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Abstract: In handling the COVID-19 pandemic, various mitigation policies aiming at slowing the
spread and protecting all individuals, especially the vulnerable ones, were implemented. A careful
evaluation of the effectiveness of these policies is necessary so that policy-makers can implement
informed decisions if another wave of COVID-19 or another pandemic happens in the future. This
paper reports an assessment of some policies introduced by the Australian governments using a
generalised space-time autoregressive model which incorporates multiple exogenous variables and
delay effects. Our results show that the number of daily new cases from the states and territories are
influenced by both temporal and spatial aspects. Business and border restrictions are found helpful
in reducing the number of new cases a few days after implementation while gathering restrictions
may not be effective.

Keywords: delay effects; feasible GLS; GSTARX; multiple interventions; policy evaluation

1. Introduction

As of 22 April 2021, the unprecedented COVID-19 pandemic has led to over three
million deaths around the globe [1]. As the virus is highly contagious, various mitigation
policies including, but not limited to, travel restrictions, cancellation of mass gathering
events, mandatory quarantine, shut downs of restaurants and businesses, stay-at-home
orders and mandatory face covering [2] were implemented. Although different countries
may utilise different methods at different timings, the common goal is to slow down the
spread aiming at protecting all individuals and relieving pressure on the healthcare system
until effective antiviral drugs or vaccines become widely available [3,4]. Currently, it is
uncertain how long these mitigation policies should remain in place due to the uncertainties
regarding the timing of an effective vaccine and the evolutionary dynamics of the virus.
While these policies may be necessary, the socioeconomic consequences cannot be ignored.
Although the full economic impact remains unclear, it was predicted that a lockdown of
Tokyo would lead to a 5.3% loss of Japan’s annual GDP [5]. Similarly, the authors of [6]
estimated a decline of 5% in the real GDP growth for each month under partial economic
shutdown in the United States. Apart from the economic impacts, mitigation policies have
also affected the mental health of people. For example, the authors of [7] reported a number
of suicide cases related to lockdown and economic factors in Bangladesh. Furthermore,
the authors of [8] reported associations between adverse mental health outcomes in the
general population in Italy and the lockdown measures. A narrative review conducted
in [9] showed that measures such as school closures had resulted in a negative impact on
the mental health among children and adolescents. Therefore, it is necessary to evaluate
the effectiveness of the policies implemented for future planning and policy review so that
informed decisions can be made in case of another wave of COVID-19 or another pandemic.

In Australia, the first case of COVID-19 was reported on 25 January 2020 [10]. On
27 February, Prime Minister Scott Morrison announced the activation of the Australian
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Health Sector Emergency Response Plan [11]. A human biosecurity emergency was
declared on 18 March [12]. Subsequently, Australia announced to close its border on
20 March [13]. Additional restrictions and guidelines for managing COVID-19 were intro-
duced by the Federal government in late March but state and territory level governments
were allowed to implement them differently [14]. State and territory level policies included
economic packages and interstate border restrictions [15]. Some of these policies will be
reviewed in more details in Section 2.2. Due to the timing, intensity and number of policies
implemented by the government of each state, the effectiveness of the policies may also
differ from state to state.

The daily numbers of new cases recorded from the states can be considered as multiple
time series that are spatially correlated. To properly assess the efficacy of the mitigation
policies, a stochastic model that takes into account both spatial and temporal information,
and allows the incorporation of exogenous variables, is required. We briefly review some of
the previously proposed space-time models and their limitations. Autoregressive moving
average (ARMA) models have long been used in analysing time series data [16]. When it is
required to analyse multiple time series jointly, it can be done through vector autoregressive
moving average (VARMA) models [17]. A clear drawback of these models is the inability
to capture the spatial dependencies between the time series. Space-time autoregressive
moving average (STARMA) models [18,19] extend the ARMA models by incorporating
spatial information. Results regarding the estimation of STARMA models can be found
in [20]. In this class of models, the autoregressive parameters are assumed to be fixed across
all locations, which may not be desirable [21]. The generalised space-time autoregressive
moving average (GSTARMA) models examined by the authors of [22] relax such restrictive
assumption to allow site-specific autoregressive parameters. The authors of [23] reported an
application of the GSTAR model on a set of GDP data collected across Europe. Note that all
these models do not depend on exogenous variables. To allow prediction based on the levels
of some explanatory variables, the authors of [24] introduced the STARMAX (STARMA
with eXogenous variables) model, while the authors of [25] proposed the GSTARX models.

