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Abstract: The significant health and economic effects of COVID-19 emphasize the requirement for
reliable forecasting models to avoid the sudden collapse of healthcare facilities with overloaded
hospitals. Several forecasting models have been developed based on the data acquired within the
early stages of the virus spread. However, with the recent emergence of new virus variants, it is
unclear how the new strains could influence the efficiency of forecasting using models adopted using
earlier data. In this study, we analyzed daily positive cases (DPC) data using a machine learning
model to understand the effect of new viral variants on morbidity rates. A deep learning model
that considers several environmental and mobility factors was used to forecast DPC in six districts
of Japan. From machine learning predictions with training data since the early days of COVID-19,
high-quality estimation has been achieved for data obtained earlier than March 2021. However, a
significant upsurge was observed in some districts after the discovery of the new COVID-19 variant
B.1.1.7 (Alpha). An average increase of 20–40% in DPC was observed after the emergence of the
Alpha variant and an increase of up to 20% has been recognized in the effective reproduction number.
Approximately four weeks was needed for the machine learning model to adjust the forecasting error
caused by the new variants. The comparison between machine-learning predictions and reported
values demonstrated that the emergence of new virus variants should be considered within COVID-
19 forecasting models. This study presents an easy yet efficient way to quantify the change caused by
new viral variants with potential usefulness for global data analysis.

Keywords: COVID-19; forecasting; deep learning; viral variants

1. Introduction

The global challenge caused by the COVID-19 pandemic is unavoidable and there
has been significant mortality and damage to the global economy [1]. While the situation
is expected to recover with the development and administration of vaccines [2], many
countries are concerned with limitations associated with the vaccination process (WHO,
https://covid19.who.int/ (accessed on 17 June 2021)). It becomes more challenging to
continue strong restrictions on public movement or nation-wide lockdown with the global
economy collapse [3]. Several territories have considered public awareness by requesting
voluntary actions to reduce the spread of the pandemic [4–6]. However, the development
of these policies requires an efficient forecasting process to provide appropriate instructions
and proper timing.

In epidemiology, mathematical modeling of the viral spread is commonly used to
understand the current and future infection risks. The most used models are the susceptible,
infected, and recovered (SIR) [7] and the susceptible, exposed, infected, and recovered
(SEIR) models [8]. These compartmental models was used to demonstrate several pan-
demics earlier to COVID-19. Moreover, several attempts are considered modifications of
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conventional compartmental models for more general and efficient forecasting (e.g., [9,10]).
A review of COVID-19 forecasting models is in [11]. In this review, it was shown that deep
learning models can reach to human expert level but it requires a relatively large amount
of training data.

Several models have been developed for the prediction of potential risk, such as
infection rate increases, using different data forms [12–18]. With the emerging of new
virus mutations [19], it has become unclear how such forecasting models designed using
data obtained at the first generation of the virus spread can still be efficient to predict
effects from emerging variants of the virus. The SARS-CoV-2 variant, B.1.1.7 lineage (a.k.a.
20B/501Y.V1 variant of concern (VOC) 202012/01) was first identified in the UK. Since
then, many other cases have been reported in different regions. The speed of this spread
was suggested to be faster than expected, although quantitative discussion is difficult
because of the presence of many other co-factors. It has been reported that the new UK
variant B.1.1.7 (referred as the Alpha variant hereafter) has a 43%–90% higher effective
reproduction number [20,21]. This new variant has become common in Japan as of March
2021 and the first case was reported on 25 December 2020.

In previous studies, human mobility was suggested to be one of the key factors in
characterizing the spread of the virus [22–25]. The mobility data was used as a surrogate
of public activities and indication of social distancing, which is known as a dominant
factor associated with COVID-19 infections. In addition, meteorological data have been
suggested as additional factors that influence viral spread [26–31]. A recent systematic
review suggested that, among meteorological factors, temperature and humidity were sig-
nificantly correlated with COVID-19 morbidity [32]. In other studies, parameters related to
policy, pollution levels, and wind speed were also included, which may also be considered
as potential factors [33,34]. Our previous study suggested that some of these factors are
confounding factors.

Based on the above findings, we demonstrated that a machine learning model based
on long short-term memory (LSTM) that had only three parameters; that is, mobility at a
central station in each district, ambient temperature, and humidity, was enough to estimate
daily positives cases (DPC) in several urban areas in Japan. From one year of data from six
districts, the average relative error was slightly improved by considering meteorological
factors [35]. We investigated the effect of viral variants on the speed of the spread in
different districts of Japan. The discussion was based on machine learning predictions that
were developed in our previous study based on past data for one year. If our previous
model works even after the emergence of these new variants, the model and parameters
could be useful for future predictions. If the speed of the spread of the new variant is
different, then further consideration is needed for future predictions.

