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Abstract: This paper presents a scientific foundation for automated stroke severity classification. We
have constructed and assessed a system which extracts diagnostically relevant information from

Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the
brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS),

Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS).
The labels indicate different physiological processes which manifest themselves in distinct image
texture. The processing system was tasked with extracting texture information that could be used to
classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed
6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order
Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level
Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value
extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to
train and test four types of Support Vector Machine (SVM) classification algorithms according to
the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel
achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and
Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is
possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals
to improve diagnosis and management of stroke patients with the same resources.

Keywords: stroke type classification; Magnetic Resonance Imaging; Support Vector Machine; adap-
tive symmetric sampling; Higher Order Spectra

1. Introduction

Cerebrovascular accident, commonly known as stroke, is a major cause of death and
chronic disability on a global scale [1–3]. Cerebral ischemia causes approximately 80% of

Int. J. Environ. Res. Public Health 2021, 18, 8059. https://doi.org/10.3390/ijerph18158059 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-3979-4077
https://orcid.org/0000-0002-7566-1626
https://orcid.org/0000-0003-2689-8552
https://doi.org/10.3390/ijerph18158059
https://doi.org/10.3390/ijerph18158059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18158059
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18158059?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 8059 2 of 19

strokes [4]. Energy depletion and cell death might lead to ischemic brain injuries [5]. These
injuries cause diminished functionality of the affected nerve cells, which leads to serious
long-term disability. Brain imaging, such as Computed Tomography (CT) and Mag-
netic Resonance Imaging (MRI), is an important tool for ischemic stroke assessment [6,7].
Trained professionals use brain images to determine the affected lesion and classify the
stroke into one of three types: Partial Anterior Circulation Syndrome (PACS), Lacunar
Syndrome (LACS), and Total Anterior Circulation Stroke (TACS) [8–10]. PACS is a cortical
stroke and affects the middle/anterior cerebral artery. A blockage in blood vessels which
supply deep brain structures leads to LACS. TACS affects the middle/anterior cerebral
areas which are supplied by middle and anterior cerebral arteries [11]. Discriminating
between PACS, LACS and TACS yields important information for prognosis and treatment
planning [12–16]. Treatment for ischaemic stroke exists in the form of intravenous fibri-
nolysis, intra-arterial therapies, and mechanical revascularization [17]. Currently, human
experts use their knowledge on how the physiology of different stroke types is reflected
in image texture to classify stroke severity [10]. Cardiologists use textural information to
identify extent, shape, and location of lesions. This information forms the basis for stroke
severity classification. Unfortunately, manual image analysis is laborious [10], and prone
to inter- as well as intra-operator variability [18,19]. Furthermore, expert analysis is time-
consuming [16] which drives up the diagnosis cost. Automated lesion identification and
subsequent stroke severity classification can considerably reduce the delineation times and
detect lesions accurately [16]. Therefore, the development of computer aided diagnostic
systems based on automated brain lesion detection after stroke is an active field of research.

Automated stroke severity classification systems are linked to specific data sources.
To differentiate PACS, LACS and TACS in a practical setting, the choice comes down
to CT or MRI imaging. Both methods yield a graphical representation of the human
brain which contains distinct image objects. Identifying these objects through image
segmentation is an important step to extract diagnostically important information. When
compared to MRI, CT is more widely used because it is faster and less expensive. However,
MRI has a much higher sensitivity for acute ischemic lesions [20]. In addition, MRI
examinations can be extended by adding functional information to the anatomical data
to form Diffusion-Weighted Imaging (DWI). Diffusion refers to the random Brownian
motion of water molecules driven by thermal energy [21]. Acute cerebral ischemic lesions,
even in their early stage, have a different water proportion when compared to normal brain
tissue. Hence, DWI imaging is more sensitive than other MRI modalities to small water
diffusion changes in the acute ischemic brain, especially within 48 hours of the ictus [22–26].
Hence, MRI images are a good data source for automated and semi-automated lesion
delineation. Early attempts focused on identifying abnormal voxels in individual T1-
weighted MRI scans through Voxel-Based Morphometry (VBM) [27]. Although VBM may
be capable of highlighting structural abnormalities that can facilitate lesion delineation
by expert raters, it lacks the spatial resolution and statistical power to provide a true
replacement for manual lesion delineation [28]. Alternatively, several semi-automated
and fully automated procedures for lesion identification have been proposed [28–41].
Rekik et al. have summarized and discussed current research on ischemic stroke lesions in
terms of prediction and insights into dynamic evolution simulation models [42]. Lesion
identification through segmentation is the first step towards stroke severity classification.
However, questions remain as to whether there is sufficient understanding to automate the
information extraction processes needed to establish stroke severity. With this question, we
shift the focus from fundamental research towards more practical considerations which
relate to computer aided stroke severity diagnosis.

