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Abstract: This paper examines the spatial and temporal trends in county-level COVID-19 cases
and fatalities in the United States during the first year of the pandemic (January 2020–January
2021). Statistical and geospatial analyses highlight greater impacts in the Great Plains, Southwestern
and Southern regions based on cases and fatalities per 100,000 population. Significant case and
fatality spatial clusters were most prevalent between November 2020 and January 2021. Distinct
urban–rural differences in COVID-19 experiences uncovered higher rural cases and fatalities per
100,000 population and fewer government mitigation actions enacted in rural counties. High levels of
social vulnerability and the absence of mitigation policies were significantly associated with higher
fatalities, while existing community resilience had more influential spatial explanatory power. Using
differences in percentage unemployment changes between 2019 and 2020 as a proxy for pre-emergent
recovery revealed urban counties were hit harder in the early months of the pandemic, corresponding
with imposed government mitigation policies. This longitudinal, place-based study confirms some
early urban–rural patterns initially observed in the pandemic, as well as the disparate COVID-19
experiences among socially vulnerable populations. The results are critical in identifying geographic
disparities in COVID-19 exposures and outcomes and providing the evidentiary basis for targeting
pandemic recovery.

Keywords: COVID-19; urban; rural; social vulnerability; resilience; mitigation; recovery; GIS

1. Introduction

Local population dynamics and sociodemographic characteristics have proven influen-
tial on the prevalence of coronavirus disease 2019 (COVID-19) impacts and transmissibility.
However, early mitigation measures did not account for place-based differences in expo-
sure and outcomes at comparative and more localized spatial scales [1]. Unprecedented
United States government mitigative policies led to drastic unemployment increases to
prevent the spread of COVID-19, which did not occur equally across the country [2]. Ini-
tial COVID-19 cases and fatalities in the US first appeared in densely populated urban
centers [3], before spreading to rural communities throughout the country [4]. Rural popu-
lations continually face a unique set of challenges relating to unequal access to healthcare
and a higher prevalence of underlying health conditions, thus placing them at higher
risk of negative COVID-19 outcomes [5]. Underlying disparities in social vulnerability,
community resilience and COVID-19 mitigation measures among US communities and
urban–rural places must then influence COVID-19 exposure and outcomes, but how?

Existing COVID-19 research has not integrated the full suite of social vulnerability
measurements along with multiple societal elements of place that could explain patterns
of COVID-19 cases and fatalities within local geographic contexts. Additionally, spatial
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analyses of initial community recovery based on unemployment across the US lack inves-
tigation, despite the vastly disproportionate impact of the pandemic mitigation orders
on the job market. Applying measurements of social vulnerability, community resilience,
government mitigation efforts and unemployment changes, this place-based geographical
investigation examines spatial and temporal differences in COVID-19 exposures (cases) and
outcomes (fatalities) at the county level, using statistical and geo-analytical methods. Our
results identify how combined contextual correlates explain the geographic distribution of
cases/fatalities and initial economic recovery throughout the first year of the pandemic
(January 2020–January 2021). Three questions guide this analysis:

1. What is the variability in county spatial and temporal patterns of COVID-19 cases
and fatalities?

2. What is the relationship between COVID-19 cases and fatalities, social vulnerability,
community resilience and government mitigation measures and does this vary based
on location (urban–rural)?

3. Do differential spatial patterns of pre-emergent recovery exist using changes in unem-
ployment as a proxy indicator?

2. Background

From the outset of the pandemic, research and popular concern focused on the dispro-
portionate impact on minority, low-income and elderly populations [6–8]. Only recently
has there been a focus on place, or what Perry et al. [9] term the precarity of place, in
addition to urban–rural influences on COVID-19 experiences [10]. Research has mostly
examined the geography of COVID-19 risk based on individual-level factors (e.g., social
determinants of health) or community-based elements (e.g., resilience, social vulnera-
bility, or public health mitigation measures) over a short study period or wave of the
pandemic [11,12], or in specific sub-national areas [9,13,14]. Thus far, there has not been a
longer-term (year-long) study for the US examining the spatial and temporal county-level
variability in COVID-19 cases and fatalities that considers several influential elements of
social context or measurements of pre-emergent economic recovery.

2.1. Socioeconomic and Spatial Disparities of the COVID-19 Pandemic

The social determinants of health and social vulnerability to environmental hazards
are crucial elements to consider in evaluating the spatial and temporal dynamics of the
COVID-19 pandemic. The social determinants of health are the non-medical factors (e.g.,
income, wealth, education, race and ethnicity, geographic location and gender) that can
shape an individual’s health in formative ways [15,16]. Social vulnerability is widely
studied in geography, anthropology, economics, public health and psychology to identify
inequalities and sub-populations that are more at risk to hazard events [17,18]. While
definitions of social vulnerability may vary by discipline, it is widely agreed that not all
people and places cope with and adapt to hazards equally, whether from institutional
barriers, human and social capacities, or the physical environment [19–21]. In the context
of COVID-19, minority status and crowded housing conditions have correlated with case
rates, as well as overall levels of social vulnerability [11,22]. Spatial variability in COVID-
19 exposures and outcomes among different demographic and socioeconomic groups
highlights the role of race and non-English speakers in elevated case counts, as well as
age and disability associated with elevated fatalities [5,12,23]. African Americans have a
2.7 times greater chance of being hospitalized for COVID-19 than white patients [24], as
well as an increased likelihood of testing positive for COVID-19 [25,26]. Public health
inequities arise from socioeconomic disadvantages [27] and COVID-19 is no exception.

