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Abstract: Isoflavones are metabolized by components of the gut microbiota and can also modulate
their composition and/or activity. This study aimed to analyze the modifications of the fecal
microbial populations and their metabolites in menopausal women under dietary treatment with
soy isoflavones for one month. Based on the level of urinary equol, the women had been stratified
previously as equol-producers (n = 3) or as equol non-producers (n = 5). The composition of the
fecal microbiota was assessed by high-throughput sequencing of 16S rRNA gene amplicons and the
changes in fatty acid excretion in feces were analyzed by gas chromatography. A greater proportion
of sequence reads of the genus Slackia was detected after isoflavone supplementation. Sequences of
members of the family Lachnospiraceae and the genus Pseudoflavonifractor were significantly increased
in samples from equol-producing women. Multivariable analysis showed that, after isoflavone
treatment, the fecal microbial communities of equol producers were more like each other. Isoflavone
supplementation increased the production of caproic acid, suggesting differential microbial activity,
leading to a high fecal excretion of this compound. However, differences between equol producers
and non-producers were not scored. These results may contribute to characterizing the modulating
effect of isoflavones on the gut microbiota, which could lead to unravelling of their beneficial health
effects.

Keywords: fecal microbiota; isoflavones; equol; pyrosequencing; menopause; fatty acids

1. Introduction

The existence of an inter-individual variability in response to diet and lifestyle inter-
ventions is widely accepted [1]. A complex interaction between diet, human genome, and
the gut microbiome occurs and can determine the effects of dietary bioactives [2]. The
gut microbiota is a critical component that can alter the absorption and metabolism of
foods, and thus the final effects on human health. However, although a growing body of
studies exists, the mechanisms underlying these processes are complex and not entirely
understood. In this context, isoflavones-plant-derived polyphenols found at a relatively
high concentration in soy and soy-derived products have been related to diverse health
benefits such as the prevention of chronic diseases, including hormone dependent cancer,
cardiovascular diseases, osteoporosis, and postmenopausal syndrome [3]. Although there
is scientific evidence of the beneficial effects in counteracting symptoms like hot flushes
and vasomotor reactions in menopausal women [4], the European Food Safety Authority
(EFSA) has refuted health claims about the role of isoflavones in body functions [5]. The
clinical effectiveness of ingested isoflavones might be due to their ability to be converted
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into active metabolites like equol [6,7]. This metabolite is the isoflavone-derived compound
with the strongest estrogenic activity and antioxidant capacity, and is generated by specific
members of the gut microbiota. Only some individuals harbor the microbiota required
for the conversion into equol, resulting in different metabotypes: equol producers and
non-producers [8]. Remarkably, compared with that in Asian populations (50–60%), the
equol producer metabotype has a prevalence of 25–30% in Western populations [7].

Although the full range of intestinal bacteria involved in equol formation remains
unknown [8,9], most of the equol-producing bacteria characterized so far are members of
the family Coriobacteriaceae [10]. Additionally, the microorganisms responsible for equol
production might differ across individuals [11–13].

Like other polyphenols, isoflavones are metabolized by components of the micro-
biota, and at the same time, they could also modulate the composition and/or activity
of the intestinal microbial populations [14]. Analysis of intestinal microbiota modifica-
tions after isoflavone consumption could give clues as to the microorganisms involved
in its metabolism. Some studies analyzed the effects of the isoflavone intake on the gut
microbiota [15–19]. However, additional studies applying high-throughput approaches are
still needed to determine low abundance microorganisms, like those probably involved in
equol production.

This study aimed to determine changes in the intestinal microbiota induced by a
1-month period of isoflavone consumption and to explore changes related to the equol
status metabotype. With this aim, high-throughput amplicon sequencing of the bacterial
16S rRNA gene was performed on fecal samples taken before and after isoflavone consump-
tion by eight menopausal women (three equol producers and five equol non-producers).
In addition, metabolite analysis of feces was performed using gas chromatography for
determination of possible shifts in fatty acid excretion.