2. Materials and Methods
2.1. Data Collection and Processing

In this study, we considered data from six districts of Japan in which a remarkable
number of SARS-CoV-2 variants were reported that resulted in the issuance of a national
State of Emergency (SoE) during May–June 2021. The number of COVID-19 DPC were
obtained from the online open data sources provided by the Japanese Ministry of Health,
Labor, and Welfare (https://www.mhlw.go.jp/stf/covid-19/open-data.html (accessed on
28 May 2021)) and local district websites. Effective reproduction number (R) data were
obtained from Toyo Keizai online resources (https://toyokeizai.net/sp/visual/tko/covid1
9/en.html (accessed on 15 June 2021)). The R value is computed using the following
equation:

Rt =

(
∑s

i=1 DPCt−i

∑2s
i=s+1 DPCt−i

)µ/s

, (1)

where s = 7 is the number of days for specific time period and µ = 5 days is the
mean generation time. Public movements were estimated from Google mobility re-

https://www.mhlw.go.jp/stf/covid-19/open-data.html
https://toyokeizai.net/sp/visual/tko/covid19/en.html
https://toyokeizai.net/sp/visual/tko/covid19/en.html
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ports (https://www.google.com/covid19/mobility/ (accessed on 21 May 2021)) that rep-
resented data global records from 15 February 2020. Google mobility reports showed
the percentage of change in urban regions labeled as retail and recreation, grocery and
pharmacy, parks, transit stations, workplaces, and residential in comparison with baseline
data (median value from the 5-week period from 3 January, to 6 February 2020). Google
mobility data, along with DPC in Tokyo, Aichi, and Osaka, are shown in Figure 1. Weather
data measured at major cities within the target region were obtained from the Japan Mete-
orological Agency (https://www.jma.go.jp/jma/index.html (accessed on 28 May 2021)).
Daily maximum/minimum temperature and average humidity that were acquired for
Tokyo, Aichi, and Osaka are shown in Figure 2. Moreover, a reference representing the situ-
ation of working/vacation days is considered along with binary (1/0) labels representing
national/local SoE call/release. All data were normalized to generate unified integrated
training batches using the following equation.

ỹi = (β− α)
yi −min(y)

max(y)−min(y)
+ α, (2)

where α and β are scaling parameters, and y and ỹ are the originally acquired data and
normalized values, respectively. The dataset described above was collected for Tokyo,
Aichi, Osaka, Hyogo, Kyoto, and Fukuoka and was split into training/testing batches
considering 15 different time periods as listed in Table 1, which demonstrated a stride of
one week forward each. For each time period, all training data of the six districts were
normalized and combined to generate more reliable training features in a single dataset.

Figure 1. COVID-19 daily positive cases (DPC) and Google mobility change rates from baselines for
Tokyo, Aichi, and Osaka (from top to bottom) from 19 February 2020 to 2 June 2021. Lines represent
a 7-day average.

https://www.google.com/covid19/mobility/
https://www.jma.go.jp/jma/index.html
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Figure 2. Maximum/Minimum daily temperature and average humidity for Tokyo, Nagoya, and
Osaka (from top to bottom) from 19 February 2020 to 2 June 2021. Lines represent a 7-day average.

Table 1. Dataset splitting for training and testing in different forecasting time periods.

Period# Training Testing
from to from to

1 15 February 2020 26 January 2021 27 January 2021 23 February 2021
2 ... 2 February 2021 3 February 2021 2 March 2021
3 ... 9 February 2021 10 February 2021 9 March 2021
4 ... 16 February 2021 17 February 2021 16 March 2021
5 ... 23 February 2021 24 February 2021 23 March 2021
6 ... 2 March 2021 3 March 2021 30 March 2021
7 ... 9 March 2021 10 March 2021 6 April 2021
8 ... 16 March 2021 17 March 2021 13 April 2021
9 ... 23 March 2021 24 March 2021 20 April 2021
10 ... 30 March 2021 31 March 2021 27 April 2021
11 ... 6 April 2021 7 April 2021 4 May 2021
12 ... 13 April 2021 14 April 2021 11 May 2021
13 ... 20 April 2021 21 April 2021 18 May 2021
14 ... 27 April 2021 28 April 2021 25 May 2021
15 ... 4 May 2021 5 May 2021 1 June 2021

The number of cases in which the viral variant was confirmed was acquired from the
MHLW data port that was recently released (https://www.mhlw.go.jp/stf/seisakunitsuite/
newpage_00054.html (in Japanese, accessed on 11 May 2021)). A sample of Alpha vari-
ant data is shown in Figure 3. The correlation between the changes in reported Alpha
variant cases (confirmed by genome analysis) and DPC (scaled over 100,000 persons) in
March/April 2021 is shown in Figure 3c,d. A high correlation was clearly demonstrated.
However, as the data record of new viral variants is limited, we would like to further
investigate this observation using a deep learning model trained with long-term data and
validate the results obtained in several time frames. The effectiveness of this approach can
be found in our previous study [35].