Any intervention such as an implementation of a policy can be considered as an exoge-
nous variable when coded as an indicator variable. Time series intervention models [16,26]
have been used in assessing the effectiveness of policies in various contexts, including
imperfectly identifiable natural events [27], river monitoring [28], marine pollution monitor-
ing [29] as well as public health interventions [30]. Intervention analysis is less commonly
used in the spatio-temporal setting, with an exception of the authors of [25] who studied
the time series of oil price in four cities with Eid (a religious festival celebrated by Muslims)
considered as the intervention. In this work, we propose to use a more general modelling
framework compared to the one used in [25]. The key differences between our work and
theirs are (a) we use multiple interventions, as opposed to the single one; (b) while their
intervention applies to all sites at the same time, our interventions may apply to each of the
sites at different times; and (c) delay effects of exogenous variables are taken into account
in our work as well.

The rest of the paper is organised as follows. Section 2 details the data used and the
policies considered in our analysis. Section 3 describes the GSTARX model, which will be
used to assess the effectiveness of the mitigation policies implemented in Australia and the
estimation procedure. The results are presented in Section 4. Some concluding remarks are
provided in Section 5.

2. Data
2.1. Number of COVID-19 Cases in Australia

The daily cumulative number of confirmed COVID-19 cases from eight states and
territories, namely, Australian Capital Territory (ACT), New South Wales (NSW), Northern
Territory (NT), Queensland (QLD), South Australia (SA), Tasmania (TAS), Victoria (VIC)
and Western Australia (WA), formed the backbone of the dataset. Figure 1 shows a map of
Australia with the states and territories indicated. Note that ACT is completely surrounded
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by NSW. Data from 25 January 2020 to 12 September 2020 were obtained from the webpage
of the Department of Health, Australia Government [10]. Daily number of new cases were
found from these cumulative numbers. Correspondingly, the data consist of eight spatially
dependent time series (N = 8), each represents a state or territory with a length of 232 days
(T = 232).

Figure 1. Map of Australia with the states and territories indicated.

On ten occasions, a negative number of new cases was observed. We conjecture that
these negative numbers may be due to clerical errors or false positive cases recorded in
previous days. Without any information regarding the true reasons, these ten negative
numbers were replaced by zeros. One was added to these numbers to make sure there
were no zero entries, so that logarithms can be applied later on. Next, the numbers were
divided by the population of the respective state or territory on 31 March 2020 reported
by the Australian Bureau of Statistics [31] for a fair comparison across the states. Natural
logarithm was then applied to achieve approximate normality. Mathematically, let Z̃i(t) be
the original number of new cases recorded on day t in state or territory i. We worked with
the transformed variable

Zi(t) = log
(

max{Z̃i(t), 0}+ 1
Pi

)
, (1)

where Pi is the population of state or territory i. Each time series of the transformed
variable was standardised by subtracting the mean and further divided by the standard
deviation to stabilise the variance. In other words, the standardised logarithm of the
population-adjusted daily number of new cases was used as the response variable.

2.2. Policies

Among all policies implemented, we selected three broad categories, which are Gath-
ering (G), Economy (E) and Border control (B), for a more in-depth analysis. As various re-
strictions and rules were imposed at different strictness across the states and territories, it is
difficult to compare them exactly. We attempted to define the levels within these categories
according to the common features of the restrictions imposed. The descriptions of these
levels can be found in Table 1. All policies and implementation details were found from
the webpages of the corresponding authorities: ACT Government [32], NSW Health [33],
NT Government [34], QLD Government [35], SA Health [36], TAS Government [37], De-
partment of Health and Human Services [38] and WA Government [39].
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Table 1. Descriptions of the policies considered in the analysis.

Policy Description

Gathering

Level 0 No upper limit on the number of people allowed.
Level 1 (Soft) The upper limit was between 51 and 500.
Level 2 (Moderate) The upper limit was between 3 and 50.
Level 3 (Strict) The upper limit was 2.

Economy

Level 0 No restrictions were imposed.
Level 1 (Soft) Sit-down dining (with varying upper limit) at cafes, restaurants, pubs and

clubs was allowed. Indoor religious gatherings (with varying upper limit) were
allowed. Most indoor facilities such as gyms, libraries, museums were allowed
to operate as long as some kind of “COVID Safe Plan” was enforced.

Level 2 (Moderate) Access to some non-essential and leisure services allowed. Examples include
outdoor, non-contact activities such as training and pools (indoor and outdoor),
public spaces and lagoons, libraries, parks, playground equipment, skate parks
and outdoor gyms. Recreational travel (possibly within certain distance from
the place of residence) may be allowed.