2. Materials and Methods
2.1. Human Volunteers

Ethical approval for this study was obtained from the Bioethics Subcommittee of the
Spanish Research Council (Consejo Superior de Investigaciones Científicas or CSIC) and
the Regional Ethics Committee for Clinical Research of the Health Service of Asturias
(Servicio de Salud del Principado de Asturias) (approval number: 15/2011), in compliance
with the Declaration of Helsinki. Fecal samples were provided, with written consent, by
eight postmenopausal women recruited during a preceding study [18] at the Gynecology
and Obstetrics Unit (in collaboration with the Gastroenterology Department) of Cabueñes
Hospital (Gijón, Spain). The participants did not suffer from any infectious diseases or
intestinal disorder. Additionally, they had not received antibiotics or any other medication
for at least 6 months prior to the collection of samples. The women had been identified with
an equol-producing metabotype (or not), based on the levels of urinary equol excretion [20].
For the present work, we selected three of the women (WC, WG, and WP) with an equol-
producing phenotype (urine equol > 1000 nM as defined by Rowland et al. [21]) and
five women (WE, WH, WF, WL, and WN) with a non-producing phenotype (excreted
equol in urine ranging from 0 to 377 nM). Participants reported consuming a normo-type,
Mediterranean diet and did not start following a vegetarian, vegan, or special diet during
the intervention period. Supplementation consisted of a daily oral intake (80 mg/day) in
the morning of a commercial dietary supplement (Fisiogen; Zambon, Bresso, Italy) rich in
soy isoflavones (55–72% genistin/genistein, 28–45% other isoflavones) for one month.

2.2. Sample Collection

The study was conducted during the fall–winter seasons of 2011–2012. The volun-
teers provided samples of feces before treatment (basal, T0) and after one month (T1)
of isoflavone supplementation. Fresh stools were collected in sterile plastic containers
and kept under anaerobic conditions in jars containing Anaerocult A (Merck, Darmstadt,
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Germany) for transporting to the laboratory within 2 h. Fecal samples were kept frozen at
−80 ◦C until use.

2.3. Total Bacterial DNA Extraction

Fecal samples (0.2 g) were suspended in 1.8 mL of phosphate buffered saline (PBS)
(pH 7.4). These suspensions were homogenized and centrifuged at 800 rpm for 5 min at
4 ◦C to eliminate insoluble material, and the supernatants were transferred to new tubes.
These were then centrifuged again at 14,000 rpm for 5 min at 4 ◦C. Pelleted cells were
suspended in 1 mL of PBS and lysed in an enzyme solution containing 20 mM TRIS-HCl pH
8.0, 2 mM EDTA, 1.20% Triton X-100, 20 mg/mL lysozyme (Merck), and 20 U mutanolysin
(Sigma-Aldrich, Saint Louis, MO, USA). Total bacterial DNA was extracted following the
protocol described by Zoetendal [22], and purified using the QIAamp DNA Stool Minikit
(Qiagen, Hilden, Germany). Finally, the DNA was eluted in 100 µL of sterile molecular
grade water (Sigma-Aldrich), and its concentration and quality were determined using an
Epoch microvolume spectrophotometer (BioTek Instruments, Winooski, VT, USA).

2.4. Library Construction and Pyrosequencing

A segment of the 16S rRNA genes from the purified bacterial DNA were PCR-
amplified using the universal primers Y1 (5′-TGGCTCAGGACGAACGCTGGCGGC-3′)
(position 20–43 on the 16S rRNA gene of Escherichia coli) and Y2 (5′-CCTACTGCTGCCTCC
CGTAGGAGT-3′) (positions 361–338). These primers amplify a 348 bp stretch of the
prokaryotic rDNA embracing the V1 and V2 hypervariable regions. Further, 454-adaptors
were included in both the forward (5′-CGTATCGCCTCCCTCGCGCCATCAG-3′) and re-
verse (5′-CTATGCGCCTTGCCAGCCCGCTCAG-3′) primers, followed by a 10 bp sample-
specific barcode. Amplifications were performed using the NEBNext High-Fidelity 2x
PCR Master Mix Kit (New England Biolabs., Ipswich, MA, USA) as follows: 95 ◦C for
5 min, 25 cycles of 94 ◦C for 30 s, 60 ◦C for 45 s, 72 ◦C for 30 s, and a final extension step at
72 ◦C for 5 min. The amplicons produced were purified using the GenElute PCR Clean-Up
Kit (Sigma-Aldrich), and their concentration was measured in a Qubit fluorometer with
dsDNA assay kits (Thermo Fisher Scientific Inc., Waltham, MA, USA).

An amplicon library was prepared for pyrosequencing by mixing equal amounts of
amplicons from the different samples. Pooled amplicons were then sequenced using a 1/8
picotitre plate in a 454 Titanium Genome Sequencer (Roche, Indianapolis, IN, USA) in the
UNC Microbiome Core (University of North Carolina, USA).

