a first country-wide model of demand for road use and of road safety
outcomes [7].

In practice, “exposure” refers to distance travelled, time spent travelling, or number
of vehicles present on the road, and these measures are of the utmost importance when
determining if a given driver group (by age, vehicle in use, gender, etc.) suffers a higher
proportion of road crashes or is more prone to injury than others, accounting for differences
in crash risk and in exposure to risk [8,9]. The groups with a high number of crashes per
year are identified from data extracted from the crash databases maintained by official
agencies or departments, such as DGT in Spain.

Despite their importance, the exposure data are far from perfect due to the difficulties
in acquisition and availability, particularly in the more specific (restricted) groups of
drivers or with several risk combinations [10,11]. This is especially an issue in countries
such as Spain, where the collection of the necessary information (for example, mobility
surveys) for the direct determination of exposure is not carried out on a regular basis. Thus,
studies related to accident risks in different locations, such as Spain [12–15], Kentucky [16],
Queensland [17], and France [18], used quasi-induced exposure, which is developed solely
from the accident data themselves [19], although it implies that the underlying assumptions
are not explicitly validated before the exposure measurement is adopted [20]; responsibility
assignment studies [21,22] and other works reviewed by Jiang [23] have used quasi-induced
exposure.

It is clear that the risk factors of some groups of users or vehicles cannot be assessed
if the accident data cannot be related to the exposure of the members of those groups,
expressed, for example, in vehicle-km or person-km traveled, since this value is not
available in databases and is not easy to estimate.

In 2014, a group of researchers from the University Institute of Automobile Research
Francisco Aparicio Izquierdo (INSIA-UPM, for its initials in Spanish) developed a method-
ological approach to analyze the data recorded in the Vehicle Technical Inspection (ITV,
for its initials in Spanish) Centers and used it to infer the mobility from a small sample
of articulated buses or coaches in the framework of a research project for the General
Directorate for Traffic of Spain (DGT) [24–27]. In 2017, the DGT published a brief analysis
of the relationship of kilometers traveled with vehicle age and type.

The general objective of this study was to determine the exposure of passenger cars,
measured by the number of Vehicle Kilometers Traveled per year (VKT), with the degree of
disaggregation allowed by the data provided by the DGT and collected in ITV centers, and
detect possible differences in the mobility of passenger cars, providing valuable information
for applications in road safety studies.

Since the preparation of the data for the models is a very important task, the criteria
for cleaning the raw data when creating “clean” databases are presented here. This study
applied models based on supervised Machine Learning techniques: Classification and
Regression Trees (CARTs), Random Forest (RF), and Gradient Boosting model (GBM), for
the prediction and uncertainty levels of the VKT by passenger vehicles in Spain.

This article is organized as follows: the second section reviews the state-of-the-art
of the application of kilometers traveled by vehicles as a measure of exposure and the
applications to the data collected in ITV centers. The third section explains the methodology
applied in the development of this study. The fourth section presents and discusses the
results. Lastly, the conclusions are presented.
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2. Literature Review

The number of vehicle kilometers traveled is a key indicator with direct applications,
such as in estimating mobility levels, understanding vehicle use, and establishing its
influence on accident rates and the environment. However, in addition to its application to
accident and environmental studies, it extends to the areas of sustainable development and
quality of life. Other fields of application include the elaboration of regional, national, and
international policies, infrastructure management and urban planning, traffic and transport
management, and land use planning [28].

The kilometers traveled can be estimated with methods based on traffic measurements,
such as odometer readings and traffic density measurements, as well as with methods
not based on traffic measurements, such as household/driver surveys and fuel sales [29].
However, it should be noted that, in practice, the availability and level of disaggregation of
kilometers per person and vehicle can vary significantly and depends highly on the type
and characteristics of the data collection method [30].

The odometer reading method has the advantage of accurate records but some disad-
vantages: a very intensive use of resources; the possibility of erroneous readings, annota-
tions, transcriptions, and alteration of odometers; inspected vehicles may be abandoned or
deregistered, which reduces the sample size and the number of observations. In addition,
this method does not allow association between geographic data and the travel variables
measured [29].

A source of growing interest is the records from ITV centers, which have the odometer
readings and can also provide important additional information regarding use, property,
location, performance, and breakdowns, among others. Thus, the information collected in
inspection centers can be used by researchers in the transport and road safety field.

In the study of traffic accidents, the number of kilometers per person or vehicle is
probably the most frequently preferred measure of exposure, with the practical advantage
that, in theory, it is available at the desirable level of disaggregation. However, in practice,
this is difficult but can be significantly improved by taking advantage of additional data
sources such as odometer readings recorded in ITVs [30]. Considering that the improve-
ment of vehicle safety is among the objectives of ITV implementation, it can be evaluated
by combining the data recorded in ITVs, with breakdowns and accident records [31–33]. In
addition, ITV records can be used to search for mobility patterns, in relation to kilometers
traveled and vehicle age [34], or the differences between travel patterns, depending on rural
and urban areas and the dependence on vehicle age [35]. It is even possible to establish
relationships between the kilometers traveled and the frequency of accidents involving
drivers of different ages [36].