Level 3 (Strict) Mandatory closure of all non-essential services. Closure of places of social
gathering, including registered and licensed clubs, licensed premises in hotels
and bars and entertainment venues. Cafes and restaurants remain open but lim-
ited to only takeaway food. “Non-essential” businesses or activities including
cinemas, casinos, concerts, indoor sports, gyms, playgrounds, campgrounds,
libraries must not be operated.

Border Control

Level 0 No restriction or international travel ban imposed on certain countries.
Level 1 Closure of international border. No interstate border control was in place.
Level 2 Closure of international border. Interstate border control was applied to one

state or territory.
Level 3 Closure of international border. Interstate border control was applied to multi-

ple states and territories.

The variable Gathering (G) is based on the restrictions on public gatherings that in-
clude gathering in parks and public events such as music festivals, with limited exemptions
such as weddings and funerals. In each state or territory, the notion of “social distancing”
(e.g., 1.5 m apart) has remained as the time the restrictions were introduced. Although
the definition varied at certain times (e.g., changing from 1.5 m to a certain number of
people within a particular area), these rules were too difficult to measure and enforce in
reality. Thus, we did not include them as separate variables in our analysis. Based on
the upper limit on the number of people allowed for a public gathering, four levels were
defined (Table 1). Accordingly, three indicator variables were defined: Gi = 1 if the i-th
level gathering restriction was in place, and 0 otherwise, for i = 1, 2, 3.

The variable Economy (E) is based on the restrictions imposed on businesses and
other service providers. Restrictions were interpreted differently by the various states and
territories, so it is not easy to compare their levels exactly. Commonly, there were four
levels as listed in Table 1 where the descriptions were mainly based on the interpretations
used by Federal, NSW, VIC and QLD Governments. Restrictions set by other jurisdictions
have been fitted to these in the closest way possible. Accordingly, three indicator variables
were defined: Ei = 1 if the i-th level economy restriction was in place, and 0 otherwise, for
i = 1, 2, 3.

The variable Border Control (B) is based on the closures of international and interstate
borders. Some states and territories took action to protect themselves while some did
not, so a border closure may have increased the level for one state or territory but not its
neighbour. For example, when the second wave hit Victoria in mid-July, New South Wales
closed its border with Victoria. However, Victoria did not close the same border. As shown
in Table 1, Level 1 border control was referring to the closure of the international border
while Levels 2 and 3 depended on the interstate borders. Accordingly, three indicator
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variables were defined: Bi = 1 if the i-th level border control was in place, and 0 otherwise,
for i = 1, 2, 3.

Altogether, nine exogenous variables, each being an indicator variable, were consid-
ered in our application. Figure 2 provides the timeline which shows the dates and levels of
policies implemented in each of the states and territories.

Mar May Jul Sep
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0
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3
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Figure 2. Dates and levels of the policies implemented in each of the states and territories.

3. Methods

This section provides the details of model used in our analysis, including the the
specification of the spatial weight matrix, the structure of the covariates and the estima-
tion procedures.
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3.1. The GSTARX Model

We formalise the idea in this section. Denote by Z(t) =
[
Z1(t), Z2(t), . . . , ZN(t)

]>,
t = 1, 2, . . . , T, an N dimensional random process at time t, where the subscripts i = 1, 2, . . . , N
specify the location where Zi(t) will be observed. Throughout the discussions below,
we assume N is fixed, meaning that the number of sites where Z is observed remains
the same throughout the period considered. The generalised space-time autoregressive
model with autoregressive order p, spatial orders λ = (λ1, λ2, . . . , λp) and delay effects
d = (d1, d2, . . . , dm), abbreviated as GSTARX(p; λ; d), defined in [25], can be written as

Z(t) =
p

∑
k=1

λk

∑
`=0

Φk`W
(`)Z(t− k) +

m

∑
q=1

Xq(t− dq)βq + ε(t), (2)

where

• p is the autoregressive order,
• λk is the spatial order for k-th autoregressive term,
• W (`) is an N × N weight matrix which specifies the `-th order spatial weights (see

Section 3.3 for further details),
• Φk` is an N × N diagonal matrix with elements φ

(1)
k` , φ

(2)
k` , . . . , φ

(N)
k` where each φ

(·)
k` is

an autoregressive parameter to be estimated,
• Xq(t− dq) is a N×N diagonal matrix with the i-th diagonal element being Xiq(t− dq)

representing the q-th exogenous variable observed at time t− dq at location i,

• βq =
[

β
(1)
q , β

(2)
q , . . . , β

(N)
q

]>
is the vector of the coefficients associated with the q-th

exogenous variable, and
• ε(t) represents the random error terms, assumed to follow the N-dimensional multi-

variate normal distribution with a mean of 0 and a covariance matrix Σ.