2.5. Sequence and Data Analysis

Raw sequences were denoised and filtered out of the original dataset. Filtering and
trimming were performed using the Galaxy Web Server [23], employing the sliding window
method. Only reads longer than 150 bp were used in further analysis. Chimeras were
eliminated using the USEARCH v.6.0.307 clustering algorithm routine in de novo mode [24].
After demultiplexing, high quality rDNA sequences were classified taxonomically using
the Ribosomal Database Project (RDP) Bayesian Classifier [25] with an 80% confidence
threshold to obtain the taxonomic assignment and relative abundance of the different
bacterial groups. “Genus” was the lowest taxonomic level contemplated. Sequences
with at least 97% similarity were clustered into operational taxonomic units using the
CD-Hit clustering method [26] and employed in the generation of rarefaction curves using
a RarefactWin freeware (produced by S. Holland; http://strata.uga.edu/software/index.
html). Different diversity indexes (Sobs, Chao, ACE, Jackknife, Shannon, Simpson) were
calculated for each sample and compared between groups of women [27]. As diversity
index values increase with sample size, normalization of sequencing effort in all samples
was necessary to avoid biases in the results [28]. Thus, diversity indexes were normalized
using the median number of sequences obtained in all samples as a scaling factor [29].
Weighted UniFrac analysis [30] was performed to assess the similarity of the microbial
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communities between samples and principal coordinates analysis (PCoA) was applied to
the distance matrix for visualization.

2.6. Fatty Acids (FAs) Determination

One hundred microliters of a 1:10 dilution of feces (w/v) in PBS was supplemented
with 100 µL of 2-ethyl butyric acid (Sigma-Aldrich, St. Louis, MO, USA) as an internal
standard (1 mg/mL in methanol) and acidified with 100 µL of 20% formic acid (v/v). The
acidic solution was then extracted with 1 mL of methanol and centrifuged for 10 min at
15,700× g. Supernatants were kept at −20 ◦C until analysis in a 6890 N gas chromatogra-
phy (GC) apparatus (Agilent Technologies, Santa Clara, CA, USA) connected to a flame
ionization detector (FID). All samples were analyzed in duplicate and FAs were quantified
as previously described [31].

2.7. Statistical Analysis

Statistical analysis of data was performed using IBM SPSS 23 statistic software. The
Mann–Whitney test for independent samples was performed to examine differences be-
tween equol producers and non-producers in terms of microbial groups, diversity indexes,
and fecal FAs. The Wilcoxon signed-rank test for related samples was used to examine
differences between before and after isoflavone supplementation. Alternatively, Student’s t-
test was used when normal distribution was confirmed using Saphiro-Wilk test. Two-tailed
probability values of p < 0.05 were considered significant.

3. Results
3.1. Change in Fecal Microbiota Over Isoflavone Supplementation

After denoising, performing chimera checks, and trimming the reads by length (150–
400 bp), a mean of 4756 (±875) high quality sequences was obtained. Taxonomic analysis
grouped the sequences mainly into five phyla: Firmicutes, Actinobacteria, Bacteroidetes, Pro-
teobacteria, and Verrucomicrobia. Fifty-two genera were identified, as well as five groups
of clostridia (Clostridium cluster IV, cluster XI, cluster XIVa, cluster XVIII, and Clostrid-
ium sensu stricto) and two taxa with family-associated incertae sedis (inc. sed.) members
(Erysipelotrichaceae inc. sed. and Lachnospiraceae inc. sed.). Taxonomic groups presenting at
an abundance of <0.1% were designated as “others”. A mean of 1813 sequences per sample
remained unclassified.

Considerable differences were observed between the bacterial communities at T0
(before isoflavone supplementation) and T1 (one month after supplementation). Differences
were noted at the family and genus levels (Figure 1). At the genus level, a significant
(p < 0.05) increase in the relative abundance of the genus Slackia was observed at T1 (0.67%)
versus T0 (0.27%). Although sequences of this genus were not detected in all women, when
they were detected (WC, WG, WE, WL, and WN), their relative proportion increased after
supplementation with soy isoflavones.

The supplementation with isoflavones significantly reduced alpha diversity in terms
of Sobs and Shannon Indexes (Figure 2). The Sobs index reflects the number of observed
species or “richness”, while Shannon index weights the numbers of species by their relative
evenness.