The kilometers traveled are applied in the analysis of the ecological properties of the
vehicles, through the life cycle assessment method, considering the relationship between
the vehicle’s mileage and its failure rate [37]. The study of gas emissions is becoming
increasingly important in the environmental and quality-of-life area due to the impact on
health and the environment. In the study of greenhouse gases, the number of kilometers is
used to estimate CO2 emissions of the total vehicle population [38] and to obtain future per-
spectives [34]. In addition, CO, NOx, PM, and VOC emissions by vehicle category can be
estimated [39] and, depending on the available information, their evolution over time can
be analyzed by geographical area [40]. In addition to the problems caused by emissions of
polluting gases, relationships have been found between kilometers traveled and the risk of
being overweight or obese for segments of the population [41]. ITV records allow the study
of the relationships between vehicle age, engine size, fuel type, and kilometers traveled,
among others, as well as the probability of failing the gas emissions test [42–44]. Moreover,
it is possible to determine the relationship between vehicle age and the noise levels emit-
ted [45]. These studies make it possible to identify the most polluting vehicle groups and
their characteristics, for which the kilometers traveled must be accurately estimated data,
allowing environmental researchers or air quality administrations to understand the real
situation of vehicle use and to evaluate air pollution control policies [46].
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The studies of pollutant emissions and accidents provide information for the recom-
mendation of vehicle inspection policies, which makes it possible to evaluate time intervals
between inspections [47] or determine the conditions to deregister the oldest vehicles [48].
The records of the ITVs, which in theory should be compiled at yearly intervals (depending
on vehicle age according to the regulations), could lead to proposals for the optimization of
the intervals between inspections, in shorter or specific times, according to the use patterns
of the vehicles [49,50].

The studies of infrastructure management, urban planning, and land use management
also benefit from the knowledge of the kilometers traveled by the vehicle, since it can
be used to establish the relationship between travel behavior and built-in environmental
factors [51], and how this relationship can influence the choice of place of residence [52–54].
In addition, the kilometers traveled help evaluate urban models, such as “transit oriented
development” and “Park and Drive” [55], that seek to reduce dependence on private
vehicles. The congestion relief strategy through the increase in road capacity can be
evaluated by analyzing the effect on the kilometers traveled [56].

As a result of the literature review, it was identified that the survey method has
been used to obtain data [36,38–41,46,51–56] and is potentially subject to bias [35,49]. Its
massive application to road safety studies in practice becomes impossible and economically
unfeasible, limited by the volume and geographical origin of the same [34]. In other
studies [31–33,42–45,47–49], the data have been obtained from the ITV centers, presenting
as advantages the possibility of matching with other data sources (accident records) [31,32]
and the follow-up of individual vehicles through the ITV test history [35], although this
depends on the good quality of the data, and reliable data cannot be obtained for years prior
to the implementation of mandatory ITV [33]. It has also been found that the information
from ITV records is fragmented in local jurisdictions, limiting the geographical scope of
the studies; on the other hand, the data obtained in ITVs have been used in accident and
emission studies but not for mobility estimation.

In Spain, as in other countries, ITV records are stored for the whole country, but have
not been exploited as a source of data in mobility studies. This motivated the development
of a methodology in the present work that shows the importance and applicability of
ITV data, with satisfactory results in the estimation of mobility. In addition, this study
recommends the improvement of the collection process with complete and systematic
records of the data and the integration of the records of the jurisdictions that have not been
integrated at present.

3. Materials and Methods
3.1. Methodology: Flow Diagram

Figure 1 shows the four-stage methodology applied in this study: Stage 1: data
preparation, Stage 2: analytical data exploration, Stage 3: construction of selected Machine
Learning models, and Stage 4: predictions. The methodology is described in detail below.

The sample of passenger vehicles was processed and filtered to create an Operational
Data Warehouse (ODW), for the estimation and prediction of kilometers traveled by
vehicles in Spain using advanced statistical models. The analytical exploration of the
data was carried out considering a univariate and bivariate analysis of the ODW data.
CART, Random Forest, and Gradient Boosting models were fitted for the selection of
influence variables. The three models were compared based on performance metrics
of predictive accuracy: Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of
Determination (R2).
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3.2. Data Preparation

This stage required the application of raw data filtering techniques and the generation
of new variables of interest, as well as the elimination of variables and records according to
the criteria described for each procedure.

3.2.1. Raw Data

In Spain, the data of distances traveled by the fleet vehicles in different periods
are collected in the ITV files, and since 2011, the communication of these records to the
DGT is mandatory. In addition, from 2013 the DGT vehicle registrations are transmitted
telematically to all ITV stations.