In this paper, we test the hypothesis that MRI images of the brain hold computer
extractible information to determine ischemic stroke severity. To do so, we extract, quantify,
and assess diagnostically relevant information that can assist with automated stroke sever-
ity classification. This work is based on the idea that precise identification of structural
brain damage in lesion areas is essential to quantify and indeed understand the brain ab-
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normality caused by stroke. The precision requirement led us to choose MRI as the imaging
modality. Our work is based on 267 MRI brain images taken from patients who suffered
either LACS, PACS, or TACS. Adaptive Synthetic (AdaSyn) was used to balance the class
specific feature sets. The information extraction was done with a combination of Discrete
Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) as well as the
standalone methods of Gray-Level Run Length Matrix (GLRLM), and Higher Order
Spectra (HOS). The analysis methods resulted in 6526 parameters, used as features. The
features were assessed in terms of their ability to discriminate LACS, PACS, and TACS. The
assessment was done with statistical analysis and classification performance optimization.
First, we used the Analysis Of Variance (ANOVA) method to rank the features in terms
of their ability to discriminate the disease classes. With these results, the classification
process uses 10-fold cross-validation to establish three assessment criteria: (1) classification
algorithm, (2) performance, and (3) number of features. As classification algorithm we
tested Support Vector Machine (SVM) with different kernel configurations. By averaging
the performance across all folds, we found that SVM with Radial Basis Function (RBF)
kernel showed the best result: 0.95 Dice score, 93.62% Accuracy (ACC), f1-score of 95.00%.
Based on the observation space of 267 brain MRI images, we failed to reject our initial
hypothesis. Hence, the results support the idea that automated stroke severity classification
is possible. This scientific foundation justifies further investigations on a larger observation
space. With such a study we might be able to determine the practical feasibility of auto-
mated stroke severity classification by focusing on human factor ergonomics during the
diagnostic process. Careful analysis could lead to the understanding that there is scope
for a stroke severity classification tool which creates an environment that allows human
experts and machine algorithms to work cooperatively on the diagnostic task.

We have structured the remainder of the manuscript as follows. The Section 2 intro-
duces both feature generation and classification methods. The features, extracted from
MRI images, were used to train and test the classification methods. Section 3 details the
test results. In the Discussion section, we compare our work to previous studies, and we
state where we could improve and complement these studies. The conclusion section
summarizes our efforts to support the thesis that it is possible to automate the extraction of
diagnostically relevant information from MRI images.

2. Methods

This section describes the methods used to construct and test a system which extracts
diagnostically relevant information from MRI images of the brain. More specifically, we
are interested to establish the diagnostic support quality for differentiating LACS, PACS,
and TACS. We have addressed this problem with a state-of-the-art design strategy which
involved pre-processing, feature extraction, data augmentation, feature ranking, and
classification. Figure 1 shows an overview block diagram which indicates how the data
flows through the individual processing methods. We have distilled diagnostically relevant
information from the pre-processed MRI images with three distinct feature extraction
methods. In the first phase GLCM, GLRLM, and HOS methods were used directly on the
pre-processed images. In the second phase, the same three methods were used to extract
features from different levels of DWT decomposition. After feature ranking, four different
implementations of the SVM classification algorithm were used to assess the ability of the
features to discriminate LACS, PACS, and TACS. The classifiers differ in terms of their
kernel methods; one RBF- and three polynomial-kernels were used. The following sections
introduce the processing steps in more detail.
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Image dataset

Image resizing

Contrast Limited Adaptive His-
togram Equalization (CLAHE)

AdaSyn sampling

GLCM GLRLM HOS

DWT

GLCM GLRLM HOS

ANOVA

SVM Linear SVM Poly2 SVM Poly3 SVM RBF

Result analysis

Pre-processing

Feature extraction

Data augmentation

Feature ranking

Classification

Figure 1. Overview block diagram.

2.1. Image Dataset

We have considered 267 slices (PACS 222, LACS 18, and TACS 27) of brain MRI
datasets collected from ischemic stroke patients at the Institute of Medical Science and
SUM Hospital, Bhubaneswar, Odisha, India. The data was anonymised such that even
basic demographics, like age and gender of the patients, are not available. Experts at the
hospital selected a single diffusion weighted slice from all the MRI images that were taken
during one imaging session from a stroke patient. The selected slices show the stroke
lesion and they were used by human experts to support the diagnosis of PACS, LACS, and
TACS, on the basis of the clinical features of the patients. The MRI images of the affected
brain were acquired with the Signa HDxT 1.5 T Optima Edition machine (GE Healthcare,
Waukesha, WI, USA). The first row of images in Figure 2 shows three example MRI images
depicting LACS, PACS, and TACS.
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(a) LACS (b) PACS

(c) TACS

(d) LACS after CLAHE (e) PACS after CLAHE

(f) TACS after CLAHE

Figure 2. Class specific examples from the image dataset. The original images are shown in the
first row: (a–c). The images were created by processing the original images with contrast adaptive
histogram equalization: (d–f).
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2.2. Image Resizing and Contrast Limited Adaptive Histogram Equalization