In addition to examining how the spatial variance of socioeconomic variables impact
the spatial distribution of COVID-19 cases and fatalities, recent research has found a
geographic pandemic divide. Regionally, the Southeast, Southwest and New England
experienced relatively more COVID-19 cases than other US regions [23]. These and other
regional patterns [28,29] may not hold over a longer study time-period. Urban–rural
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disparities explored in earlier research found increased mortality rates [30] and higher
prevalence rates of COVID-19 infection in urban counties [12]. Another study found higher
standardized cases and fatalities in rural counties in just one US state [13], while others
found severe negative impacts of the pandemic on rural unemployment and economic
wellbeing [10]. Not only do rural residents have higher positive COVD-19 testing rates [26]
and fewer hospitalization resources available for affected patients [31,32], but locational
disparities exist in testing access and pandemic messaging in rural locations [33].

2.2. Community Resilience to Hazards

Resilience addresses people and places’ ability to withstand the adverse effects of
hazards, as well as their ability to recover from and adapt to hazards [34] at multiple scales
(e.g., individual, family and community). Studies have represented the multidimensional
aspect of community resilience using domains signifying social, physical, community,
individual, economic, institutional, infrastructure and/or ecological characteristics [35,36].
Common variables used to measure resilience include community-level variables, such as
wealth, participation in civic and religious organizations, redundancy of critical infrastruc-
ture and hazard mitigation planning [35,37]. Community resilience and social vulnerability
are related, but they are not the opposite or inverse of each other, with empirical stud-
ies showing a negative relationship with moderate strength between vulnerability and
resilience [38–41].

2.3. COVID-19 Mitigation and Pre-Emergent Recovery

Research confirms that mobility restrictions (i.e., work-from-home, shelter-in-place, or
stay-at-home orders), physical distancing and mask mandates lower COVID-19 confirmed
cases and fatalities [42–44]. Early analyses of the COVID-19 outbreak in Wuhan, China,
support the significance of limiting all travel to effectively control the spread during
public health response planning [45]. In the US, mitigative efforts via work-from-home
orders lessened the spread of COVID-19 cases between some communities [46]. Yet, Berry
et al. [47] found little evidence to support that shelter-in-place orders affected disease spread
or fatalities. Comparisons of voluntary mitigative actions versus mandatory stay-at-home
orders found that, in counties with existing voluntary behaviors, the mandates simply
accelerated compliance [48]. However, not all sociodemographic groups have the social or
economic capital available to partake in voluntary mitigative action and can thus suffer
worse economic burdens from such imposed mitigation orders [49]. Additionally, some
research has shown the relative effectiveness of government orders on mobility reductions
and individuals’ voluntary mitigation decisions based on political partisanship [50–52].

Recovery is “both a social process with specific short and longer-term outcomes and a
physical process of replacing the damaged built environment (or reconstructing it) . . . ” [53]
(p. 5). Economic recovery as part of the social process requires not only containing the
spread of the virus and developing the vaccine, but also making and implementing policies
that protect people’s livelihoods, minimize financial suffering and place the economy in a
better position for a faster resurgence [54]. In response to the COVID-19 pandemic, many
countries have launched economic recovery programs to mitigate unemployment and
stabilize core industries [55]. The US labor market is undergoing tremendous stress because
of the COVID-19 outbreak and mitigation efforts [56], with many individuals becoming
unemployed and losing health insurance coverage as a result [57]. A survey conducted
in the early stage of the pandemic showed that 43% of small businesses temporarily
closed and that employment had fallen by 40% [58]. Those impacted most heavily from
job loss include some highly socially vulnerable populations of low-income individuals
and/or racial/ethnic minorities working in employment sectors most affected by mitigation
policies [2,49,59]. By April 2020, all 50 US states began easing mobility or business closure
restrictions to revive the economy [60].
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3. Research Design and Methods

Counties are the primary spatial unit for operational levels of emergency management
and public health statistics in the US, thus the appropriate unit of analysis. This study
includes 3140 counties or county-equivalent places in all 50 states and the District of
Columbia. Two low population county-equivalents in Alaska, Yakutat City and Borough
and Hoonah-Angoon Census Area, were not included in the analysis due to missing
COVID-19 reports in the dataset.

3.1. Data

Table 1 summarizes all spatial data inputs. Listed below are detailed explanations of
the input data, spatial caveats and initial data manipulations.

Table 1. Input variables and sources for county-level analyses.

Variable Time Frame Source

COVID-19 cases and fatalities 21 January 2020–30 January 2021 The New York Times GitHUB [61]
Population 2019 ACS 5-year population estimates [62]

Social Vulnerability Index (SoVI®) 2018 HVRI [63]
Baseline Resilience Indicators for

Communities (BRIC) 2015 HVRI [64]

County mask mandates 7 April 2020–21 July 2020 U of Chicago [65]
County emergency declarations,

stay-at-home policies, business closures All data collected 15 April 2020 National Association of Counties [66]

County business closures, mask mandates,
stay-at-home orders Last updated 2 May 2021 US Department of Health and Human

Services [67]
State-level emergency declarations,

shelter-in-place orders, business closures,
mask mandates

Last updated 22 April 2021 Raifman et al. [68]

Economic recovery–unemployment % January 2019–January 2021 US Bureau of Labor Statistics [69]
Urban–rural county designations 2013 NCHS [70] and USDA [71]

3.1.1. COVID-19 Cases and Fatalities

Publicly available COVID-19 daily cumulative case and fatality counts were down-
loaded from The New York Times GitHUB [61] on 31 January 2021. The dataset includes
counts for all US counties and was compiled based on reports from state and local gov-
ernments, as well as local health departments, beginning with the first reported case in
Washington State on 21 January 2020. Data included both confirmed cases (positive SARS-
CoV-2 RNA laboratory test) and probable cases (based on criteria for symptoms, exposure
and antibody testing). Confirmed deaths listed COVID-19 as the cause of death, while
probable deaths were those with COVID-19 listed on the death certificate, but without a
positive laboratory test. All counts for cases and deaths (confirmed and probable) used
patients’ county of residence. Daily case and fatality reports occasionally lacked an accurate
county identifier for a patient, leading to some data recorded as “Unknown”. In some
instances, the availability of more accurate information enabled locational corrections
to these unknown cases/fatalities, while, in others, they were not corrected [61]. In our
analysis, 22 states had geographically unassigned cases and/or fatalities at the end of the
study period, on 30 January 2021. Rather than eliminate these data, we proportionally
distributed the data among counties based on existing ratios of county cases/fatalities in
each state, by epidemiological (epi) week.