The data used in this study were provided by the DGT and consist of 6,290,653 records
of technical inspection tests carried out on passenger vehicles in the period 1985–2015 and
handled in accordance with privacy policies. In addition to the pass or fail result of the
test, each record contains data regarding: vehicle identification, technical data, ownership,
inspection history, and defects history. Table 1 shows the 36 variables included in the
database provided, as well as the percentage of invalid data. It is observed that there
are variables with a high percentage of invalid data, which provide a perspective of the
possible research applications to Spanish fleet vehicles given comprehensive information
with objectives different from those of this study in the future.

The records of the information provided by the DGT were subject to a processing that
consists of a four-step methodology: (1) filtering, (2) generation of variables, (3) elimination
of variables, and (4) elimination of records. Figure 2 shows a summary of the processing
methodology described below.
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Table 1. Variables of the data provided by the DGT.

Field Variables: ITV Code (Description) No. of Records
with Zero Value

No. of Empty
Records

Percentage of
Invalid Records 1

Vehicle identification

newid (Vehicle Identification Code) 0 0 0.00%
FEC_MATRICULA (Date of registration) 0 0 0.00%
COD_CLASE_MAT 2 (Registration class) 6,258,376 0 99.49%

JEFATURA_MAT_NORM
(Province of registration) 0 0 0.00%

COD_MARCA_OBV
(Vehicle Make Identification) 0 0 0.00%

MODELO_OBV (Model description) 0 218 0.00%
COD_TIPO_OBV (Vehicle type) 0 0 0.00%

FEC_PRIM_MAT (Date of first registration) 0 0 0.00%
RENTING (Rental vehicle) 0 4,878,481 77.55%

Technical data

CO2 (CO2 emissions) 8135 6,161,708 98.08%
TIPO_ALIMENTACION (Fuel type) 2 6,268,947 99.65%
CILINDRADA_OBV (Engine size) 2481 0 0.04%

POTENCIA_OBV
(Tax horsepower of the vehicle) 3207 0 0.05%

TARA_OBV (Tare weight) 2529 0 0.04%
PESO_MAX_OBV (Maximum weight) 47,563 0 0.76%

NUM_PLAZAS_MAX
(Maximum number of seats) 2667 0 0.04%

MTMA (Maximum Technically Permissible
Mass) 5,114,835 0 81.31%

MMC (Mass in running order) 5,079,130 0 80.74%
KW (Maximum net power) 5,199,797 0 82.66%
RPP (Weight power ratio) 6,267,254 0 99.63%

CARROCERIA (Bodywork type) 0 6,272,460 99.71%
CONSUMO (Fuel consumption) 6,290,653 0 100.00%
DISTANCIA_EJES (Wheelbase) 6,271,015 0 99.69%

CODIGO_ECO (Eco code) 0 6,290,664 100.00%
CATELECT (Electric vehicle) 0 6,285,655 99.92%

AUTELECT (Electric vehicle range) 4494 6,286,140 100.00%

Ownership
FEC_NACIMIENTO (Date of birth of the

owner) 0 356,010 5.66%

PERSONA_JURIDICA (Legal entity) 0 5,933,259 94.32%

Technical inspection
history

FEC_INSPECCION (ITV date) 0 844,837 13.43%
NUM_ITV (Technical inspection number) 0 0 0.00%

CLAVE (Vehicle technical inspection result) 0 0 0.00%
COD_PROVINCIA

(Province of domicile of the vehicle) 0 80 0.00%

KM1 (Odometer reading) 0 3,954,130 62.86%

History of defects

DESC_GRUPO_DEFECTO_1
(Breakdown location group) 0 5,623,957 89.40%

DESC_DEFECTO_1
(Breakdown location element) 0 5,623,957 89.40%

COD_CALIFICACION_DEF_1
(Breakdown severity) 0 5,603,109 89.07%

1 Includes missing values and values equal to zero. 2 Not considered an invalid variable since the value of zero corresponds to a registration
type category.

Step 1: The filtering was performed using the information from variables CLAVE,
COD_TIPO_OBV, and COD_CLASE_MAT, which only include the information that cor-
responds to approved inspections, passenger vehicles, and ordinary registration to be
retained.

Step 2: Some variables of interest for the study are not explicitly found in the database
but can be obtained from the present data. They are listed below:
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• Periodicity: this variable indicates the days elapsed between two consecutive inspec-
tions; it is calculated from the difference between two consecutive values registered in
variable FEC_INSPECCION (ITV date).

• Kilometers traveled (VKT): this variable is determined by (1) where the difference
between the odometer reading of the first ITV (X1) and the second reading (X2) is
divided by periodicity (Y); this result is multiplied by 365 to obtain the kilometers in
annual terms.

KV =

(
X2 − X1

Y

)
·365 (1)

• Vehicle age: this variable indicates how old the vehicle is when the inspection is carried
out; it is calculated from the difference between the values registered in variable
FEC_INSPECCION (ITV date) and FEC_PRIM_MAT (date of first registration).