https://www.mhlw.go.jp/stf/seisakunitsuite/newpage_00054.html
https://www.mhlw.go.jp/stf/seisakunitsuite/newpage_00054.html
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Figure 3. (a) Total confirmed cases with the Alpha variant and (b) DPC (per 100,000) in Tokyo, Aichi,
Osaka, Hyogo, Kyoto, and Fukuoka. (c) Correlation between the total Alpha variant and the DPC per
100 k demonstrated high values. (d) Demonstration of time-independent high correlation between
the Alpha variant and DPC (R2 = 0.65).

2.2. Forecasting Deep Learning Model

A deep LSTM neural network was used to estimate the number of DPC from a blend
of different data obtained earlier. LSTM is known to perform efficiently in time-series data
forecasting and regression. In our earlier study, we proposed a multi-path LSTM neural
network that could successfully estimate the number of DPC given the data of different
districts in Japan [35]. The results demonstrated remarkable forecasting with good accuracy.
However, with the emergence of new viral variants, the effective reproduction number has
been reported to be higher [20,21] and, therefore, the pattern of future data is expected to
lose consistency with the earlier data that was used for training.

In this study, we set the time frame for input and output data to 14 days. In other
words, the network was trained to estimate the DPC for the upcoming 14 days given the
data measured in the earlier 14 days, as shown in Figure 4. Moreover, we also included the
public mobility measure with a wider scope by including all spots covered by the Google
mobility reports, while in our earlier study [35], we considered mobility around major
transport stations only. More detailed mobility data is expected to improve the model
accuracy by learning the contribution of different urban regions on COVID-19 morbidity.
We also considered including binary labels to demonstrate the working day status and call
of SoE. This was based on the observation that the DPC were influenced by the weekday
status and SoE. The fully connected (FC) layer was set to the four levels; that is, 3k, 3k, 1.5k,
and 150, of neurons and the output layer had 14 neurons (i.e., number of estimated days).
The network architecture shown in Figure 4 was implemented using Wolfram Mathematica
(R) ver. 12.1 with LSTM cells (each output vector was 300 elements). The selection of
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network parameters was optimized as detailed in an ablation study in [35]. The software
was deployed on a workstation with four Intel (R) Xeon CPUs (3.6 GHz), three NVIDIA
GeForce 1080 GPUs, and 128 GB memory. Different training/testing data samples were
used for a better understanding of the performance of the forecasting model in different
phases of the viral variant spread. The network training was conducted with a batch size
of 16 over 500 training epochs.

Figure 4. LSTM deep neural network is trained using day labels (working/vacation and normal/SoE),
meteorological data (max/min temperature and average humidity), community mobility, and DPC.
Network output is the estimated DPC. R, C, and FC indicate sequence reverse, concatenation, and
fully connected layers. Training data acquired for different districts were normalized and merged for
an efficient training process.

2.3. Validation Metrics

The relative error was used as a measure of estimation accuracy and was computed as
follows:

Ei =
|yi − ŷi|

yi
, (3)

where yi and ŷi are the real and estimated DPC in day i.

3. Results
3.1. Selection of Data Blend

An initial study was conducted to evaluate different scenarios of input data to ver-
ify the most appropriate data blend. We consider four scenarios that consider mobility
data exclusion (Scenario 1), meteorological data exclusion with transit mobility inclusion
(scenario 2), meteorological data exclusion with all mobility inclusion (scenario 3), and all
data inclusion as shown in Table 2. Data for training and testing are set to periods 12–15 in
Table 2. Average error values of the four time periods for all study districts is shown in
Table 2. The preliminary study indicate that inclusion of full mobility information with
meteorological data (scenario 4) would likely be the optimal choice.
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Table 2. Average absolute error [%] computed using different scenarios for data blend for all study
districts.