Calculated cumulative totals of standardized cases and fatalities (total cases or fatal-
ities per 100,000 population) used the American Community Survey (ACS) 2019 5-year
population estimates [62]. Daily case and fatality totals by county were aggregated per epi
week to analyze temporal patterns.

A few key geographic issues in the data were fixed to create a consistent geo-referenced
dataset for this investigation. In New York City, the dataset reported all cases as one
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geographic entity, not five separately representing the counties (Boroughs) in the city. Case
and fatality values for the five New York City boroughs came from the New York City
Department of Health GitHUB [72] and the proportions of cases/fatalities for each borough
per epi week were calculated and applied to distribute The New York Times data into
each borough. In Kansas City, Missouri, the dataset reported the city’s cases and fatalities
separately from the four counties that overlap the city (Cass, Clay, Jackson and Platte)
and the county values did not include Kansas City cases or fatalities. A similar instance
occurred in Joplin, Missouri, after 25 June 2020, when cases and fatalities reported for the
city became separately counted and not included in Jasper and Newton county totals. An
areal-weighted approach to attribute cases/fatalities to the surrounding counties of Kansas
City and Joplin helped address this spatial data issue. While more sophisticated techniques
exist to estimate populations in census boundaries that do not assume a homogenous
distribution of the data, areal weighting is a relatively straightforward method of assigning
data based on the area of the city intersecting county boundaries. Other studies using The
New York Times dataset did not address these spatial anomalies in the data for those cities,
indicating they were simply excluded from analyses [73–75].

3.1.2. Social Vulnerability and Resilience

The Social Vulnerability Index (SVI) from the Centers for Disease Control and Pre-
vention (CDC) [76] and the Social Vulnerability Index (SoVI®) from the Hazards and
Vulnerability Research Institute at the University of South Carolina [63] are the two most
often cited quantitative measures of social vulnerability [77]. Although named the same,
there are key differences in their composition and formulation. SoVI® utilizes more sociode-
mographic and socioeconomic variables as proxies for social vulnerability than SVI. SoVI®

applies an inductive method of grouping variables that are highly correlated into factors
of vulnerability, while SVI uses a hierarchical approach [78]. SoVI® includes important
place and health-based indicators of vulnerability that are excluded from SVI, such as the
number of hospitals per capita and the percent of the population without health insurance,
as well as economic indicators of vulnerability (e.g., percent employment in the volatile
and seasonal service sector industry). Our research employs SoVI® as the measure of social
vulnerability due to these key differences and because SoVI® has proven more reliable in
studies validating the indices using disaster outcome measures [77]. Key variables inputted
into SoVI® include (but are not limited to) age, wealth, race, ethnicity and education level.
SoVI® values are relative and range from a low of −9.01 in Loudoun County, Virginia (least
vulnerable) to a high value of 15.52 in Kusilvak Census Area, Alaska (most vulnerable).

The Baseline Resilience Indicators for Communities (BRIC) applied here is a well-
known quantitative measure for community resilience measurement. BRIC uses 49 vari-
ables that are separated into six capitals of resilience (social, economic, institutional, hous-
ing/infrastructure, environmental and community). Standardized variables have values
ranging from 0 to 1, which are then averaged for each capital. The sum of the capitals has a
theoretical range of 0–6 for each county, with higher scores representing more resilience
and lower scores less resilience [64].

3.1.3. County and State COVID-19 Mitigation Efforts

To measure the COVID-19 mitigation efforts at both the county and state level, we
analyzed data from four sources (Table 1). A binary system was created with zero (0)
indicating the absence of the mandate and one (1) indicating the presence of a mandate
(i.e., mask, emergency declaration, stay-at-home policy/order, business closures) for each
of the three county level datasets. To avoid double-counting, triangulation among the three
datasets produced a single value (0 or 1) for each county for all four mitigation measures.
Scores ranged from 0–4 for county-ordered mitigation. Another mitigation dataset had
state-level actions only (Table 1) and included emergency declarations, shelter-in-place
orders, business closures and mask mandates. In addition, using a binary system, if there
was a statewide mandate for any of the mitigation measures, all counties in the state
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received a score of one for the presence of that mandate and zero if there was no mandate.
As with the county-specific mandates, scores ranged from 0 to 4 for statewide measures.
We assessed the impact of mitigation methods for county-specific and statewide separately
and in combination (adding the two scores so the hypothetical range was 0–8). Eighteen
counties elected to go against their state-level mask policy and opt-out of the mandate, so
these counties received a value of 0 instead of 1 for mask mandate in the dataset.