• Age of the driver: the value of this variable is determined by establishing the age of the
owner of the vehicle, with the reasonable assumption that, for passenger vehicles, the
owner is the driver. This variable is calculated from the difference between variable
FEC_INSPECCION (ITV date) and FEC_NACIMIENTO (date of birth of the owner)

Step 3: The criteria followed for the elimination of variables are: those that are not
considered of interest for the safety-related study, those with a high proportion of missing
data, those that make the analysis difficult, those that provide duplicate information, those
that contain codes that make it possible to identify the successive inspections, those used
for the generation of new variables, and those not applicable to the study. Table 2 lists the
eliminated variables grouped according to the six criteria adopted.

Table 2. Variables eliminated.

Variable Elimination Criteria Variables: ITV Code Description

Not considered of interest

PERSONA_JURIDICA Legal entity
DESC_GRUPO_DEFECTO_1 Breakdown location group

DESC_DEFECTO_1 Breakdown location element
COD_CALIFICACION_DEF_1 Breakdown severity

High proportion of missing data

RENTING Rental vehicle
CO2 CO2 emissions

TIPO_ALIMENTACION Fuel type
MTMA Maximum Technically Permissible Mass
MMC Mass in running order
KW Maximum net power
RPP Weight power ratio

CARROCERIA Bodywork type
CONSUMO Fuel consumption

DISTANCIA_EJES Wheelbase
CODIGO_ECO Eco Code

CATELECT Electric vehicle category

Analysis difficulty 1 COD_MARCA_OBV Make Identification
MODELO_OBV Model description

Duplicate information FEC_MATRICULA Date of registration
JEFATURA_MAT_NORM Province of registration

Used for identification

newid Vehicle Identification Code
COD_CLASE_MAT Registration class

CLAVE Vehicle technical inspection result
COD_TIPO_OBV Vehicle type

Used to generate new variables

FEC_PRIM_MAT Date of first registration
FEC_INSPECCION ITV date
FEC_NACIMIENTO Date of birth of the owner

KM1 Odometer reading
1 The information to relate database codes with the make or model of the passenger vehicle is not available.
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Step 4: When the data obtained up to this step were reviewed, anomalies were found in
the values of the generated variables (negative values, values equal to zero, and inconsistent
values). This was due to records with missing or null values and inconsistencies in the
recorded values, such as the decrease in odometer readings over time, or because the
inspection date was before the date of the first registration, etc. Reasonable value ranges
were established, such that the records with values outside them were eliminated. For
variable NUM_PLAZAS (number of seats), a four to nine range was established, based on
the definition presented in Royal Legislative Decree 6/2015, of October 30, which approves
the revised text of the Law on Traffic, Circulation of Motor Vehicles and Road Safety. For
variable CILINDRADA, values between 850 and 6600 cc were considered, given that they
are the smallest and largest engine sizes of passenger vehicles for sale in Spain. For variable
age of the driver, only values over 18 years old were considered, which is the minimum age
to obtain a driver’s license. For variable PERIODIOCITY, obtained in step 2, a maximum
limit of four years was established, considering that, in Spain, it is the maximum before an
ITV is required (new vehicles), and an upper limit of four years and a minimum of 60 days
was established according to Spanish traffic legislation, the latter being the time available
to fix the problems from an unfavorable ITV, and considering that in this period mileages
are abnormally low.

3.2.2. Numerical Summary of the Variables

The final ODW obtained contains the information for variables: engine size, number of
seats, age of the driver, province, vehicle age and tare, which were considered as predictive
variables in the development of the Machine Learning models for the estimation and
prediction of mobility in terms of kilometers traveled. Table 3 shows the descriptive
statistics of the predictor variables.

Table 3. Predictive variables of kilometers per year.

Variable Description Min Max Mean S.D.

Engine size Engine size 852 6292 1765 384.12
Seats Occupant capacity (discrete variable) 4 9 NA NA
Age Age of the driver 18 80 60.37 13.51

Province Province of registration (categorical variable) NA NA NA NA
Vehicle age Vehicle age 1 39.96 12.37 4.20

Tare Vehicle tare weight 620 2960 1219 224.85

3.3. Analytical Data Exploration

Consecutive records of ITV tests can be used to explore how the annual VKT has
evolved over time. The annual VKT evolution and its dependence on the vehicle attributes
(vehicle age, engine size, age of the driver, and tare) is established at the vehicle population
level. Each vehicle attribute has been segmented into ranges that were selected to coincide
with those used by the DGT in the publication of statistics related to the fleet vehicles.
Furthermore, it is possible to compare the evolution of the annual VKT between different
years to unveil existent relationships between the variables and their evolution over time.