Scenarios 1 2 3 4

Day labels 3 3 3 3

Meteorological data 3 7 7 3

Mobility 7 Transit only 3 3

DPC 3 3 3 3

Tokyo 46.0 37.3 19.0 16.3
Aichi 26.5 22.6 23.2 23.9
Osaka 26.0 20.9 24.9 18.4
Hyogo 25.1 17.4 12.6 19.5
Kyoto 23.4 24.6 22.0 15.0

Fukuoka 25.6 24.5 27.7 30.7

Average 28.8 24.6 21.6 20.6

3.2. Prediction of DPC

The network was trained and tested using input data in different sets of time frames
to validate the forecasting accuracy and network robustness. In each time frame, the
testing data was validated with the stride of a single day. Different forecasting values
were used to compute the maximum, minimum, and average estimates. Results obtained
for Tokyo over the different 15 time periods are shown in Figure 5. The forecasting
demonstrated different patterns in different time periods. Moreover, variations were
relatively small in time periods 4–9. An average for data obtained from all time periods
for the six districts is shown in Figure 6. In Tokyo, a high consistency was found between
the estimated and observed values in almost all-time frames. The real values were always
within the estimated range except for a single week (mid-April). In Aichi, good matching
was observed between the estimated and observed values in the period earlier to mid-
April with network underestimation on later days. Differences became significant in
mid-May and accuracy was retrieved again in late-May. Osaka represents the extreme
case where the estimated DPC were highly underestimated from mid-March to mid-April.
During this period, true values were above the maximum forecasting boundary. The same
pattern was observed in Hyogo, but with a smaller capacity. Kyoto demonstrated a mild
mismatching between the network estimate and real values from late-March to late-April
as the real data curve was above the maximum network estimate. Finally, Fukuoka data
were underestimated from mid-April to mid-May and were overestimated later. In general,
network estimations for the period before mid-March (and later than mid-May) had higher
consistency with real values. In contrast, network forecasting for mid-March to mid-May
had low accuracy. Quantitative assessment for all time periods is listed in Table 3.

A comparison between the reported new viral strains and the error of deep learning
estimation is shown in Figure 7. The summation number of viral variants in the studied
regions reached a peak around mid-April and then decayed. During the spread period,
the deep learning forecasting error monotonically increased, which demonstrated the
estimation error caused by a new factor that was not included in the training data. From
Figure 6, it is clear that the error presented an underestimate of DPC in most cases. In early
April, the deep learning forecasting error started to decay. This can be considered as the
training data starting to include periods where excessive DPC were reported, and therefore
the adaptation and correction were evolving.
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Figure 5. Actual and estimated DPC in Tokyo for different time phases as defined in Table 1. Black
and green colors demonstrate actual reported data used for training and validation, respectively.
Solid and dashed red lines are the average and maximum/minimum bounds, respectively. Earlier
data records from 15 February 2020 are also included in the network training.

Figure 6. Actual (black) and average estimated (red) DPC in (a) Tokyo, (b) Aichi, (c) Osaka, (d) Hyogo,
(e) Kyoto, and (f) Fukuoka within all 15 time periods. Dotted lines represent average maximum and
minimum estimates.
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Table 3. Average absolute error [%] for DPC estimated in different regions and time periods.

Period# Tokyo Aichi Osaka Hyogo Kyoto Fukuoka Avg.

1 22.66 15.80 21.72 12.87 18.45 26.09 19.60
2 29.40 25.14 19.33 26.64 25.16 20.61 24.38
3 22.75 21.74 23.15 24.34 40.61 21.34 25.66
4 9.35 20.47 25.33 22.99 56.25 15.35 24.96
5 11.31 11.88 24.76 39.81 59.08 32.62 29.91
6 19.75 15.91 32.37 32.53 40.59 43.53 30.78
7 24.20 21.75 42.51 38.40 38.26 44.61 34.95
8 15.73 23.80 49.90 33.02 30.02 76.87 38.22
9 17.15 27.16 52.69 43.10 44.51 55.30 39.99

10 14.68 26.37 38.93 39.97 40.20 50.39 35.09
11 21.72 23.43 24.68 28.21 24.81 42.67 27.59
12 18.16 30.17 18.87 21.54 16.56 43.28 24.77
13 23.99 33.94 7.56 13.82 13.24 36.13 21.45
14 13.80 21.37 23.09 20.29 11.81 17.19 17.93
15 9.37 21.42 24.42 22.50 18.48 26.59 20.46

Avg. 18.27 22.69 28.62 28.00 31.87 36.84

3.3. Effective Reproduction Number

An important factor in measuring the pandemic spread is the effective reproduction
number (R). The R value computed earlier to the peak of the third wave and fourth wave
may demonstrate the viral spread pattern. We defined two identical time slots at each
end with the day at which a maximum DPC was reported. The time slot proceeding the
fourth wave was defined by the day at which the Alpha variant cases were recognized and
reported. The selection of time slots w3 and w4 is shown in Figure 8a. A box plot of the
R values in different districts are shown in Figure 8b. It is clear that the average R values
were generally increased in time slots in which the Alpha variant was reported (w4), except
for the case of Tokyo. The average R value was reduced by 5.8% in Tokyo and increased
by 18.9%, 20.26%, 19.23%, 6.00%, and 8.18% in Aichi, Osaka, Hyogo, Kyoto, and Fukuoka,
respectively.