3.2. Differences in Microbial Groups Associated with the Equol Producer Status

UniFrac β-diversity analysis was done to assess the extent of similarity between
microbial communities. UniFrac-based PCoA plots revealed a clear clustering between
equol producing and non-producing women after isoflavone supplementation, while no
clustering was observed at baseline (Figure 3).
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Figure 1. Changes in microbial composition with isoflavone supplementation. Microbial composition at the family (A)
and genus (B) levels in fecal samples of eight menopausal women before (T0) and after one month (T1) of isoflavone
supplementation presented as relative abundances (%).
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Figure 3. Weighted UniFrac principal coordinates analysis (PCoA) plots of fecal microbiota composition from the women in
the study (n = 8) before soy isoflavone intervention (A), and after one month of daily supplementation (B). Subject color
coding: red, equol non-producers (n = 5); blue, equol producers (n = 3).

Furthermore, comparison of fecal microbial composition between equol producers
and non-producers revealed some differences. At T0, relative abundance (% sequences) of
Lachnospiraceae inc. sed. taxa was significantly higher (p = 0.025) in the equol-producer group
versus the non-producers (Table 1). While at T1, after one month of isoflavone consumption,
the relative abundance of sequences belonging to the genera Pseudoflavonifractor and Dorea
was greater in the equol-producing women.
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Table 1. Fecal genera showing significant greater relative abundances (% sequences) in equol-
producing women before (T0) and after (T1) the soy isoflavone intervention.

% Relative Abundance a

T0 p-Value b Producers (n = 3) Non-Producers (n = 5)

Lachnospiraceae incertae sedis 0.025 10.34 ± 7.99 2.26 ± 1.54
T1

Dorea 0.025 2.66 ± 1.86 0.71 ± 0.46
Pseudoflavonifractor 0.022 0.10 ± 0.03 0.03 ± 0.04

a Mean relative abundance ± standard deviation. b Mann–Whitney test.

3.3. Differences in Fatty Acids (FAs) Associated with the Equol Producer Status

Fecal FAs remained stable after 1 month of isoflavone supplementation, except for
caproic acid, which increased significantly after the intervention (Table 2). Regarding
differences associated with the equol producing status, all FAs analysed showed higher
concentrations in the equol non-producing women, but only isovaleric acid reached statis-
tical significance (Table 3).

Table 2. Fecal fatty acids’ (FAs) concentration before and after the isoflavone treatment of the eight
menopausal women of the study.

Time Acetic Propionic Isobutyric Butyric Isovaleric Valeric Caproic *

Basal
(n = 8) 20.64 ± 12.99 7.51 ± 4.75 1.73 ± 0.49 9.62 ± 6.67 2.42 ± 0.93 2.27 ± 0.74 1.24 ± 0.34

1 month
(n = 8) 23.67 ± 15.87 8.44 ± 3.6 1.61 ± 0.39 12.9 ± 7.85 2.01 ± 1.12 2.55 ± 1.27 1.64 ± 1.14

Key of statistical significance: * p < 0.05 versus basal sample (t = 0), Wilcoxon test.

Table 3. Differences in fecal FAs between equol producers and non-producers after isoflavone supplementation.

Equol Status Acetic Propionic Isobutyric Butyric Isovaleric * Valeric Caproic

Producers
(n = 3) 19.58 ± 12.12 7.96 ± 1.97 1.46 ± 0.11 10.94 ± 5.31 1.33 ± 1.01 2.32 ± 0.42 1.14 ± 0.23

Non-producers
(n = 5) 26.13 ± 17.68 8.73 ± 4.34 1.71 ± 0.47 14.08 ± 9.01 2.42 ± 1.00 2.69 ± 1.58 1.94 ± 1.36

Key of statistical significance: * p < 0.05, Mann–Whitney test.

4. Discussion

Diet modulates the composition of the intestinal microbiota [32] and, in turn, gut
microbiota metabolism can determine the final metabolites produced, and thus the corre-
sponding effects on human health. Most studies, however, have focused on the effect of
fat and fiber [33,34], while dietary microcomponents, like polyphenols, have received less
attention [35]. Certainly, little is known about the influence of isoflavones on the microbial
populations of the gut [15–19].

The use of high throughput sequencing techniques allows for the determination of
gut members whose culture requirements are still unknown or are uncultivable—having
estimated that they are 80% of the bacterial species found by molecular tools [36]. As
previously suggested, different bacteria may contribute towards equol production [9,37],
but these might be present in the gut in low abundance, making their detection difficult by
other techniques. In this study, with the aim of identifying changes in gut microbiota com-
position associated with the ingestion of isoflavones, and related to the equol-producing
metabotype, we selected and made use of fecal samples from eight menopausal women
receiving daily isoflavone supplementation over one month. Among these women, we
selected three equol-producers and five non-producers for comparative purposes.