3.1.4. Pre-Emergent Economic Recovery

Even though COVID-19 continues to spread, an initial economic recovery is underway.
Communities have begun the process of a return to normalcy by loosening restrictions
on businesses as vaccinations increased and the federal government unveiled massive
stimulus packages to encourage consumer spending and help those that have lost their
jobs. To measure and identify where recovery was the strongest during our study period,
the unemployment rate from the previous year (2019) was compared to the year of the
pandemic (2020), then examined in monthly intervals. This enabled a relative comparison
of places where unemployment rose or fell creating a proxy level of recovery in those places
at the end of January 2021. Unemployment data were derived from the US Bureau of Labor
Statistics [69] for each month from January 2019 to January 2021 and for each county in the
U.S, except for Kalawao County, Hawai’i. The change in the unemployment rate from a
year before the pandemic (2019) to the pandemic year (2020) was computed in monthly
intervals; then, a summary measure of percent change in unemployment for the entire
study period for each county was calculated. To calculate this measure, the 2019 monthly
unemployment rate was averaged for the year, then subtracted from the value for 2020
calculated the same way, in order to provide the unemployment rate percent change from
2019 to 2020. We recognize that recovery is ongoing but want to test the spatial patterns of
economic recovery with the distribution of cases and fatalities of COVID-19.

3.1.5. Urban–Rural Delineations of US Counties

The spatial delineations of urban–rural areas in the US vary amongst a few federal gov-
ernment agencies, including the CDC’s National Center for Health Statistics (NCHS) [70]
and the US Department of Agriculture (USDA) [71]. One of the main US urban–rural
federal classification schemes currently employed at county level is the NCHS 2013 Urban–
Rural Classification Scheme, which assigns one of six urbanization levels to US counties,
with 1–4 representing metro counties and 5–6 being non-metro [70]. Another scheme is
the nine-level USDA 2013 Rural-Urban Continuum Codes (RUCCs), with 1–3 assigned to
metro counties and 4–9 to non-metro counties [71]. Creating a binary non-metro/rural (0)
and metro/urban (1) categorization for analysis using either the NCHS or USDA schema
results in the same designations for each US county.

3.2. Analytical Approach

A range of statistical methods informed our analysis, including descriptive and in-
ferential statistics, geospatial statistics and GIS analytics. Microsoft Excel 2016 was used
to manage the tabular datasets prior to statistical and spatial analyses. The SPSS 27.0
software (IBM Corp., Armonk, NY, USA) was used to examine statistical associations via
correlation and difference of means testing between standardized cases/fatalities, location
(urban/rural), statewide mitigation, county mitigation, unemployment percent change,
social vulnerability and community resilience variables. Correlation testing can help de-
scribe the relationships between variable pairs, the strength of their linear association
and the statistical significance [79]. Difference of means tests (independent sample t-tests)
assessed the statistical difference of the means between the same variable but for the two
independent groups of urban and rural counties [80].

We employed Spatial Scan Statistic (SaTScan) version 9.7 (SaTScan, Boston, MA, USA)
for space–time cluster analyses of COVID-19 cases and fatalities across the contiguous
US with Poisson and space–time prospective/retrospective models [13,23,28,29]. The
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removal of Hawai’i and Alaska was necessary for the space–time analysis due to contiguity
requirements and coordinates for cases/fatalities were assigned based on the centroids
of counties. The methodology for identifying clusters follows the SaTScan method under
Poisson assumptions [81]. The space–time scan statistic is measured by a cylindrical
window (with a circular geographic base and a height that reflects the time period of
potential clusters), which is moved in space and time with different sizes to cover the study
region and return the significant clusters. The adopted space–time model compared the
values of cases/fatalities to an expected value if the spatial and temporal locations were
independent [81] and the discrete Poisson model assumed that cases/fatalities follow a
Poisson distribution based on the underlying county population. Both prospective and
retrospective analyses are performed using space–time discrete Poisson models. In the
retrospective analysis, the study region is scanned for both active clusters (lasting until
the end date) and historic clusters (having ceased to exist before the study period end
date), while the prospective analysis only detects active clusters. SaTScan results were
limited to significant cluster outputs throughout the cumulative study period in order to
focus the investigation on the greatest overall risk during the first year of the pandemic.
For each cluster, we reported the counties’ Relative Risk (RR), which is the estimated risk
in the cluster divided by the estimated risk outside the cluster [81]. Monte Carlo testing
(999 simulations) provided the basis for statistical significance assessments.

For the remaining geospatial analyses, we utilized Geographically Weighted Regres-
sion (GWR) in ArcMap 10.8.1 (ESRI, Redlands, CA, USA) to determine the associations
between independent and dependent variables, while accounting for spatial heterogeneity
using geographical weights [82]. Bivariate Moran’s I tests were also performed to identify
associations between two geographic variables as a measure of spatial autocorrelation [83].
Spatial lag regression modeling then examined all independent variables to determine
their explanatory influence on the dependent variable (i.e., standardized cases/fatalities),
which uncovers whether statistically significant spatial interactions exist directly and the
strength of that interaction for each variable [84]. The GeoDA 1.18 program (Center for
Spatial Data Science, University of Chicago, Chicago, IL, USA) was used for running the
local bivariate Moran’s I tests, set for 999 permutations (p-value of 0.05 for global Moran’s I)
and for the spatial lag, with a first-order queen contiguity weight assigned. Island counties
(e.g., Nanucket, MA) without neighbors were included in the analyses and assigned a
weight of 0 in spatial lag regression, while SaTScan cluster analyses assumed contiguity of
these counties and performed the analyses as if they were connected to the mainland state.
Case/fatality rates for US counties and SaTScan cluster data visualizations were created
using ArcMap 10.8.1 and ArcPro 2.7 (ESRI, Redlands, CA, USA).

4. Results

Over 25 million confirmed COVID-19 cases and roughly 437,000 fatalities occurred in
the US during our year-long study period. The results, organized by our research questions,
begin with the spatial and temporal patterns and clusters, followed by the correlates of
cases and fatalities and end with the geographic patterns of pre-emergent recovery.