The effect of mobility was a dominant factor in the viral spread as a surrogate for the
degree of social distancing. It is important to define a threshold for the mobility change
value that reduces the effect of a new viral variant. Moreover, it is also important to
consider the effect of the incubation period [36]. Considering a 7-day average of mobility
data with 3-day stride, we compute the effective mobility values and study the correlation
with R values. In Figure 9, a plot of the mobility change percentage and R values within the
time slots w3 and w4 in Osaka and Hyogo are shown. From this figure it can be concluded
that mobility in transit spots needed to be reduced by 4 and 9 points in Osaka and Hyogo,
respectively, to compensate the R value at the level of 1.0. Moreover, within mobility values
−20% to −30%, the R values are increased by 22% to 32% in Osaka and Hyogo. A similar
conclusion can be drawn for other study area districts and mobility spots and can be a
useful reference for SoE enforcement criteria.
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Figure 7. Average relative error in DPC estimation using deep learning in different time periods and
the number of new UK viral variants reported in regions of the study.

Figure 8. (a) Definition of two time slots w3 and w4 preceding the third and fourth pandemic waves,
respectively. Time slots ended with the day of the DPC local maximum value and the width was
defined by the first day where the Alpha variant was reported. (b) Box plot of R values computed in
w3 (left) and w4 (right) in different districts.
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Figure 9. Plots of effective reproduction number (R) and corresponding mobility change (Transit) in
(a) Osaka and (b) Hyogo for time slots w3 and w4 defined in Figure 8a. Considering all other factors
unchanged, to reduce the upsurge (i.e., reach to R=1.0), mobility at transit spots is required to be
reduced by 4 and 9 points in Osaka and Hyogo, respectively.

4. Discussion

An additional burden was discovered with the reports of new SARS-CoV-2 variants.
With new mutations, the validity of vaccination and the mortality risk became under
question again. The recent sudden increase in infection rates in India shone a light on
how the new viral variants could have a strong influence on infection rates [37]. As deep
learning becomes a state-of-the-art approach to forecasting COVID-19, we became curious
on how this new variable would influence the forecasting accuracy of deep learning models.
In many cases, it is difficult to clearly understand and evaluate the contribution of different
factors to the quality of the model output due to the “black box” nature of most deep
learning models.

We studied a recently developed deep learning model that is proved to be of superior
quality [35]. While the network architecture is almost the same as the one in [35], several
changes have been considered regarding the data used in training. (1) The mobility data is
extended to cover six different zones (retail, grocery, parks, transit, work, and residential)
based on Google mobility reports, while only transit mobility was considered in an earlier
study. (2) Training data are normalized within each district such that the network can
be trained using all study regions in one shot as shown in Figure 4. (3) Additional data
consider the workday status and state of emergency calls. We consider several training
and testing scenarios over a long time frame to study the effect of new viral variants
(specifically, the Alpha mutation). Results of different districts demonstrate interesting
features. In general, with the emerging of a new variant, a recognized underestimate of
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DPC is recognized in all the studied districts which indicate an unexpected infections
upsurge. The estimated upsurge in Japan is around 20%–40% in DPC and up to 20% in
terms of effective reproduction number, which is relatively smaller than those reported
in the UK [20]. Later on, when the training data overlaps time frames where variants
are reported, forecasting accuracy improves gradually, which demonstrates the network
adaptation to the change caused by viral variants. An approximation of four weeks is
required for the deep learning model to handle the upsurge caused by the Alpha viral
variant. This period sounds reasonable considering the virus incubation time and delay in
process of testing and confirmation [38,39].

By considering the number of new viral variants reported within a specific time period,
we can clearly understand why the deep learning estimation worked well in some cases and
failed in others. The cases of Osaka and Hyogo (neighboring districts in the Kansai region)
are similar with a significant number of new viral strains reported compared to all other
regions in Japan (Figure 3). Even in the Kansai region, Kyoto was where a small number of
viral variants were reported in early March with no subsequent spread. Therefore, the DPC
demonstrated slightly high values but still within the estimated range. The data of Aichi
demonstrated a case where the viral variants were being reported with an approximate one
month delay for similar cases in Osaka and Hyogo. Therefore, the situation was almost
normal before mid-April and started to reach values above normal later. The viral variants
in Tokyo demonstrated a similar pattern to those in Aichi however, with such a large
population in Tokyo, the effect can be milder. Although Aichi is located close to the Kansai
area, the new viral variant is not reported simultaneously. Government calls for SoE and
announcements from local authorities has a notable impact on public response and can
be confirmed by a mobility change during SoE, which generally advises the public to
voluntarily reduce incidences that may increase social interaction and potential infection.
Moreover, it is likely that the third SoE announced in Tokyo on 25 April 2021 helped to
reduce the spread of new viral variants

Monitoring the status of different viral variants may provide useful insight on the
viral spread based on the analysis discussed here. Figure 10 illustrates the reported cases
with different variants since early March 2020. Most of the cases (approximately 95%) were
the Alpha variant. As per 26 May 2021, this variant has been considered dominant and
was excluded from the follow-up reports. The Delta variant started to be recognized on
18 May 2021 and as of the latest report released on 16 June 2021, it was the major variant
at 53%. A recent study from Scotland indicated that the Delta virus variant may double
the risk for hospitalization compared to the Alpha variant [40]. This would raise alerts for
potential expected risk in the near future considering the current pattern of viral variant
spreading in Japan.