Univariate Data Analysis

The analysis of the distribution of the data recorded for the vehicle age variable found
several peaks, as observed in Figure 3. These peaks occur when the age of the vehicle is 4,
6, 8, and 10 years and from this point on, every year. This is interesting since it coincides
with the age at which vehicles are required to go through their mandatory inspection in
Spain, which shows that there is compliance with the regulations.
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Figure 4 shows the distribution along time of kilometers traveled and the dependence
on vehicle attributes; this establishes the following mobility patterns:

(1) The relationship between annual VKT and vehicle age shows similar behavior when
the data of the five years studied are compared. It is observed that the annual VKT
of the vehicles decreases as vehicle age grows, with an inflection point in the range
of four to six years. Figure 4a shows two different behaviors in passenger vehicle
mobility: one for vehicles up to six years old and another for those over six years old.
The rate of mean VKT decline for newer vehicles is higher than for older vehicles. In
addition, vehicles less than four years old have approximately twice the VKT of those
that are in the 10 to 12 years range and approximately three times that of vehicles
older than 20 years;

(2) Figure 4b shows that vehicles with engine size larger than 1600 cm3 have the highest
VKT and are in approximately 30% better shape than those with engine size smaller
than 1200 cm3, which have the lowest mean VKT value. This information is relevant
and reveals a different mobility pattern depending on the composition of the passen-
ger vehicle fleet in terms of engine size, considering that, according to the registration
statistics published in DGT (2015), vehicles with an engine size in the range of 1200
to 1600 cm3 represent approximately 54% of the fleet and, if greater than 1600 cm3,
approximately 27%;

(3) Vehicles with higher tare weight travel more VKT per year, as Figure 4c shows, which
is logical considering that they tend to use engines with greater cubic capacity and
higher loads in long routes;

(4) There is a reduction in mobility as the age of the driver increases, as Figure 4d shows.
For ages in the range of 25 to 30 years, VKT values slightly higher than the rest are
observed, and from ages in the range of 55 to 60 years, there is an increase in the rate
at which VKT decline, traveling on average 1000 VKT less for every five-year increase.

At the total vehicle fleet level, a decrease in annual VKT with vehicle age was observed.
This behavior is similar in the different provinces of Spain. The comparison was carried out
through the distribution of annual VKT, of the different provinces, and in four vehicle age
ranges. As an example, the provinces of Barcelona, Madrid, and Valencia were compared.
The results are shown in Figure 5, where the shift of the distributions to the left indicates a
decrease in kilometers as vehicle age increases; this behavior is consistent in all provinces.
Differences in kilometers in the different provinces are also observed; however, as vehicle
age increases, they tend to disappear, which shows that passenger vehicles in Spain behave
similarly to those described in [13].
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3.4. Machine Learning Methods (MLM)
3.4.1. Classification and Regression Tree (CART)

In the area of transportation, the CART method has been applied to study the utility
factors of plug-in hybrid electric vehicles [57], to explore causes and effects of automated
vehicle disengagement [58], and in the development of models for vehicular traffic noise
prediction [59]. It has also been widely used to study road safety, as shown in the summary
presented by [60], which cites 14 studies related to traffic accidents.

Classification and regression trees (CARTs) are the traditional building blocks of data
mining and the classic algorithm for Machine Learning. An advantage of this method is
the simplicity of the resulting model, where the decision tree is very easy to understand
and interpret [61]. Tree-based methods divide the space of inputs into a set of polytopes
and then fit a simple model into each one [62]. In a regression problem, the observations
with similar response values are split into the same region, and a constant value (mean) is
predicted within each region. The appropriate variables and split points are selected by
minimizing the mean square error (MSE) as the loss function. Once the loss function is
minimized, the split variable and the split point can be selected [63].

In a regression problem, assuming that Y is the response variable predicted by inputs
p (x1, x2 . . . xp), the estimation resolution is carried out in four steps, as indicated in [63]:

1. Start with all the cases in a region, which is the root node.
2. At each internal node of the tree, a test is carried out on one of the predictors xj.
3. Depending on the test result, the observations are allotted to the left or right subregion

(branch) of the tree.
4. Step 3 is repeated until reaching a terminal node or leaf in which a prediction is made.

The R software was used to develop the model considering the fitting of hyperpa-
rameters “cp”, “minsplit” and “maxdepth”, which are thoroughly described in [64] and
summarized in Table 4.

Table 4. Hyperparameters used in the execution of the models.