4.1. Spatial and Temporal Patterns

The national trend in total cases and fatalities for the study period showed an expected
periodicity by epi week. The first peak in cases occurred in April 2020, with secondary and
tertiary peaks in July and December 2020. The highest newly recorded cases (1.7 million)
arose in the first epi week of January 2021. The highest peak in newly recorded fatalities
(23,142) also occurred in January 2021, during epi week 2.

Geographically, cumulative standardized cases were highest (>9786/100,000) in the
Southwest (centered on Arizona), the Great Plains/Mississippi River Valley (particu-
larly the Dakotas) and in the South (centered on Tennessee) (Figure 1). Lower case rates
(<6878/100,000) were in northern New England, New York, outside of metropolitan areas,
West Virginia and coastal Washington, Oregon and northern California. The geographic
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distribution of high standardized fatalities (>99/100,000) had a similar pattern as cases,
with less spatial density. The lowest fatalities (<51/100,000) were in northern New England,
portions of Virginia and West Virginia and most western states.

Figure 1. Cases (top) and fatalities (bottom) per 100,000 population. Mapped by standard deviation
from the mean (high, >0.50 std. dev.; medium, from −0.50 to 0.50 std. dev.; low, <−0.50 std. dev.)
using USCB [85] State and County Boundaries.

Spatio-Temporal Clustering

Using weekly intervals, both retrospective and prospective analyses detected similar
clusters. For the upper bound limit, a circular window scanning for a maximum of 20%
of the total at-risk population provided a more localized clustering (county scale) of
cases/fatalities.

The SaTScan analysis showed three distinct and significant (p < 0.001) space–time case
clusters from November 2020 to 31 January 2021 (Figure 2). The earliest cluster (Cluster 2)
centered in the Midwest and mid-South region started on 2 November 2020 and continued to
the end of our study period. Higher relative risk levels were in Tennessee, Indiana and Illinois.
Cluster 1, the largest areal cluster of cases, stretched across half of the country from the Great
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Plains to the western states. This cluster (9 November 2020–31 January 2021) contained most
of the counties with the highest relative case levels (Figure 2). The third cluster was in the
northeast and covered the period from 16 November 2020 to 31 January 2021.

Figure 2. Space–time clusters of cases (low, 0.45–1.0; medium low, 1.0–3.0; medium high, 3.0–5; high,
5.0–15.39) and fatalities (low, 0–1; medium low, 1.0–3.0; medium high; 3.0–5.0; high, 5.0–21.32) using
USCB [85] State and County Boundaries.

Four significant fatality clusters appeared, one starting in August 2020 and three in late
2020–early 2021. The earliest fatality cluster (Cluster 1) was in the northeast Megalopolis
(3 August 2020–31 January 2021) (Figure 2). Within Cluster 1, there was considerable spatial
variation among the counties with the highest fatality rates located in the metropolitan
areas of Boston and New York–Newark. Cluster 2 (12 October 2020–31 January 2021)
occurred in the Deep South, where the spatial variation shows higher fatality rates among
rural counties. Fatality rate Cluster 3 (23 November 2020–31 January 2021) was centered
in the northern Midwest and Great Plains regions, with a mix of both urban and rural
counties. Similarly, Cluster 4 (21 December 2020–31 January 2021) in the West shows the
highest fatalities in sparsely populated counties and tribal lands.

4.2. Case and Fatality Correlates

Results for our second research question helped explain the relationships between
standardized cases and fatalities and this study’s correlates. As expected, standardized
cases and fatalities were moderately correlated with one another (Table 2). However,
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there were significant differences between urban and rural counties in standardized cases,
fatalities and their correlates (Tables 2 and 3). While the correlation of cases and fatalities
with location (rural/urban) was statistically significant, the association was relatively weak
(rs = −0.122 for cases and rs = −0.146 for fatalities, where a positive coefficient denotes
urban, a negative one denotes rural).

The pre-existing social vulnerability of counties positively correlated with standard-
ized cases and moderately positively correlated with standardized fatalities. SoVI® was
strongly correlated with rural counties (rs = −0.554, p < 0.001). The difference of means (in-
dependent samples) tests confirmed significant differences in social vulnerability between
rural and urban counties, with urban counties having lower levels of social vulnerability
than rural ones. In contrast, there was no consequential association between the exist-
ing levels of community resilience and standardized cases or fatalities, despite positive
associations with cases (rs = 0.101, p < 0.001) and negative correlations with fatalities
(rs = −0.013, p = 0.452). The number of total governmental mitigation measures was nega-
tively and significantly correlated with standardized cases (rs = −0.339, p < 0.001) and with
standardized fatalities (rs = −0.199, p < 0.001). While governmental mitigation was mildly
significantly correlated with urban counties (rs = 0.263, p < 0.001), there was a significant
statistical difference between urban and rural counties in terms of the number of mitigation
measures employed to reduce cases, with more measures undertaken in urban areas.

The GWR tests did not show any significant associations between tested variables of
cases and fatalities with location, total mitigation score, SoVI® and BRIC. A further test
of the significance of the predictors of COVID-19 cases and fatalities employed spatial lag
regression models based on Lagrange multiplier tests and residuals to predict (1) standard-
ized cases using location, total mitigation score, SoVI® and BRIC as independent variables
and (2) standardized fatalities using the same predictors plus cases. The model prediction
of standardized cases was moderate (R2 = 0.434, p < 0.001), with higher resilience scores
(β = 1420.21, p < 0.001) showing the most contribution, followed by lower numbers of mitiga-
tion actions undertaken (β = −238.94, p < 0.001), higher levels of social vulnerability (β = 95.14,
p < 0.001) and urban locations (β = 26.38, p < 0.001). The model for standardized fatalities also
performed moderately well (R2 = 0.404, p < 0.001) with four significant predictors, including
higher resilience (β = 34.94, p < 0.001), higher levels of social vulnerability (β = 7.95, p < 0.001),
mitigation actions (β = 2.81, p < 0.05) and standardized cases (β = 0.01, p < 0.001).
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Table 2. Spearman rho correlation summary.