In a first processing step, we resized all 267 MRI images to 200 × 200 pixels. Subse-
quently, CLAHE was used to increase the difference in luminance which improves visual
feature detection. That was necessary because the brain tissue, shown in the MRI images,
lacks contrast, which makes it more difficult to distinguish texture morphology. CLAHE is
based on histogram equalization, which can help to increase the prominence of textural
changes caused by lesions, via contrast enhancement [43]. Adaptive histogram equaliza-
tion starts with partitioning an image into nonoverlapping 8 × 8 pixel segments known
as tiles. Each tile is enhanced so that the resulting histogram matches a uniform distribu-
tion. That process is governed by the contrast enhancement limit (0.01), which prevents
over-saturation in uniform image regions. Manipulating the tiles independently might
introduce artificial boundaries between them. Therefore, in a final processing step, we
used bilinear interpolation to smooth the boundaries. The second row of images in Figure
2 shows the example MRI images after CLAHE.

2.3. Adaptive Synthetic Sampling

The image acquisition process resulted in an imbalanced dataset where 83.15% of the
images came from PACS, 10.11% came from LACS, and only 6.74% came from TACS. The
imbalance is a problem for classification algorithms, because it introduces bias towards
the larger set [44]. For example, a decision support system can score 83.15% accuracy by
classifying all input as PACS. Even without that dump approach, it is difficult for the
learning algorithm to focus on the two minority classes, because this conflicts with the
generalization requirement. To be specific, an adequate representation of the minority
classes results in overtraining the network, which causes a deterioration of the classification
performance for unknown data. The ability to infer the correct label from unknown data is
impeded when the training process focuses too much on the individual cases.

Obtaining more data from the minority classes would be the best way of solving that
problem. Unfortunately, in this case it is not possible because the data was obtained from a
medical study, and the results reflect the distribution of stroke severity in patients. Clearly,
even when more MRI scans are conducted, it is expected that the distribution of PACS,
LACS, and TACS is similar to the original dataset. Hence, the problem must be solved on
the data processing level. There are two different approaches to accomplish that. We could
introduce a cost factor and make it more ‘expensive’ for the machine learning algorithm to
misclassify elements of either LACS or TACS [45–47]. This form of intervention requires
specific classification algorithms which are aware of the cost associated with specific classes.
The second method for reducing the bias is by balancing the dataset through over- and
under-sampling [48–50]. The cost function requirement limits the choice of classifiers,
because not all relevant algorithms come with that functionality. Therefore, we have chosen
to resample the dataset with AdaSyn. The method was originally proposed by He et al. [51]
and it aims to preserve all of the data while harvesting the benefits of balanced datasets.

2.4. Feature Extraction

The DWT [52] was employed on the balanced dataset, wherein the images were
decomposed up to 3 levels. Feature extraction was done in 2 phases; (i) before DWT and
(ii) after DWT. In (i), the texture features, GLCM [53], GLRLM [53] and HOS [54] were
extracted directly from the balanced set of images. The same features were also extracted
in (ii).

2.4.1. Discrete Wavelet Transform

DWT was used to decompose the pre-processed images to extract both location and
frequency [55,56]. For this work we have used the first three levels of decomposition. Each
level of decomposition yields a detailed (D) and an approximated (A) image. The block
diagram in Figure 3 shows how an original MRI slice is decomposed to three DWT levels.
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Hence, after DWT we had seven images for each of the 267 MRI slices: one original and
three detailed as well as three approximated images.

Original MRI slice A1

D1

A2

D2

A3

D3

Level 1 Level 2 Level 3

Figure 3. DWT analysis block diagram. DX indicates the detailed image at level X and AX indicates
the approximated image at level X.

2.4.2. Gray-Level Co-Occurrence Matrix

GLCM features establish a relationship between pixels by analyzing images with
second-order statistics. During the analysis, the permutation frequency of the pixel bright-
ness is identified [57].

Fourteen linear and nonlinear GLCM features were extracted from the pre-processed
MRI images. The linear feature extraction methods were: autocorrelation [57,58], Max
Probability [57,59], Dissimilarity [57], Entropy [60], Cluster Shade [57], Sum Average [57],
Sum Entropy [57], Sum Variance [57], Difference Variance [57], Difference Entropy [57],
Information Correlation Measures 1 and 2 [57].

2.4.3. Gray-Level Run Length Matrix

GLRLM extracts spatial plane features per pixel, relative to the higher-order statistics,
wherein a two-dimensional feature matrix is formed at the end [61].