Model Hyperparameters Description Value

CART

cp: Complexity parameter. 0.01
minsplit: The minimum number of observations that must exist in a node in
order for a split to be attempted. 5

maxdepth: Set the maximum depth of any node of the final tree, with the root
node counted as depth 0. 17

Random Forest

num.trees: Number of trees to grow. 200
mtry: Number of variables randomly sampled as candidates at each split. 5
min.node.size: Minimal node size. 10
sample.fraction: Fraction of observations to sample. 0.5

Gradient Boosting

n.tress: Integer specifying the total number of trees to fit. 1998
Interaction.depth: Integer specifying the maximum depth of each tree. 7
n.minobsinnode: Integer specifying the minimum number of observations in
the terminal nodes of the trees. 15

shrinkage: a shrinkage parameter applied to each tree in the expansion. 0.1
bag.fraction: the fraction of the training set observations randomly selected to
propose the next tree in the expansion. 1

3.4.2. Random Forest (RF)

The Machine Learning Random Forest method, developed by Breiman, has been
applied in several transport studies; [65] presents a summary of its application to studies
of travel mode choice behavior, prediction of traffic incidents, and travel time and flow
prediction, as well as pattern recognition. It has also been applied in the study of accidents,
to identify patterns of accident frequency and severity [66], accident likelihood and sever-
ity [67], and precrash maneuvers [68]. The RF method has also been applied in the field of
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plug-in hybrid vehicles and autonomous vehicles to study utility factors [57] and to assess
threats present in their operation, such as obstacles, pedestrians, and other vehicles [69].

The RF method is an ensemble of trees, such that each tree depends on the values of a
random matrix sampled independently and with the same distribution for all trees in the
forest [70]. In the RF environment, many classification and regression trees are built using
randomly selected training data sets and random subsets of predictor variables to model
results; in each split, only a randomly selected subset of the input variables is considered,
as opposed to standard CART, where all input is taken into account. The results from
each tree are aggregated to provide a prediction for each observation, which can be more
accurate than a single decision tree model [71].

A summary of the construction procedure of the RF model is presented as follows [62]:

1. For b = 1 to B:

a. A size N Bootstrap Z* sample of the training data is drawn.
b. An RF tree is grown to the bootstrapped data, recursively repeating the follow-

ing steps for each node of the tree, until the minimum node nmin is reached.

i. Select m variables randomly from the p variables;
ii. Choose the best variable/split point among m;
iii. Split the node into two child nodes.

2. Exit the set of trees.

The R software was used to develop the model, considering the fitting of hyperparam-
eters “num.trees”, “mtry”, “min.node.size”, and ”sample.fraction”, which are thoroughly
described in [72] and summarized in Table 4.

3.4.3. Gradient Boosting Model (GBM)

In the transport area, methods based on the boosting model have been applied to the
study of road characteristics [73] and environmental conditions [74] associated with the
occurrence of traffic accidents, in addition to the severity of the injuries produced [75,76].
Reference [77] analyzes the effects of driving behavior (characteristics of the driver and the
vehicle) on the level of polluting gases from the vehicles.

The GBM is an additive model that involves the sequential combination of a large
number of trees or estimators in a single composite model, adding the simple trees one at a
time without changing the data in the model; specifically, a repeated sampling is not used.
In this model, with each estimator added, the largest errors of the previous estimator are
corrected, and gradient descent is used to optimize the loss function.

For a regression model, the GBM algorithm works as follows [78]:

1. Select tree depth, D, and the number of iterations, K;
2. Compute the average response, ӯ, and use this as the initial predicted value for

each sample;
3. For k = 1 to K:

a. Compute the residuals, the difference between the observed value and the
current predicted value for each sample;

b. Fit a regression tree of depth D using the residuals as the response;
c. Predict each sample using the regression tree fit in the previous step;
d. Update the predicted value of each sample by adding the previous iteration’s

predicted value to the predicted value generated in the previous step.

4. The process ends.

The R software was used to develop the model, considering the fit of hyperparameters:
“n.trees”, “interaction.depth”, “n.minobsinnode”, “shrinkage”, and “bag.fraction”, which
are thoroughly described in [79] and summarized in Table 4.



Int. J. Environ. Res. Public Health 2021, 18, 8327 13 of 21

3.4.4. Performance Metrics for Model Comparison

Metrics applied to a set of continuous values were used to evaluate the predictions
made with the regression models. The evaluation metrics used are Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Coefficient of Determination (R2).

The MSE calculates the average of the squared difference between actual values (yi)
and the predictions made (ŷi); this is computed by (2).

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (2)

The RMSE is calculated by obtaining the square root of the MSE; this is performed to
ensure that the scale of the errors coincides with the scale of the response variable, which is
computed by (3).

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (3)

The MAE calculates the average absolute distance between prediction values (ŷi) and
actual values (yi); the MAE is computed by (4).

MAE =
1
N

N

∑
i=1

∣∣∣yi − ŷj

∣∣∣ (4)

The MAPE values are expressed as a percentage which facilitates conceptualization.
The MAPE metric is robust in the presence of outliers due to the use of the mean value in
the denominator; MAPE is computed by (5).

MAPE =
100%

N

N

∑
i=1

∣∣∣∣∣yi − ŷj

yi

∣∣∣∣∣ (5)

The Coefficient of Determination R2 is an evaluation metric closely related to MSE
and has the advantage of being scale-invariant. R2 is determined by (6).