Standardized
Cases

Standardized
Fatalities

Location
(Urban/
Rural)

Statewide
Mitigation

County
Mitigation

Total
Mitigation

Unemployment
% Change SoVI® BRIC

Standardized
Cases 0.502 ** −0.122 ** −0.249 ** −0.276 ** −0.339 ** −0.105 ** 0.084 ** 0.101 **

Standardized
Fatalities 0.502 ** −0.146 ** −0.084 ** −0.201 ** −0.199 ** −0.084 ** 0.251 ** −0.013

Location
(urban/rural) −0.122 ** −0.146 ** 0.165 ** 0.226 ** 0.263 ** 0.381 ** −0.554 ** 0.244 **

Statewide
Mitigation −0.249 ** −0.084 ** 0.165 ** 0.160 ** 0.580 ** 0.112 ** −0.120 ** 0.082 **

County
Mitigation −0.276 ** −0.201 ** 0.226 ** 0.160 ** 0.885 ** 0.214 ** −0.136 ** −0.059 **

Total
Mitigation −0.339 ** −0.199 ** 0.263 ** 0.580 ** 0.885 ** 0.242 ** −0.169 ** −0.012

Unemployment
% Change −0.105 ** −0.084 ** 0.381 ** 0.112 ** 0.214 ** 0.242 ** −0.383 ** 0.143 **

SoVI® 0.084 ** 0.251 ** −0.554 ** −0.120 ** −0.136 ** −0.169 ** −0.383 ** −0.451 **
BRIC 0.101 ** −0.013 0.244 ** 0.082 ** −0.059 ** −0.012 0.143 ** −0.451 **

** p < 0.01 (2-tailed).



Int. J. Environ. Res. Public Health 2021, 18, 8259 12 of 21

Table 3. Difference of means between rural and urban counties (rural n = 1974, urban n = 1166).

Variable Location Mean Standard Deviation t-Value Sig. (2-Tailed)

Standardized
Cases

Rural
Urban

8579.263
7913.487

3109.101
2477.920 6.604 <0.001

Standardized
Fatalities

Rural
Urban

164.679
129.093

114.323
71.630 10.719 <0.001

Social
Vulnerability

Rural
Urban

1.052
−1.793

2.285
2.204 34.155 <0.001

Community
Resilience

Rural
Urban

2.703
2.775

0.151
0.127 −14.190 <0.001

Mitigation Rural
Urban

4.310
4.980

1.176
1.141 −15.625 <0.001

Unemployment
% Change

Rural
Urban *

63.511
94.707

44.635
45.418 −18.794 <0.001

* Unemployment data unavailable in Kalawao County, Hawai’i.

4.2.1. Local Spatial Clusters of Cases and Fatalities

Bivariate mapping was used to identify clusters of high cases/fatalities (hot spots),
clusters of low cases/fatalities (cold spots) and spatial outliers. The Global Moran’s I
test within the entire study area showed significant (p < 0.05) spatial association for all
bivariate pairs, except fatalities and social vulnerability. The association between location
and cases and fatalities for the entire study was random. The local Moran’s I test, however,
showed considerable spatial clustering of cases and fatalities with social vulnerability and
community resilience (all local clusters/outliers are significant, p < 0.05).

The bivariate local Moran’s I test indicated a rather significant cluster of high cases
and high fatalities with high levels of social vulnerability in southern Texas, New Mexico,
western Mississippi and South Dakota (Figure 3a,c). A cluster of high cases and high
resilience was in the northern Plains and western Midwest counties (Iowa, Nebraska
and the Dakotas) (Figure 3b). However, the most significant clustering of high fatalities
and high levels of community resilience was much smaller and concentrated in upper
Midwest counties (Figure 3d). There was higher statistical significance with the discordant
pairs—high fatalities and low resilience and low fatalities and high resilience.

4.2.2. Mitigation Clusters

Our second research question also addressed the relationship between mitigation
actions and cases/fatalities and relationship variability based on rural- or urban-designated
counties. There was a negative correlation between mitigation and cases/fatalities (Table 2),
indicating that the more overall mitigation actions in counties, the lower cases and fatalities
rates. In looking at the differences in mitigation actions themselves, we found slight but
significant differences between urban and rural counties, with urban counties having
undertaken more actions than rural counties (urban: x = 4.98, SD = 1.141; rural: x = 4.31,
SD = 1.176).

The spatial patterns of standardized cases and fatalities in relation to mitigation action
levels were similar across US counties (Figure 4a,b). Counties with more mitigation actions
and lower cases/fatalities were generally in the West and the East, whereas higher cases
and fatalities with fewer mitigation actions were dominant in the Great Plains states. There
were clusters of high cases and more mitigation actions in the Southwest, with smaller
clusters in California, Montana and south Florida.
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Figure 3. Bivariate local Moran’s I test results: (a) standardized cases and social vulnerability; (b) standardized cases and
community resilience; (c) standardized fatalities and social vulnerability; (d) standardized fatalities and community resilience.

Figure 4. Bivariate local Moran’s I test results: (a) standardized cases and total mitigation actions; (b) standardized fatalities
and total mitigation actions.

4.3. Pre-Emergent Recovery Spatiality and Drivers

Our third research question addressed whether there were geographic variations in
unemployment change and how this related to COVID-19 cases and fatalities. Change in
the unemployment rate was our proxy outcome measure to monitor pre-emergent recov-
ery. A larger percentage increase in unemployment from 2019 to 2020 suggested a slower
initial recovery.