Figure 10. Cont.
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Figure 10. Cumulative number of COVID-19 viral variant reported cases in Japan using genome
analysis. The top side of the chart demonstrates all variants, in which the Alpha variant represents
approximately 95% of the reported cases. After May 26, the Alpha variant was considered dominant
and excluded from the analysis report. The bottom side of the chart shows viral variants excluding
Alpha.

5. Conclusions

We investigated the problem of COVID-19 DPC forecasting with the emergence of
new viral variants. This was considered using data from six different districts in Japan
and a deep learning model was used to forecast future potential infection cases using
meteorological parameters and mobility data. This process was repeated for 15 time-frames
with the stride of one week to record changes in forecasting accuracy. Results demonstrated
a recognized underestimation in forecasting within the time frames with high viral variant
records. Later on, when network training data included time periods in which viral variants
were reported, network forecasting accuracy improved gradually. This may indicate that
infection rates are increased with the emergence of new viral variants (20–40%), which
could not be recognized in a deep learning model trained using earlier data.

Author Contributions: Conceptualization, A.H. and E.A.R.; Methodology, E.A.R. and A.H.; Software,
E.A.R.; Validation, E.A.R.; Formal Analysis, E.A.R.; Investigation, A.H. and E.A.R.; Writing—original
draft preparation, E.A.R.; Writing—review and editing, E.A.R. and A.H.; Visualization, E.A.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets and/or software generated during the current study are
available from the corresponding author on reasonable request.

Acknowledgments: Authors would like to thank Ms. Ritsuko Ishikawa from the Nagoya Institute of
Technology for her help in data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy; SSRN 3562570; 2020, doi:10.2139/ssrn.3562570.
2. De-Leon, H.; Calderon-Margalit, R.; Pederiva, F.; Ashkenazy, Y.; Gazit, D. First indication of the effect of COVID-19 vaccinations

on the course of the outbreak in Israel. medRxiv 2021, doi:10.1101/2021.02.02.21250630.
3. Mofijur, M.; Fattah, I.R.; Alam, M.A.; Islam, A.S.; Ong, H.C.; Rahman, S.A.; Najafi, G.; Ahmed, S.; Uddin, M.A.; Mahlia, T. Impact

of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod.
Consum. 2021, 26, 343–359, doi:10.1016/j.spc.2020.10.016.

https://dx.doi.org/10.2139/ssrn.3562570
https://doi.org/10.1101/2021.02.02.21250630
https://doi.org/10.1016/j.spc.2020.10.016


Int. J. Environ. Res. Public Health 2021, 18, 7799 14 of 15

4. Musa, S.S.; Qureshi, S.; Zhao, S.; Yusuf, A.; Mustapha, U.T.; He, D. Mathematical modeling of COVID-19 epidemic with effect of
awareness programs. Infect. Dis. Model. 2021, 6, 448–460, doi:10.1016/j.idm.2021.01.012.

5. Banik, R.; Rahman, M.; Sikder, T.; Gozal, D. COVID-19 in Bangladesh: public awareness and insufficient health facilities remain
key challenges. Public Health 2020, 183, 50–51, doi:10.1016/j.puhe.2020.04.037.

6. Sun, C.X.; He, B.; Mu, D.; Li, P.L.; Zhao, H.T.; Li, Z.L.; Zhang, M.L.; Feng, L.Z.; Zheng, J.D.; Cheng, Y.; et al. Public Awareness
and Mask Usage during the COVID-19 Epidemic: A Survey by China CDC New Media. Biomed. Environ. Sci. 2020, 33, 639–645,
doi:10.3967/bes2020.085.