If there are reasons to believe that the effects of the exogenous variables are the same
across all locations, the GSTARX model can be written as

Z(t) =
p

∑
k=1

λk

∑
`=0

Φk`W
(`)Z(t− k) + X(t; d)β + ε(t), (3)

where X(t; d) is a N ×m matrix such that

X(t; d) =

X11(t− d1) X12(t− d2) · · · X1m(t− dm)
...

...
. . .

...
XN1(t− d1) XN2(t− d2) · · · XNm(t− dm)

 (4)

and β =
[
β1, β2, . . . , βm

]> is the vector of the coefficients.
Both (2) and (3) are written from the cross-sectional standpoint. When data from all

t = 1, 2, . . . , T are incorporated, one could “vectorise” the responses location-by-location.
As a result, the model can equivalently be represented in a more compact manner. For
example, consider N = T = 3, a GSTARX(1;1;(1,0)) with two exogenous variables admits
the form

Z1(t) = φ
(1)
10 Z1(t− 1) + φ

(1)
11 ∑j 6=1 w(1)

1j Zj(t− 1) + β
(1)
1 X11(t− 1) + β

(1)
2 X12(t) + ε1(t),

Z2(t) = φ
(2)
10 Z2(t− 1) + φ

(2)
11 ∑j 6=2 w(1)

2j Zj(t− 1) + β
(2)
1 X21(t− 1) + β

(2)
2 X22(t) + ε2(t),

Z3(t) = φ
(3)
10 Z3(t− 1) + φ

(3)
11 ∑j 6=3 w(1)

3j Zj(t− 1) + β
(3)
1 X31(t− 1) + β

(3)
2 X32(t) + ε3(t),

for t = 2 and 3. If we stack the equations by location, the model can be written as

Z = YΦ + ε, (5)
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where

Z =
[
Z1(2) Z1(3) Z2(2) Z2(3) Z3(2) Z3(3)

]>,

Y =

Z∗1 0 0 X1(d) 0 0
0 Z∗2 0 0 X2(d) 0
0 0 Z∗3 0 0 X3(d)

,

Z∗i =

Zi(1) ∑j 6=i w(1)
ij Zj(1)

Zi(2) ∑j 6=i w(1)
ij Zj(2)

 (6)

Xi(d) =

[
Xi1(1) Xi2(2)
Xi1(2) Xi2(3)

]
,

Φ =
[

φ
(1)
10 φ

(1)
11 φ

(2)
10 φ

(2)
11 φ

(3)
10 φ

(3)
11 β

(1)
1 β

(1)
2 β

(2)
1 β

(2)
2 β

(3)
1 β

(3)
2

]>
,

ε =
[
ε1(2) ε1(3) ε2(2) ε2(3) ε3(2) ε3(3)

]> ∼ N6(0, I2 ⊗ Σ).

As this representation is analogous to a usual linear model, the parameters can be
estimated using ordinary least squares method as long as Y has the full rank. The estimator
can be expressed as

Φ̂OLS = (Y′Y)−1Y>Z. (7)

Occasionally the covariates may make the rank of Y less than full. For example, in
the context of intervention analysis, some policies may not have been implemented in
some locations throughout the period of study. As a result, there will be a column of
zeros in Y. Pragmatic approaches could be applied to fix the issue. For example, one may
redefine the variables by collapsing some of the levels. Another quick remediation is to
employ representation (3) rather than (2) by assuming the effects of exogenous variables
are the same across all locations. Consequently, β

(1)
q = β

(2)
q = · · · = β

(N)
q = βq for all

q = 1, 2, . . . , m, and Y, and Φ in (6) has to be modified as:

Y =

 Z∗1 0 0
0 Z∗2 0 X(d)
0 0 Z∗3

,

X(d) =



X11(1) X12(2)
X11(2) X12(3)
X21(1) X22(2)
X21(2) X22(3)
X31(1) X32(2)
X31(2) X32(3)

, and (8)

Φ =
[

φ
(1)
10 φ

(1)
11 φ

(2)
10 φ

(2)
11 φ

(3)
10 φ

(3)
11 β1 β2

]>
.