R2 = 1 − MSE(model)
MSE(baseline)

(6)

To calculate the MSE (model), (2) is applied and the MSE (baseline) calculates the
average of the squared difference between actual values (yi) and the mean of yi (represented
by ӯ); the MSE (baseline) is computed by (7).

MSE(baseline) =
1
N

N

∑
i=1

(yi − y)2 (7)

4. Results

The selected models were compared based on the fit obtained, after the hyperparam-
eters of each of each model were optimized, and on the prediction errors. The models
were also compared in their ability to determine the importance of variables relevant to the
estimation and inference of the mobility. The GBM models were used to extract complex
patterns from the data.

4.1. Parameter Optimization

The values of several hyperparameters were optimized to improve the predictive
capacity of the models and facilitate their training. To find the optimal values, a grid
search algorithm was used to search automatically in a series of models adjusted with
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iterations of combinations of hyperparameter values; this evaluated the combination and
hyperparameter values that work best with the minimum error value criterion (RMSE).
Table 4 shows the values obtained with the optimization process and used in the different
models.

4.2. Performance of Prediction Models

The database was divided into two sets: one for the training data, which the algorithm
uses for learning, and the other for the test data, used to measure and compare the accuracy
of the models. To find the best split strategy, two proportions were used (80–20% and
70–30%). Training, which the algorithm uses for estimation, and the other test data were
chosen by stratified sampling to help the response variable achieve a balanced distribution
in both data sets. Each model was executed 20 times, and the results showed consistency.
The performance and comparison of the regression models were carried out using the
RMSE, MAE, R2, and MAPE metrics. Table 5 shows the average results of the metrics
obtained; the results show that there are no significant differences with different training
and test data proportions used in the models, and it is observed that the 80–20% proportion
performs slightly better, as outlined in the following results.

Table 5. Metrics comparison of the different regression models.

Model

Training–Test Proportion

80–20% 70–30%

RMSE 1 MAE 1 R2 MAPE RMSE 1 MAE 1 R2 MAPE

CART 1397.604 1146.963 0.670 0.084 1396.622 1147.038 0.669 0.084
Random Forest 1232.291 1042.873 0.744 0.076 1233.614 1043.207 0.742 0.076

Gradient Boosting 1220.328 1035.394 0.748 0.075 1221.665 1036.148 0.747 0.075
1 Units are kilometers.

4.3. Prediction and Errors

Figure 6 shows the scatter plot of the predicted and actual values with the application
of the CART, RF, and GBM models, where the coincidence of points with the line means
that the predicted value is equal to the actual one. The error produced in the prediction is
interpreted based on the distance that separates the points from the line. The GBM shows
a more uniform distribution of points on both sides of the line, which indicates a lack of
prediction bias and that it outperforms the CART and RF models. Thus, the GBM has a
better performance prediction, which is confirmed when the values of the metrics between
the different models are compared (Table 5), where the GBM has a higher R2 value (0.748)
and lower RSME (1220.328), MAE (1035.395), and MAPE (0.748) values. In addition, the
best predictions are obtained below a VKT of approximately 22,000 km; beyond this point,
there is a small increase in the spread of the predicted values.
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4.4. Variable Importance

To interpret how the model prediction process functions, it is appropriate to assess
the importance of the variables, which is established by the permutation method, in which
the reduction in prediction accuracy is measured by randomly permuting the variables.
Figure 7 illustrates the importance established by the different models. The three models
select vehicle age as the most important variable in the prediction of mobility, followed
by engine size and tare weight, which shows that vehicle performance also has a great
influence on mobility. Furthermore, the age of the driver and province have less importance,
and the number of vehicle seats has practically no influence on mobility.
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4.5. Relevant Pattern Recognition with Selected Machine Learning Models

In addition to achieving good results in the prediction of mobility, it is important to
understand how the variables interact or relate to each other in order to determine the
prediction. To this end, and based on the GBM, the partial dependence graphs in Figure 8
were obtained to show the dependence of VKT values on pairs of variables that were
selected as the most important based on Figure 7.
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Figure 8 shows a sharp drop in VKT up to a vehicle age of approximately five years,
after which the decrease in VKT is smooth, with less noticeable changes. This behavior is
constant for all values of engine size, tare weight, and age of the driver; however, vehicles
with engine sizes larger than ≈2000 cm3, a tare weight greater than ≈1200 kg, and drivers
aged less than ≈60 years have higher VKT values. The partial dependence of the VKT on
the age of the driver/engine size and age of the driver/tare weight shows that drivers
under ≈60 years old have higher VKT when they use vehicles above ≈2000 cm3 or when
the vehicle weighs more than ≈1200 kg; in both cases, a VKT increase of ≈20% is observed.
When considering the engine size and tare weight variables, it is observed again that
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vehicles that combine values greater than ≈2000 cm3 and ≈1200 kg have higher VKT. The
information provided by the GBM is consistent with the analysis outlined in Section 3.3.