7. Weiss, H.H. The SIR model and the foundations of public health. Mater. Mat. 2013, 2013, 0001–17.
8. Klepac, P.; Pomeroy, L.W.; Bjørnstad, O.N.; Kuiken, T.; Osterhaus, A.D.; Rijks, J.M. Stage-structured transmission of phocine

distemper virus in the Dutch 2002 outbreak. Proc. R. Soc. B Biol. Sci. 2009, 276, 2469–2476.
9. Arik, S.O.; Li, C.L.; Yoon, J.; Sinha, R.; Epshteyn, A.; Le, L.T.; Menon, V.; Singh, S.; Zhang, L.; Yoder, N.; et al. Interpretable

Sequence Learning for COVID-19 Forecasting. arXiv 2020, arXiv:2008.00646.
10. Carli, R.; Cavone, G.; Epicoco, N.; Scarabaggio, P.; Dotoli, M. Model predictive control to mitigate the COVID-19 outbreak in a

multi-region scenario. Annu. Rev. Control. 2020, 50, 373–393, doi:10.1016/j.arcontrol.2020.09.005.
11. Rahimi, I.; Chen, F.; Gandomi, A.H. A review on COVID-19 forecasting models. Neural Comput. Appl. 2021, doi:10.1007/s00521-

020-05626-8.
12. Tomar, A.; Gupta, N. Prediction for the spread of COVID-19 in India and effectiveness of preventive measures. Sci. Total. Environ.

2020, 728, 138762, doi:10.1016/j.scitotenv.2020.138762.
13. Zhang, G.; Liu, X. Prediction and control of COVID-19 spreading based on a hybrid intelligent model. PLoS ONE 2021,

16, e0246360, doi:10.1371/journal.pone.0246360.
14. Noh, J.; Danuser, G. Estimation of the fraction of COVID-19 infected people in U.S. states and countries worldwide. PLoS ONE

2021, 16, e0246772, doi:10.1371/journal.pone.0246772.
15. Devaraj, J.; Madurai Elavarasan, R.; Pugazhendhi, R.; Shafiullah, G.; Ganesan, S.; Jeysree, A.K.; Khan, I.A.; Hossain, E. Forecasting

of COVID-19 cases using deep learning models: Is it reliable and practically significant? Results Phys. 2021, 21, 103817,
doi:10.1016/j.rinp.2021.103817.

16. Mousavi, M.; Salgotra, R.; Holloway, D.; Gandomi, A.H. COVID-19 Time Series Forecast Using Transmission Rate and
Meteorological Parameters as Features. IEEE Comput. Intell. Mag. 2020, 15, 34–50, doi:10.1109/MCI.2020.3019895.

17. Balli, S. Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series
methods. Chaos, Solitons Fractals 2021, 142, 110512, doi:10.1016/j.chaos.2020.110512.

18. Melin, P.; Sánchez, D.; Monica, J.C.; Castillo, O. Optimization using the firefly algorithm of ensemble neural networks with type-2
fuzzy integration for COVID-19 time series prediction. Soft Comput. 2021, doi:10.1007/s00500-020-05549-5.

19. Krutikov, M.; Hayward, A.; Shallcross, L. Spread of a Variant SARS-CoV-2 in Long-Term Care Facilities in England. New Engl. J.
Med. 2021, 384, 1671-3, doi:10.1056/NEJMc2035906.

20. Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.; Russell, T.W.; Tully, D.C.;
Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372,
doi:10.1126/science.abg3055.

21. Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; et al.
Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv 2021,
doi:10.1101/2020.12.30.20249034.

22. Nouvellet, P.; Bhatia, S.; Cori, A.; Ainslie, K.E.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Brazeau, N.F.; Cattarino, L.; Cooper,
L.V.; et al. Reduction in mobility and COVID-19 transmission. Nat. Commun. 2021, 12, 1–9.

23. Badr, H.S.; Du, H.; Marshall, M.; Dong, E.; Squire, M.M.; Gardner, L.M. Association between mobility patterns and COVID-19
transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 2020, 20, 1247–1254, doi:10.1016/S1473-3099(20)30553-3.

24. Kraemer, M.U.; Yang, C.H.; Gutierrez, B.; Wu, C.H.; Klein, B.; Pigott, D.M.; Du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P.; et al.
The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020, 368, 493–497.

25. Cartenì, A.; Di Francesco, L.; Martino, M. How mobility habits influenced the spread of the COVID-19 pandemic: Results from
the Italian case study. Sci. Total. Environ. 2020, 741, 140489, doi:10.1016/j.scitotenv.2020.140489.

26. Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on
the death of COVID-19 in Wuhan, China. Sci. Total. Environ. 2020, 724, 138226, doi:10.1016/j.scitotenv.2020.138226.

27. Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total. Environ.
2020, 724, 138201, doi:10.1016/j.scitotenv.2020.138201.

28. Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases
and new deaths of COVID-19 in 166 countries. Sci. Total. Environ. 2020, 729, 139051, doi:10.1016/j.scitotenv.2020.139051.

29. Rashed, E.A.; Kodera, S.; Gomez-Tames, J.; Hirata, A. Influence of Absolute Humidity, Temperature and Population Density
on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. Int. J. Environ. Res. Public Health 2020, 17, 5354,
doi:10.3390/ijerph17155354.