In the present work, the abundance of the genera Slackia significantly increased after
the isoflavone supplementation. This genus, belonging to the family Coriobacteriaceae,
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includes described equol-producing species and strains [38–40] and has been associated
in vivo with isoflavone metabolism [17]. Additionally, bacteria belonging to the family
Lachnospiraceae (Dorea and inc. sed.) increased in the postmenopausal women with an
equol-producing metabotype. Lachnospiraceae inc. sed. has previously been reported to
increase significantly with isoflavone treatment in a case report of an equol-producing
woman [19], while Dorea has been associated with isoflavone metabolism in humans in sev-
eral studies [17,41]. Enrichment of some of these bacteria belonging to the Lachnospiraceae
family, as well as Pseudoflavonifractor, has also been seen in in vitro fecal cultures with
isoflavones [42]. The family Lachnospiraceae has a very large presence in the human gut and
has been linked to the production of butyric acid [43], a compound with beneficial effects
on the gastrointestinal epithelium [44].

Supplementation with isoflavones for one month was shown to cause a decrease in
the number of species (Sobs index) as well as in the species evenness (Shannon index).
These effects have previously been observed with the use of other culture-independent
techniques [18]. It has been suggested that isoflavones could provide a chemical envi-
ronment that selects a subset of the initial bacterial communities [17,45]. Alternatively,
isoflavones might have antimicrobial effects on certain intestinal bacterial populations, as
has recently been reported on pure cultures of intestinal species [46]. When considering the
two different metabotypes studied, no effect in the alpha diversity indexes was observed
(data not shown). However, UniFrac analysis indicated a greater similarity of the microbial
communities from equol-producing women after one month of isoflavone supplementa-
tion, suggesting that isoflavones enriches the gut with microbial species involved in the
degradation of isoflavones and equol production.

The production of FAs (relevant gut bacterial metabolites) was carried out to determine
their relationship with the consumption of isoflavones and the production of equol. Butyric,
acetic, and propionic acids are the main short-chain fatty acids (SCFAs). They are produced
in the proximal colon by bacterial fermentation of non-digestible carbohydrates [47] and
exert anti-inflammatory and anticarcinogenic activities [48]. In contrast, medium-chain
fatty acids (MCFAs), including caproic acid (CA), by favoring TH1 and TH17 differentia-
tion [49], could antagonize the anti-inflammatory activities of SCFAs. Branched-chain fatty
acids, such as isobutyric and isovaleric acids, are often associated with protein breakdown
and have been less studied.

The current data reveal an increase in CA production after isoflavone supplementation,
which indicates differential microbial activity leading to the production of this compound.
CA derives from chain elongation reactions in which SCFAs are converted to MCFAs
mainly using ethanol or lactate as an electron donor [50]. The elongation process is
mediated by microorganisms through the reverse β-oxidation pathway. Whether Slackia,
the bacterial species found to be increased after the consumption of isoflavones in this
study, produces CA is not currently known. Alternatively, isoflavone consumption could
stimulate the production of CA by other intestinal microorganisms. These possibilities,
however, would require further study. Although studies are still controversial, CA has been
related to inflammation-regulating effects. In some studies, diminishing of the production
of inflammatory cytokines by CA has been reported [51], while inflammatory effects have
been reported in others [49,52].

The concentration of isovaleric acid was higher in samples from the equol non-
producing group (n = 5). This result partially agrees with the effect of isoflavones observed
previously in fecal anaerobic batch cultures [42], where isovaleric acid was reported to
increase in cultures inoculated with feces from equol producers (n = 3). This suggests that,
regardless of the equol producing status, consumption of isoflavones might stimulate the
production of this FA.

In this work, although limited to the small sample size, the description of specific gut
microbial and FA changes with the ingestion of isoflavones is provided, contributing to
the understanding of the modulation of the gut microorganisms and their activity by these
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polyphenols. However, more studies with greater numbers of people, and even different
populations, are needed to confirm the effects of isoflavone intake on the gut ecosystem.

5. Conclusions

This study allowed the changes in fecal microbial communities caused by isoflavone
supplementation for one month to be monitored in a group of menopausal women.
Isoflavone consumption was associated with a significant increase in the relative abun-
dance of the genus Slackia, to which strains that metabolise isoflavones and produce equol
are the most studied in this respect. Moreover, the taxa Pseudoflavonifractor, Dorea, and
Lachnospiraceae incertae sedis were found in greater proportions in equol-producing women.
Fecal microbial communities of equol producers were more similar to each other after
isoflavone treatment, a fact that was not observed among those of equol non-producers.
However, distinctive differences in the excretion of fatty acids associated with the equol
status (which might be related to inflammation) were not observed.
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