Counties ranged in total unemployment percent change between −33.67% in Blaine
County, Nebraska, and 586.31% in Maui County, Hawai’i. Temporally, the greatest range in
percent change in the unemployment rate occurred in April–May 2020 with a precipitous
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drop in June, where it plateaued until October and then began slightly narrowing (Figure 5)
in range until January 2021. The seemingly stable status (at the end of our study period) was
still more than the difference between the unemployment rate in the earlier months of January
and February 2020 (i.e., before business closures). A median line for counties’ unemployment
percentage change showed a peak in April and a declining slope afterward, as the recovery
process began.

Figure 5. Range (gray area) and median of monthly percent change in unemployment percentage (baseline is 2019, i.e., the
difference between 2020–2019 and 2021–2019).

The change in unemployment from 2019 to 2020 was negatively correlated with
standardized cases (rs = −0.105, p < 0.001) and fatalities (rs = −0.084, p < 0.001), but the
strength of these associations was very weak (Table 1). As the percentage of unemploy-
ment increased from the previous year, the number of COVID-19 cases decreased slightly.
The changes in unemployment were moderately associated with urban areas (rs = 0.381,
p < 0.001) and the difference of means test confirmed a statistically significant difference
between urban and rural areas (Table 2). A snapshot of the status of pre-emergent recovery
at the end of our study period (January 2021) shows an uneven pattern across the US, with
greater increases in unemployment (less recovery) in urban counties (shown in dark hues),
when compared to rural ones (shown in lighter hues) (Figure 6). Regionally, unemployment
changes were more stable in some areas in the South, Great Plains and the western US,
outside of the major metropolitan areas and tourist destinations.

Employing a spatial lag model with percent change in the unemployment rate as
the dependent variable and cases, fatalities, location (dummy variable with rural = 0,
urban = 1), total mitigation score, SoVI® and BRIC generated an R2 = 0.511 (p < 0.001). The
most important predictors of pre-emergent recovery during the pandemic first year were
urban locations (β = 8.34, p < 0.001), more mitigation methods (β = 3.68, p < 0.001) and
lower levels of pre-existing social vulnerability (β = −1.59, p < 0.001).

The local association between cases and percent unemployment in 2020 was more signif-
icant in central US counties, where both low–low clusters and high–low outliers suggested a
relatively lower unemployment change (Figure 7). However, parts of the West (e.g., California,
Texas, Colorado, North Dakota and Montana), Michigan, Tennessee, South Carolina, Florida
and the Northeast (New Jersey through Maine) contained high–high clusters with adjacent
low–high county outliers, indicating higher rates of unemployment change.
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Figure 6. Unemployment rate percent change from 2019 to 2020. Mapped by standard deviation (high, >0.50 std. dev.;
medium, from −0.50 to 0.50 std. dev.; low, <−0.50 std. dev.) from the mean (x = 0.75) using USCB [85] State and County
Boundaries. Darker hues show higher percent change (more people unemployed in 2020 than 2019).

Figure 7. Bivariate local Moran’s I result for standardized cases and unemployment change.
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5. Discussion

Investigating the spatial and temporal disparities in the first year of the COVID-19
pandemic revealed significant regional clustering patterns across US counties that varied
between the annual and weekly scales. While disparate COVID-19 cumulative experiences
were initially evident in the Great Plains, Southwestern and Southern regions, these patterns
changed when examining the data by epi week. Space–time analyses found three distinct
clusters of cases in the West/Southwest, Ohio–Mississippi Valley and Northeast from
November 2020 to January 2021. Results of retrospective and prospective analysis spotted
identical clusters due to the significant increase in cases at the end of 2020. Four distinct
space–time clusters for fatalities showed an early cluster in the New York metropolitan
region, a second cluster in the South, a third cluster in the Midwest and Great Plains and the
fourth cluster in the West. In comparison with studies using the same methodology albeit
focused on earlier stages of the pandemic, the identified clustering patterns are slightly
different in the central and western US but rather similar in the northeastern and southern
US [23,28,29].

Relatively few studies to date systematically examined nationwide urban–rural dif-
ferences in COVID-19 cases and fatalities over the entire first year of the pandemic. The
relationship between COVID-19 cases and fatalities and the correlates in the study exposes
distinct urban–rural differences in US counties—more standardized cases and fatalities in
rural counties than in urban counties. There were higher numbers of mitigation measures
in urban areas, which also contained lower rates of standardized cases and fatalities. Our
study confirms previous research investigated over a smaller geographic area that found
increased standardized cases and fatalities in rural US counties [13], but contradicts a
nationwide study executed earlier in the pandemic finding higher mortality rates in urban
counties [30].

The explanatory influence of pre-existing social vulnerability, community resilience
and mitigation actions correlating with COVID-19 cases/fatalities was clear in this study.
In general, as the level of social vulnerability increased within a county, so did cases
and fatalities. Social vulnerability was more associated with fatalities than cases, while
community resilience had a less significant influence on cases or fatalities. Governmental
mitigation actions had a significant association with lower cases and fatalities per 100,000
population, indicating that, as restrictions increased, cases and fatalities decreased. Spatial
lag regression patterns of cases and fatalities then revealed resilience levels to be the most
influential indicator, followed by social vulnerability and mitigation actions. The spatial
lag results revealing higher fatality rates to be associated with higher resilience levels and
increased mitigation actions seem to be a product of the Great Plains states’ experience.
This area holds some of the highest levels of community resilience in the country, but
high resilience does not always equate to less risk, especially in a relatively rural region
with a concentration of high exposure workplaces and populations (e.g., meatpacking
and immigrant labor). Additionally, the usage of one mitigation measure for the entire
study period may be partially responsible for the relationship uncovered between high
fatality rates and more mitigation actions. Furthermore, the relatively rural counties within
this region, which are found to implement fewer mitigation actions than their urban
counterparts, could be influencing the spatial lag predictors. The relationship between
COVID-19 cases and fatalities and the correlates in this study exposes distinct place-based
disparities among US communities not previously uncovered, particularly the strength of
applying a social vulnerability or community resilience indicator. This study also supports
previous research that found disadvantaged and socially vulnerable populations suffered
larger, disproportionate burdens from exposure to COVID-19 [11,22].