Straightforward modifications can be made to (6) and (8) for general p, N, T, m and d.
Under regularity conditions, the authors of [40] have shown that the OLS estimator Φ̂OLS
is statistically consistent and follows the multivariate normal distribution asymptotically.
However, as in seemingly unrelated regression models [41–43], when Σ 6= σ2I, the OLS
estimators are often not efficient [44]. The following estimator, derived in the spirit of
generalised least squares (GLS) method is, in general, more efficient:

Φ̂GLS = (Y′(I⊗ Σ)−1Y)−1Y>(I⊗ Σ)−1Z, (9)

where ⊗ denotes the Kronecker product [45].
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However, given that Σ is rarely known, it has to be replaced by an estimate Σ̂, yielding
the feasible GLS estimator [46,47]:

Φ̂FGLS = (Y′(I⊗ Σ̂)−1Y)−1Y>(I⊗ Σ̂)−1Z. (10)

A suitable estimate of Σ is

Σ̂ =
1

T − p

T

∑
t=p+1

ε̂(t)ε̂(t)>, (11)

where ε̂(t) = [ε̂1(t) · · · ε̂N(t)]
> represents the observed residuals. For small p and suffi-

ciently large value of T, the denominator on the right hand side of (11) can be replaced by
T. The standard errors of the estimates are the square root of the diagonal elements of the
matrix (Y′(I⊗ Σ̂)−1Y)−1.

3.2. Model Specifications

Some components in the GSTARX model have to be specified in advance. In our
application, we had N = 8, T = 252 and m = 9. The autoregressive order p was allowed
to vary and the p which optimised some criteria described in Section 3.4 was selected.
For the spatial orders, we fixed λ1 = λ2 = · · · = λp = 1. We focused on the first-order
spatial effect for two reasons: (a) allowing λis to be greater than one and vary among
autoregressive orders would potentially lead to a large number of parameters, which may
in turn lead to overfitting problems [48], and (b) the choice of temporal order is found to be
more important than the spatial one, as the involvement of higher spatial orders does not
guarantee substantial improvements in the goodness-of-fit [40]. In other words, only one
spatial weight matrix W had to be specified. The following section details the requirements
for a spatial weight matrix to be valid and the weight matrices used in our application.

As aforementioned, when some policies were not implemented in some of the loca-
tions, the GSTARX model under representation (2) cannot be used. In our application, for
example, Level 3 border control had never taken place in ACT, NSW and VIC throughout
the period of study. Thus, we resorted to use GSTARX model under representation (3),
meaning that the effect of an intervention was assumed to be the same across all states
and territories.

3.3. Spatial Weight Matrix

The spatial weight matrices are defined by the modeller. The following restrictions
are imposed on W (`) to ensure the parameters are identifiable:

(a) W (0) = IN , the identity matrix of size N;

(b) for ` ≥ 1, the weights w(`)
ij are non-zero only when locations i and j are `-th order

neighbours, and w(`)
ii = 0 for all i as a site is not a neighbour of itself by definition; and

(c) the weights are normalised in the sense that the sum of weights in each row of W (`)

is 1, i.e., ∑N
j=1 w(`)

ij = 1.

By far, the most commonly used approaches rely on matrices with either the uniform
weights [19] or the weights depending on the distances between the neighbouring sites [49].
Specifically, under the uniform weighting scheme, w(`)

ij = 1/n(`)
ij where n(`)

ij is the number
of `-th order neighbours for location i. In most applications, the spatial orders of 1 are used
(that is, λ1 = λ2 = · · · = λp = 1) as the definitions of higher order spatial neighbours
(and thus the weight matrices for ` > 1) are not straightforward, except when the area of
study is a regular grid [40]. In case the locations under consideration form a regular grid,
the “first-order” neighbours can be defined as the sites that are immediately next to each
other. The “second-order” neighbours can be defined as the first order neighbours of the
first order neighbours. Figure 3 demonstrates the first- and second-order neighbours of a
site based on such definition. For irregularly spaced areas, two areas can be considered as
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first-order neighbours if they share a border and second-order neighbours if they do not
share a border but are separated by a common area.

Figure 3. First- (triangles) and second- (circles) order spatial neighbours of a site (labelled by a star)
in a regular grid.