11 GLRLM features, such as the Short Run Emphasis [62], Long Run Emphasis [63],
Gray-Level Nonuniformity [63], Run Length Non-uniformity [63], Run Percentage [63],
Low Gray-Level Run Emphasis [64], High Gray-Level Run Emphasis [62], Short Run Low
Gray-Level Run Emphasis [64], Short Run High Gray-Level Run Emphasis [64], Long Run
Low Gray-Level Run Emphasis [62] and Long Run High Gray-Level Run Emphasis were
extracted [62].

2.4.4. Higher Order Spectra

HOS based feature extraction methods pick up small structural changes in physio-
logical signals and medical images [65–67]. Some of these small structural changes might
be due to natural variation, while others might result from pathophysiologic changes
caused by a particular disease [68–70]. For the current study, we try to classify brain
lesions caused by stroke into PACS, LACS and TACS. The classification reflects different
pathophysiological processes which result in subtle changes in the MRI image texturing.

HOS feature extraction methods use the Fourier transform of higher order correlations
to identify the presence of nonlinear coupling information [71]. These textural features are
competent, and hence they were used in our study. To be specific, the following nonlinear
features were extracted with HOS methods: entropies 1, 2, 3 as well as HOS phase entropy
and HOS mean of magnitude [54]. These features were extracted with phase angels from
1 to 180 in steps of 1◦.

2.5. Statistical Analysis

Statistical analysis was used for feature ranking, which is a prerequisite for classification-
based feature selection. A particular feature can be considered more important if we can
rank it among the other features based on some metric. Therefore, a higher-ranked feature
is more valuable for classification than a lower-ranked feature. Moreover, ignoring features
that have a rank lower than a specific threshold can also increase classification speed.
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The Feature extraction yielded 6475 parameters. This number results from 14 GLCM
and 11 GLRLM features that were extracted from the seven images (two for each level of
DWT decomposition and one original). Overall that resulted in 175 features. In addition,
the five HOS features were also extracted from each image. Evaluating these features
in one degree phase steps for half a circle resulted in 6300 = 5 × 180 × 7 features. The
6475 computed features were ranked using the F-value obtained from ANOVA [72]. That
allowed us to order the feature set from the largest F-value down to the lowest one.

2.6. Classification

Training and testing machine learning algorithms involves creating training and test-
ing datasets. That data split might introduce bias and the results are less reliable because
not all available data were used for testing. We have used 10-fold cross-validation to reduce
bias and to improve test coverage. The method unfolds as follows. Initially, all available
data i.e., the feature vectors, are split into 10 parts. From these 10 parts we constructed
10 folds by selecting each of the parts as test data and the remaining nine parts as training
data. Sequential forward selection was used on each fold for feature selection [73]. Subse-
quently, these folds were used to train and test the SVM algorithms. Hence, for each of the
four tested classification algorithms we obtained 10 sets of performance measures—one
for each fold. Averaging the individual performance measures over the 10 folds serves to
reduce bias, and it improves the test coverage [74].

2.6.1. Support Vector Machine Classifier

We have selected SVM algorithms [75] to classify the feature vectors into PACS, LACS,
and TACS. A training step was used to construct two hyperplanes in a high-dimensional
feature space which separate class-specific training data points [76]. During testing, the
hyperplanes were used as decision borders, which facilitated the classification task. In
this study, we have used four different methods to construct the hyperplanes. These
methods differ from one another in terms of the kernel that was used to map the feature
vectors into the high-dimensional space [77]. The first method was based on a first order
polynomial kernel, also known as a linear kernel. Two more methods were constructed by
increasing the polynomial order to two and three, respectively. The fourth method employs
the RBF kernel function which is based on the squared Euclidean distance between the
feature vectors.

2.6.2. Performance Measures

At a global level, the classification method is judged successful if it can identify the
correct stroke type. This testing results in a 2 by 2 confusion matrix with True Positive (TP),

True Negative (TN), False Positive (FP), and False Negative (FN) entries. These entries
were used to calculate ACC, Positive Predictive Value (PPV), Sensitivity (SEN), and

Specificity (SPE), as defined in the following equations:

ACC = ( TP + TN )/( TP + TN + FP + FN ) (1)

PPV = TP/( TP + FP ) (2)

SEN = TP/( TP + FN ) (3)

SPE = TN/( TN + FP ) (4)

We also established Dice’s similarity index [78,79] using the following formula:

Dice = 2 TP/( 2 TP + FP + FN ) (5)

3. Results

This section presents the 10-fold cross-validation performance results achieved by the
four tested SVM classifiers. These results are instrumental to judge feature quality. As such,
feature quality reflects the diagnostically relevant information that can be automatically
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extracted with signal processing algorithms. Hence, the classification results help us in
our quest to determine if, and indeed to what extent, brain MRI imagery contain machine
extractable information for stroke severity classification. Tables 1–4 detail the classification
performance for each fold and the average performance, overall folds, of the four tested
SVM classifiers.

Table 1. SVM with linear kernel. The first 10 rows in the table document the performance results for
each individual fold. The last row states the averaged performance results.