30. Kodera, S.; Rashed, E.A.; Hirata, A. Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population
Density, Temperature, and Absolute Humidity. Int. J. Environ. Res. Public Health 2020, 17, doi:10.3390/ijerph17155477.

https://doi.org/10.1016/j.idm.2021.01.012
https://doi.org/10.1016/j.puhe.2020.04.037
https://doi.org/10.3967/bes2020.085
https://doi.org/10.1016/j.arcontrol.2020.09.005
https://doi.org/10.1007/s00521-020-05626-8
https://doi.org/10.1007/s00521-020-05626-8
https://doi.org/10.1016/j.scitotenv.2020.138762
https://doi.org/10.1371/journal.pone.0246360
https://doi.org/10.1371/journal.pone.0246772
https://doi.org/10.1016/j.rinp.2021.103817
https://doi.org/10.1109/MCI.2020.3019895
https://doi.org/10.1016/j.chaos.2020.110512
https://doi.org/10.1056/NEJMc2035906
https://doi.org/10.1126/science.abg3055
https://doi.org/10.1101/2020.12.30.20249034
https://doi.org/10.1016/S1473-3099(20)30553-3
https://doi.org/10.1016/j.scitotenv.2020.140489
https://doi.org/10.1016/j.scitotenv.2020.138226
https://doi.org/10.1016/j.scitotenv.2020.138201
https://doi.org/10.1016/j.scitotenv.2020.139051
https://doi.org/10.3390/ijerph17155354
https://doi.org/10.3390/ijerph17155477


Int. J. Environ. Res. Public Health 2021, 18, 7799 15 of 15

31. Diao, Y.; Kodera, S.; Anzai, D.; Gomez-Tames, J.; Rashed, E.A.; Hirata, A. Influence of population density, temperature, and
absolute humidity on spread and decay durations of COVID-19: A comparative study of scenarios in China, England, Germany,
and Japan. One Health 2021, 12, 100203, doi:10.1016/j.onehlt.2020.100203.

32. Majumder, P.; Ray, P.P. A systematic review and meta-analysis on correlation of weather with COVID-19. Sci. Rep. 2021, 11, 1–10,
doi:10.1038/s41598-021-90300-9.

33. Briz-Redón, Á.; Serrano-Aroca, Á. The effect of climate on the spread of the COVID-19 pandemic: A review of findings, and
statistical and modelling techniques. Prog. Phys. Geogr. Earth Environ. 2020, 44, 591–604, doi:10.1177/0309133320946302.

34. Espejo, W.; Celis, J.E.; Chiang, G.; Bahamonde, P. Environment and COVID-19: Pollutants, impacts, dissemination, management
and recommendations for facing future epidemic threats. Sci. Total. Environ. 2020, 747, 141314, doi:10.1016/j.scitotenv.2020.141314.

35. Rashed, E.A.; Hirata, A. One-year lesson: Machine learning prediction of COVID-19 positive cases with meteorological data and
mobility estimate in Japan. Int. J. Environ. Res. Public Health 2021, 18, 5736, doi:10.3390/ijerph18115736.

36. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From
Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582, doi:10.7326/M20-0504.

37. Thiagarajan, K. Why is India having a COVID-19 surge? BMJ 2021, 373, doi:10.1136/bmj.n1124.
38. Zaki, N.; Mohamed, E.A. The estimations of the COVID-19 incubation period: A scoping reviews of the literature. J. Infect. Public

Health 2021, 14, 638–646, doi:10.1016/j.jiph.2021.01.019.
39. Omori, R.; Mizumoto, K.; Chowell, G. Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth

rate. Int. J. Infect. Dis. 2020, 94, 116–118, doi:10.1016/j.ijid.2020.04.021.
40. Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital

admission, and vaccine effectiveness. Lancet 2021, doi:10.1016/S0140-6736(21)01358-1.

https://doi.org/https://doi.org/10.1016/j.onehlt.2020.100203
https://doi.org/10.1038/s41598-021-90300-9
https://doi.org/10.1177/0309133320946302
https://doi.org/10.1016/j.scitotenv.2020.141314
https://doi.org/10.3390/ijerph18115736
https://doi.org/10.7326/M20-0504
https://doi.org/10.1136/bmj.n1124
https://doi.org/10.1016/j.jiph.2021.01.019
https://doi.org/10.1016/j.ijid.2020.04.021
https://doi.org/10.1016/S0140-6736(21)01358-1

	Introduction
	Materials and Methods
	Data Collection and Processing
	Forecasting Deep Learning Model
	Validation Metrics

	Results
	Selection of Data Blend
	Prediction of DPC
	Effective Reproduction Number

	Discussion
	Conclusions
	References