Previous unobserved differential spatial patterns of unemployment change as a proxy
of pre-emergent recovery were uncovered in this analysis, with higher observed changes
in portions of the West, Midwest, Southeast and Northeast. Analyses show that the unem-
ployment change rate had a stronger relationship with urbanity, adoption of mitigation
actions and lower levels of social vulnerability, while it had an insignificant relationship
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with cases and fatalities. Reduced public interaction due to job loss partially explained
the relationship between decreased COVID-19 cases and increased unemployment. Many
counties with the highest rates of unemployment change were associated with tourism-
based economies (e.g., Hawai’i), or densely populated urban areas, where there are more
people employed in jobs that were lost due to mitigation policies. The general median
trend-line for unemployment change rate showed an improvement (i.e., initiated recovery);
however, there are significant disparities between counties with a wider range of difference
in the unemployment rate in comparison to the pre-event situation.

The results of this analysis provide empirical evidence for COVID-19 spatial and
temporal disparities within the United States context, but they also possess international-
level applicability. Countries across the globe can apply this research methodology to
uncover local spatial and temporal clustering of COVID-19 cases and fatalities, test the
explanatory relationship of correlate factors using the best available data and gain a better
understanding of international-level unemployment recovery. Each country’s COVID-19
experience was guided by their existing healthcare system, political decisions to mitigate
and local population dynamics. An increased understanding of social determinants of
COVID-19 and socially vulnerable population’s experiences during the pandemic outside
the United States is important for equitable recovery. As this research shows, other nations
must consider multiple social and environmental factors when attempting to explain the
spatial and temporal diffusion of COVID-19 cases and fatalities.

5.1. Limitations

Several limitations exist in this study, primarily relating to the geospatial data. Incon-
sistencies in COVID-19 reporting and testing led to imperfect case and fatality data, due to
issues such as testing shortages and unknown county identifiers of patients. COVID-19
data may also not be an exact match to official state or county totals, due to differences in
reporting between government agencies and The New York Times data collection meth-
ods. The dataset applied here also contained partially missing data for three counties in
Alaska and Hawai’i, as well as the removal of those states completely for spatial analyses,
but our results are no less important. Another important drawback of this investigation
relates to the way SaTScan generates clusters in a circular shape, which may be limiting,
due to the possibility of spatial heterogeneity within a study area. However, SaTScan’s
Poisson model is based on a circular scanning window that still provides valuable spatial
clustering information that help address our research questions. Our unit of analysis, US
county level, may also pose a limitation due to the modifiable areal unit problem (MAUP),
which can lead to changes in analysis results based on imposed geographic boundaries. A
similar limitation exists due to the uncertain geographic context problem (UGCoP), which
can emerge from uncertainty in the spatio-temporal contextual influence of area-based
attributes on individual decision-making behaviors or outcomes [86]. Analyses at the
census tract or zip code level, for example, may reveal different localized spatial patterns.
However, county-level data were the only spatial scale available for US COVID-19 cases
and fatalities and county level spatial units are commonly used in geographic and public
health analyses. A final notable limitation is that of our proxy indicator of pre-emergent
recovery, since the event (i.e., pandemic) is not over yet and the traditional definition of
recovery does not match what is used here, thus our use of the term pre-emergent recovery.
Furthermore, the unemployment percent change only highlights one aspect of recovery
measurement and a holistic view on recovery requires additional indicators and a wider
timeframe extending to the post-pandemic era.

5.2. Future Research Directions

Future research directions based on the results of this study could first look deeper
at the dynamics of COVID-19 spatial diffusion at a more refined urban–rural categorical
scale, rather than applying a binary urban versus rural schema. Other pandemic indicators
relating to mitigation, such as access and receipt of vaccinations, could provide interesting
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explorations within and among counties of varying social vulnerability and community
resilience levels, as well as political leanings, as they relate to vaccination mitigation. As
more time passes since the start of the pandemic, further data have also been collected
and made publicly available regarding the socio-demographic characteristics of COVID-19
patients that could also allow for expansion of our empirical understanding of spatio-
temporal impacts on socially vulnerable populations.

6. Conclusions

To the best of our knowledge, this is one of the first studies to assess the spatial
disparities of COVID-19 cases and fatalities, identify the influence of social vulnerability,
community resiliency and government mitigation actions on standardized cases/fatalities
across all US counties during the initial year of the pandemic. Additionally, few geographic
studies have assessed the spatial variability of unemployment change rate as a measure of
pre-emergent recovery, which is a crucial element directly related to the economic impact of
the pandemic. Case and fatality spatial clustering found different clustering patterns than
previous spatio-temporal studies executed earlier in the pandemic. Another key takeaway
is the confirmation of certain urban–rural patterns observed early in the pandemic, proving
those patterns of exposures and outcomes remained consistent through January 2021. More
importantly, the results of this study are important for identifying place-based differences
in COVID-19 exposure and outcomes based on community contextual factors and their
practical application in targeting pandemic recovery at the local level. Finally, this unique
longitudinal methodology applied publicly available and/or repeatable data that can guide
future studies considering additional correlates for COVID-19 recovery not only in the US,
but also internationally.
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