TP TN FP FN ACC % PPV % SEN % SPE % Dice

37 21 1 6 89.23 97.37 86.05 95.45 0.91
41 19 4 2 90.91 91.11 95.35 82.61 0.93
38 17 5 6 83.33 88.37 86.36 77.27 0.87
40 21 1 4 92.42 97.56 90.91 95.45 0.94
39 17 5 5 84.85 88.64 88.64 77.27 0.89
39 18 4 5 86.36 90.70 88.64 81.82 0.90
40 19 3 4 89.39 93.02 90.91 86.36 0.92
36 20 2 8 84.85 94.74 81.82 90.91 0.88
38 20 2 6 87.88 95.00 86.36 90.91 0.90
36 21 1 7 87.69 97.30 83.72 95.45 0.90

384 193 28 53 87.69 93.38 87.88 87.35 0.90

Table 2. SVM with a second order polynomial kernel. The first 10 rows in the table document the
performance results for each individual fold. The last row states the averaged performance results.

TP TN FP FN ACC % PPV % SEN % SPE % Dice

37 22 0 6 90.77 100.00 86.05 100.00 0.93
39 23 0 4 93.94 100.00 90.70 100.00 0.95
40 20 2 4 90.91 95.24 90.91 90.91 0.93
39 22 0 5 92.42 100.00 88.64 100.00 0.94
43 21 1 1 96.97 97.73 97.73 95.45 0.98
40 22 0 4 93.94 100.00 90.91 100.00 0.95
41 21 1 3 93.94 97.62 93.18 95.45 0.95
36 22 0 8 87.88 100.00 81.82 100.00 0.90
40 22 0 4 93.94 100.00 90.91 100.00 0.95
40 22 0 3 95.38 100.00 93.02 100.00 0.96

395 217 4 42 93.01 99.06 90.39 98.18 0.94

Table 3. SVM with a third order polynomial kernel. The first 10 rows in the table document the
performance results for each individual fold. The last row states the averaged performance results.

TP TN FP FN ACC % PPV % SEN % SPE % Dice

38 22 0 5 92.31 100.00 88.37 100.00 0.94
38 23 0 5 92.42 100.00 88.37 100.00 0.94
40 21 1 4 92.42 97.56 90.91 95.45 0.94
39 22 0 5 92.42 100.00 88.64 100.00 0.94
42 21 1 2 95.45 97.67 95.45 95.45 0.97
41 22 0 3 95.45 100.00 93.18 100.00 0.96
38 20 2 6 87.88 95.00 86.36 90.91 0.90
37 22 0 7 89.39 100.00 84.09 100.00 0.91
37 22 0 7 89.39 100.00 84.09 100.00 0.91
41 22 0 2 96.92 100.00 95.35 100.00 0.98

391 217 4 46 92.41 99.02 89.48 98.18 0.94
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Table 4. SVM with RBF kernel. The first 10 rows in the table document the performance results for
each individual fold. The last row states the averaged performance results.

TP TN FP FN ACC % PPV % SEN % SPE % Dice

38 21 1 5 90.77 97.44 88.37 95.45 0.93
40 23 0 3 95.45 100.00 93.02 100.00 0.96
41 18 4 3 89.39 91.11 93.18 81.82 0.92
40 22 0 4 93.94 100.00 90.91 100.00 0.95
43 20 2 1 95.45 95.56 97.73 90.91 0.97
40 21 1 4 92.42 97.56 90.91 95.45 0.94
42 21 1 2 95.45 97.67 95.45 95.45 0.97
39 22 0 5 92.42 100.00 88.64 100.00 0.94
41 22 0 3 95.45 100.00 93.18 100.00 0.96
40 22 0 3 95.38 100.00 93.02 100.00 0.96

404 212 9 33 93.62 97.93 92.44 95.91 0.95

Table 5 shows the classification results of the SVM classifiers. From the results, it is
clear that the SVM RBF classifier obtained the highest classification accuracy of 93.62% and
a dice score of 0.95 for the classification of PACS, LACS and TACS images.

Table 5. Classification results of the SVM algorithms.

Classifier Average Average Average Average Average
SEN % SPE % PPV % ACC % Dice

SVM linear 87.88 87.35 93.38 87.69 0.90
SVM RBF 92.44 95.91 97.93 93.62 0.95

SVM polynomial 2 90.39 98.18 99.06 93.01 0.94
SVM polynomial 3 89.48 98.18 99.02 92.41 0.94

4. Discussion

Current medical imaging technology allows us to support human expertise during
diagnosis and treatment monitoring [80]. With this study, we propose to extend existing
technology with decision support algorithms to create a Computer-Aided-Diagnosis
(CAD) system. We investigated ischemic stroke severity classification based on standard
MRI imagery. Framing the study in such a way allowed us to set the aims and objectives
for the proposed decision support algorithms. Within this framework, the main aim of our
study is to bring about evolutionary change by providing an adjunct tool for stroke severity
classification based on MRI image analysis. To achieve that aim, we must show that it
is possible to automate the extraction of diagnostically relevant information from MRI
imagery. Therefore, the main objective for this study was to evaluate a range of information
extraction methods in terms of their ability to support a stroke severity diagnosis. The
evaluation process was structured into statistical and classification performance assessment.
The assessment results provide a measure that determines to what extent the main objective
was met. Furthermore, these results feed into the wider research community because they
provide a way to compare different studies.