As an example of the application of the models and based on the patterns identified,
Table 6 shows the VKT values predicted with the RF and GBM models for different values
of the input variables. It also shows the uncertainty intervals estimated with the RF model,
which is composed of individual decision trees and therefore can estimate each individual
Random Forest tree and determine the bounds; based on this, the confidence interval of
this example is 95%. The values in the predictions with the RF and GBM models are similar
and consistent with the behavior patterns found.

Table 6. Prediction examples.

Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Vehicle age 3 years 4 years 8 years 8 years 15 years 15 years
Engine size 2500 cm3 1600 cm3 2500 cm3 1600 cm3 2500 cm3 1600 cm3

Tare 1500 kg 1000 kg 1500 kg 1000 kg 1500 kg 1000 kg
Age 65 years 40 years 65 years 40 years 65 years 40 years

Province Madrid Sevilla Segovia Valencia Zaragoza Barcelona
Seats 5 4 5 4 5 4

Lower bound 1 23,839 12,849 14,217 12,237 11,945 11,509
RF prediction 27,871 17,840 14,386 12,777 12,245 11,762

GBM prediction 25,008 17,384 14,415 14,084 12,210 11,499
Upper bound 1 30,846 20,820 14,599 14,526 12,416 11,975

1 95% confidence interval bounds.

5. Discussion

The application of the knowledge of more realistic exposure levels of vehicles clas-
sified or grouped by characteristics of interest is of great relevance in accident research.
This is possible due to the exploitation of the data that ITV centers register when technical
inspections are performed on vehicles. The information from ITV centers has not been
used before in comprehensive mobility studies and, after an adequate preparation process,
has shown enormous potential for exploitation since it opens up the possibility of repli-
cating this study with other types of Spanish fleet vehicles, such as vans, trucks, coaches,
motorcycles, etc. Its potential lies in that a single source consolidates the information on
vehicle make/model, vehicle performance (fuel consumption, power, and weight/power
ratio, among others), as well as polluting emissions (gases and noise) and defect history,
which can be applied for other research purposes.,

This study shows satisfactory results in the estimation of the mobility of passenger
vehicles, as measured by the VKT, considering the values of the performance metrics of the
models, RMSE ≈ 1200, MAE ≈ 1100, and R2 and MAPE ≈ 0.7. The results obtained at a
disaggregated level can be considered a measure of the exposure of passenger vehicles in
Spain, for which the three models developed (Figure 7) have found that mobility is mainly
determined by vehicle age, engine size, tare, age of the driver, and, to a lesser extent, the
province and number of seats.

Depending on the variable for which the behavior pattern needs to be predicted
or understood, additional information and new variables can be incorporated, since the
models implemented in the methodology developed in this study have flexibility to be
adapted and used according to the analysis needed.

6. Conclusions

The data preparation methodology applied to the records of ITV centers made it
possible to establish an appropriate database for use in mobility analyses through the VKT
of passenger vehicles in Spain.

Through an analytical exploration of the data, some mobility patterns were estab-
lished in relation to vehicle age, engine size, tare weight, age of the driver, province, and
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number of seats. The patterns identified are consistent with the partial dependence results,
subsequently obtained with the Gradient Boosting model.

This study used three Machine Learning models: CART, Random Forest, and Gradient
Boosting. The models were optimized by determining the best values for different hyperpa-
rameters used in the estimation. The evaluation of the models through the metrics RMSE,
MAE, R2, and MAPE indicates that Gradient Boosting has the best prediction performance.

The three models make it possible to establish that, for passenger cars, vehicle age
is the most important factor in mobility, followed by those related to the characteristics
of the vehicle (engine size and tare weight) and the age of the driver. The variable that
characterizes territorial mobility (the province variable) is the least important and may
indicate that geographically distributed mobility does not show significant differences,
which is also the case for the variable number of seats. The partial dependence analysis
performed with the Gradient Boosting model complements the understanding of the
influence of the different variables on mobility.

Although the models developed have allowed a disaggregated mobility study, the
level of disaggregation has been limited to using six input variables for the models, based
on data availability. In future work and with an update of the data, it is of interest to
carry out a more in-depth study of mobility with the inclusion of new variables in the
models, such as: engine power, CO2 emissions, fuel used, fuel consumption, and history of
defects, all of them recorded in the passage of vehicles through the ITV. The methodology
developed in the present work is feasible for application to other types of vehicles of
interest, such as buses, motorcycles, and trucks. In addition to having a refined database,
there is the potential for future work using a cross-reference of information with databases
of accidents and drivers.

In-depth knowledge of the reality of mobility can be used as a very important resource
for the proposal, monitoring, and revision of policies and regulations in areas related,
for example, to road safety (risk indicators, driver behavior), air quality (emissions), and
energy consumption (tourism vehicles, cargo vehicles, vehicle fleets, etc.).
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