Looking back, the initial computer support tools were capable of lesion segmentation
in MRI scans [16,81,82]. These methods employed linear decision algorithms, such as
thresholding, to accomplish the segmentation task. More recently, these linear methods
have been replaced by machine classification methods, because these methods consider
nonlinear relationships between information extracted from the MRI images. Studies which
investigated lesion segmentation problems show that machine classification outperforms
linear decision methodology [15,42,83]. The medical rationale behind these studies was that
size, region, and density of the lesion are correlated with the damage caused to brain tissue,
which correlates to the cognitive impairments of patients. Addressing this medical need
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with computer algorithms instead of human expertise, followed the same reasoning as we
have put forward for our study. Manual lesion segmentation by a trained professional is
referred to as the gold standard against which the automated systems are compared [8,9].
Having automated systems for lesion segmentation offers several advantages. Such a
system can be used as an adjunct tool which provides a second opinion on a specific MRI
scan. Having such a second opinion, from a tool that does not suffer from inter- and
intra-observer variability [18], might lead to a better diagnosis. There is also the economic
argument on progress which means to do more with the same resources. For CAD systems,
progress implies a shift from human labor to machine work. Lesion segmentation follows
a set of rules, and knowing these rules requires theoretical as well as practical training.
That training process is a significant cost factor when it comes to health economics. CAD
algorithms formalize the lesion segmentation rules such that they steer the execution of
a computer program. That computer program needs to be coded only once and it can be
deployed multiple times. Usually, this is more cost-effective when compared to training
human experts. However, human experts are not limited to analyzing the images; they are
also establishing a diagnosis through decision-making. Reaching these decisions requires
not only reason but also perception, and indeed, intuition guided by experience. Hence,
one way to make further progress is to shift work that requires higher mental capabilities
from humans to machines.

Artificial Intelligence (AI) is a technology which can mimic higher mental functions
of human experts. On a taxonomy level, machine classification is a subset of AI. However,
machine classification methods tend to be referred to as AI when they perform higher
mental functions for decision-making. Being capable of reaching that type of decision is
distinct from the logical analysis tasks for image segmentation, discussed in the previous
paragraph. Combining AI with analysis algorithms creates decision support systems which
can execute more tasks on a higher mental level. Inevitably, that kind of progress means to
shift more work and indeed responsibility from human experts to machines. Therefore,
the performance of such systems is even more critical than it is for analysis support
algorithms. When compared to analysis systems, the advice from decision support systems
appears later in the diagnosis process, i.e., closer to a decision point; hence there is less
room or time for human experts to falsify the machine result. For example, there is a
distinct possibility that a decision support system provides the wrong advice, and a human
expert will follow that advice, which could lead to negative outcomes for patients. Hence,
systems which interpret lesion segmentation results must cope with additional performance
requirements. The technology to meet these stricter requirements became available only
in recent years; therefore, decision support systems, which provide a statement about the
disease itself such as stroke severity classification, were created more recently as compared
to analysis systems.

There is a direct relationship between the capability of medical support tools and the
responsibility that they incur. Unfortunately, that requirement becomes harder to achieve
when medical support tools mimic the higher order mental capabilities of human experts.
Therefore, these tools tend to become more complex and less explainable. Looking over
the history of MRI image analysis for lesion segmentation, linear image analysis results
are straightforward to explain. For example, it might come down to comparing a specific
parameter extracted from an MRI image to a specific threshold. From a consideration
of nonlinear relationships, machine learning based image segmentation results are less
explainable. Supervised machine learning, which was employed by all the reviewed le-
sion segmentation systems, requires a training step which extracts the parameters for the
nonlinear model. Hence, the system performance depends on the training step, and that
step might introduce bias and other limitations. When it is difficult to explain the machine
results directly, human experts can move into a supervisory position to verify them. Deci-
sions, done as part of an automated lesion segmentation, can be verified relatively quickly
through visual inspection. In many cases, seeing the proposed lesion region superimposed
over the MRI image is sufficient to accept or reject the segmentation result. Verification of
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decision support, which involves mimicking higher mental facilities, is more difficult to
verify. For example, stroke-type classification to assess stroke severity requires MRI image
analysis followed by a diagnostic decision. The verification process is similar to the diagnos-
tic process; hence it takes about the same time. Consequently, there is little or no progress
in terms of timesaving. In this case, having an automated stroke severity classification
might serve as a second opinion which improves the quality of a diagnostic decision. Real
progress is made when human experts can trust automated stroke severity classification
systems sufficiently to base their diagnosis on a suggestion from these systems. However,
current methods were not designed with sufficient formality to provide the required deci-
sion quality, and indeed they were not tested rigorously enough [84]. Simulating lesion fate
prediction might help us to understand the physiology of acute stroke, and it could aide in
the creation of stroke severity classification systems [85]. We aimed to support the creation
of stroke severity classification systems by assessing task-specific feature extraction and
AI methods. By doing so, we established that it is possible to automate the extraction of
diagnostically relevant information for stroke severity classification from MRI images. This
could add to the theoretical foundation for formally developed decision support systems
that can bear the responsibility of deciding stroke severity.

Discussing lesion segmentation and automated stroke severity classification from
a historical perspective sets the context for reviewing both processing methods and the
quality assessment results of relevant research work. We start that discussion with a method
developed by Seghier and colleagues [15]. They used probabilistic tissue segmentations
obtained from healthy control subjects to estimate mean gray matter and white matter
probabilities for each voxel. To identify lesions in patient scans, these estimates were
used to compute a metric for quantifying each voxel’s membership to a fuzzy set within
each tissue class. A linear threshold method was used to determine the lesion tissue
class for an unknown voxel. Wilke and colleagues [16] developed a semi-automated
algorithm that uses probabilistic tissue segmentation to construct a set of four feature
maps which encode information about tissue composition, tissue homogeneity, shape, and
laterality at each voxel. These feature maps were used to construct robust z-score maps,
subjected to manual thresholds. A user must combine the results to establish the final
lesion delineation. Mitra et al. [86] approached the problem of lesion segmentation with a
combination of Bayesian–Markov random fields and random decision forests for voxel-
wise classification in multi-spectral MRI volumes. Their system achieved a Dice coefficient
of 0.60 ± 0.12. Karthik et al. [87] used transfer learning to segment ischemic lesions. Their
deep supervised fully convolutional network achieved a mean segmentation accuracy of
70%. Acharya et al. [88] used HOS entropy features to build a system which is capable of
classifying MRI images after stroke into LACS, PACS, and TACS. Their system achieved
sensitivity, specificity, accuracy, and positive predictive values equal to 96.4%, 100%, 97.6%
and 100%, respectively. Vupputuri et al. [89] investigated the symmetry between left and
right brain hemisphere. Their hypothesis was that hemisphere asymmetry provides an
important cue for abnormality estimation, and they tested their hypothesis by building an
automated lesion segmentation system based on a novel superpixel cluster method. That
system achieved a Dice similarity score of 0.704 ± 0.27. Our feature extraction method
fuses texture analysis methods with HOS. The resulting features are more expressive when
compared to the individual methods.

Limitations and Future Work

Our current work is an attempt to improve the results of our previous work [88]. We
have tested a diverse range of features. However, the best performance was close to the one
obtained previously. In the current effort, we have fused HOS based features with texture
features extracted through GLCM and GLRLM. The fused feature extraction methods
were applied to the image directly, as in our previous work, and the first three levels
of DWT decomposition. Our results show that the additional texture feature extraction
methods (GLCM and GLRLM) and decomposing an image with DWT fail to improve the
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classification performance. We have to conclude that HOS based features are most suitable
for the classification of brain MRI images, because these methods are able to capture subtle
changes in the pixel intensities efficiently. Having realized the discriminative power of
HOS for stroke severity classification based on MRI images, there might be scope for
investigating higher order cumulants as a feature extraction method. Our current work on
HOS can serve as a benchmark with which any future method is compared.

Common to both studies is the fact that we had only 267 MRI images and there
were significantly more PACS (222) images than TACS (27), and LACS (18). Having so
few images limited our study to information extraction and assessment. We could only
show that it is possible to extract information from the MRI images that can be used to
differentiate the stroke severity. However, it was not possible to construct a system which
can be used in a practical diagnosis support setting, because these images do not reflect
depth and breadth of MRI images collected for stroke severity diagnosis. Breadth refers to
the fact that every brain and indeed every stroke is different. More images are needed for
the machine to learn what constitutes a normal brain and how it is affected by different
types of stroke. With the current limited dataset, a system which could extract such deep
knowledge would overfit. That means the system would extract relevant and irrelevant
information during the training phase and thereby gain no knowledge on how a stroke
alters the brain. The failure to gain that knowledge manifests itself in a poor performance
when the classification system is tested with unknown MRI images. Significantly more
data is needed to force such AI systems to learn only from relevant information which lead
to an understanding on how the MRI technology captures the different types of stroke.
Another limitation is that we had data from only one center in Bhubaneswar, Odisha,
India. Hence, our study might be biased to detecting stroke in a specific ethnic group,
because the measurements were carried out in one geographical region. In other words,
for a different region, different features might be more relevant. Furthermore, having only
267 MRI images from one center is not deep enough to rule out observer bias. One final
thought on the data and its limitations centers on the fact that the MRI slices were carefully
selected to show clear-cut textbook examples for the different types of stroke. This limits
our study in terms of automatization and generalization. Manual selection of MRI slices
introduces inter- and intra-observer variability. Furthermore, it requires expert labor which
is a major cost factor. Hence, the proposed automatization is still incomplete, and slice
selection is an important topic for future research work. Indeed, looking at the continuum
of slices, rather than just one, might reveal more information which can lead to more robust
decision support results. The generalization limitation arises also from the expert selection
of MRI slices. Having good examples is important for a learning situation because it avoids
confusion among the learners. From this perspective, training AI is not different from
training human experts. However, for human experts we have ample of evidence that
they can extract transferable knowledge from limited and biased data sets, which helps
them in a practical setting. There are significantly fewer examples showing that AI has
that ability. In that specific sense, we did not investigate whether the proposed feature
extraction methods can be transferred to a practical setting.

The classification into PACS, TACS, and LACS helps human experts to reach a diag-
nosis, which is the cornerstone for managing the disease with treatment and specialized
care. In this study we show that AI systems can be used to formalize the identification
of different stroke types. However, for future projects we need more data to address the
limitations and biases inherent in the current image dataset. Data from more geograph-
ical regions are required to address ethnic bias. More data, even from the same center,
is required to avoid observer bias and to reflect observable variations adequately. As a
result, the AI algorithms for future studies must deal with significantly larger datasets.
Experience shows that feature extraction coupled with classical machine learning is not
capable of handling the training data needed to prepare AI systems for practical diagnosis
support [90]. Therefore, future studies require different AI algorithms, such as Deep
Learning (DL). DL is a concept which turns big training data into an advantage for practical
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decision support systems. This is done by allowing sufficient network depth to capture
more relevant knowledge without the need for feature engineering. We suggest that using
this type of algorithm will improve the practical relevance for future stroke severity classi-
fication systems. However, we are aware that even considering MRI scans from multiple
centers of longer time periods might not yield sufficient data to train the most potent
deep networks. One way of addressing that problem might be to use transfer learning,
which is based on the idea of customizing pre-trained networks [91]. Customizing the
network requires less labeled data when compared to training a deep network from scratch.
Furthermore, the computational complexity is lower, which makes hyperparameter tuning
less time-consuming.

Our final thought on limitations and future work is concerned with the practicalities
of having an automated stroke severity classification system in the care pathway. Our
initial assumption is that such a system will be useful whenever MRI images are captured
to determine the stroke type. In the future, working with multiple centers might help us
to determine which stage of the care pathway will benefit most from the application of
automated stroke severity classification. This leads to focused research questions, such
as: Should automated stroke severity classification be used in acute, sub-acute or chronic
settings? Would such a system help in acute treatment with IV or IA thrombolysis or
chronic disability management by predicting prognosis or something else?

5. Conclusions

With this paper we set-out to answer the question as to whether it is possible to
automate ischemic stroke severity classification based on MRI imagery. To investigate
that research question, we designed a system which uses HOS, GLRLM, as well as a
combination of DWT and GLCM methods for feature extraction. The resulting features
were assessed with statistical and classification methods. Statistical assessment allowed us
to rank the features. The best features scored a very low p-value; therefore, we have to reject
the hypothesis that the features were drawn from the same data class. In other words, the
statistical analysis indicates that the features reflect different data classes. The classification
assessment quantifies the ability of the best features to differentiate between PACS, LACS,
and TACS. We found that SVM with RBF kernel achieves: ACC = 93.62%, SPE = 95.91%,
SEN = 92.44%, and Dice = 0.95. These performance measures were established based on
the rules of 10-fold cross-validation. Hence, the results are statistically robust, and they
indicate that fusing texture analysis with HOS produces superior results when compared
to individual methods. Furthermore, the established Dice score indicates that our feature
extraction method outperforms all MRI based lesion segmentation and stroke severity
classification algorithms published in the scientific literature. Therefore, fusing texture
and HOS methods can serve as a scientific foundation which indicates that it is possible
to differentiate PACS, LACS, and TACS based on MRI images. The proposed feature
extraction system helped us to support our hypothesis that it is possible to automate stroke
severity classification based on MRI images.

This paper documents a significant step towards automated ischemic stroke severity
classification based on MRI imagery. The results provide the necessary confidence to
propose further investigations. Data is the most crucial part of these investigations because
we need datasets which reflect the diversity encountered during a medical diagnosis. We
are confident that the necessary processing tools are available and MRI images contain
diagnostically relevant information that can be extracted automatically. Hence, we can
shift our research effort from information focused feature engineering to knowledge-based
decision support systems. Ultimately, we would like to build a system which understands
the MRI image texture for PACS, LACS and TACS.
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