In our application, the states and territories do not form a regular grid. The following
spatial weight matrices were constructed and were tested:

WU =

ACT NSW NT QLD SA TAS VIC WA
ACT

NSW

NT

QLD

SA

TAS

VIC

WA



0 1/7 1/7 1/7 1/7 1/7 1/7 1/7
1/7 0 1/7 1/7 1/7 1/7 1/7 1/7
1/7 1/7 0 1/7 1/7 1/7 1/7 1/7
1/7 1/7 1/7 0 1/7 1/7 1/7 1/7
1/7 1/7 1/7 1/7 0 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 0 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 0 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0


,

WB =

ACT NSW NT QLD SA TAS VIC WA
ACT

NSW

NT

QLD

SA

TAS

VIC

WA



0 1 0 0 0 0 0 0
1/4 0 0 1/4 1/4 0 1/4 0

0 0 0 1/3 1/3 0 0 1/3
0 1/3 1/3 0 1/3 0 0 0
0 1/5 1/5 1/5 0 0 1/5 1/5
0 0 0 0 0 0 1 0
0 1/3 0 0 1/3 1/3 0 0
0 0 1/2 0 1/2 0 0 0


, and

WA =

ACT NSW NT QLD SA TAS VIC WA
ACT

NSW

NT

QLD

SA

TAS

VIC

WA



0.000 0.279 0.000 0.256 0.062 0.000 0.402 0.000
0.029 0.000 0.014 0.411 0.071 0.044 0.362 0.070
0.000 0.291 0.000 0.299 0.088 0.000 0.201 0.120
0.033 0.510 0.018 0.000 0.059 0.013 0.318 0.049
0.026 0.283 0.017 0.191 0.000 0.000 0.380 0.103
0.000 0.270 0.000 0.065 0.000 0.000 0.665 0.000
0.043 0.378 0.010 0.268 0.099 0.112 0.000 0.090
0.000 0.308 0.025 0.174 0.113 0.000 0.381 0.000


.
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The weight matrix WU was based on the uniform weighing scheme, assuming all
states and territories were neighbours of each other. The weight matrix WB was based
on the borders (see Figure 1). Two states are considered to be neighbours if they share a
common border, with exception applied to Tasmania which does not share any borders
with another state or territory. To satisfy the restriction that the sum of each row must
be one, Tasmania and Victoria were considered neighbours. Finally, WA was based on
domestic air travel activities. Specifically, we totalled the number of fare-paying passengers
who travelled from one state or territory to another during the period from January
to September 2020 by domestic flights listed in “top routes” from the statistical report
released on 18 November 2020 by the Department of Infrastructure, Transport, Regional
Development and Communications [50]. Compared to WB, WA allows states and territories
such as ACT to have more neighbours, as ACT is entirely surrounded by NSW. On the
other hand, although WU was perhaps the most simplistic one, it allows all states and
territories to interact with each other. Averages of these three matrices were also considered,
namely, WAB = (WA + WB)/2, WAU = (WA + WU)/2, WBU = (WB + WU)/2 and
WABU = (WA + WB + WU)/3.

3.4. Estimation

To estimate the autoregressive order p and the potential delay effects for the exogenous
variables, a grid search was conducted. Specifically, we searched p between 1 and 14
(equivalent to a time frame between one day and two weeks) and d = d0 between 0 and
7. During the grid search process, we fixed all di = d0 for all i = 1, 2, . . . , m. For each
combination of possible values of p, d and weight matrices, parameter estimation was
carried out using the feasible GLS approach given in (10). Akaike information criterion
(AIC [51]) was used to select the best combination of p, d0 and W. For close AIC values,
mean squared errors (MSE) were also considered. For each model, there were (2Np + m)
parameters. Therefore, the selection criteria can be written as

AIC = −2 log(L̂) + 2(2Np + m)

MSE =
1

N(T − p)

N

∑
i=1

T

∑
t=p+1

[
Zi(t)− Ẑi(t)

]2,

where

log(L̂) =
T

∑
t=p+1

[
−N

2
log(2π)− 1

2
log |Σ̂| − 1

2
[Z(t)− Ẑ(t)]>Σ̂−1[Z(t)− Ẑ(t)]

]

is the observed log-likelihood value and Ẑi(t) is the predicted value of Zi(t).
Once the optimal set of p, d0 and W was decided, we conducted another round of grid

search for dis within the interval of d0 ± 1, assuming interventions from the same category
had the same period of delay. That is, the periods of delay were assumed the same for
G1, G2 and G3, and likewise for both B and E.

3.5. Statistical Software

All estimations were carried out using R [52]. The code used to produce the results is
provided in Online Supplementary File S1. To use the code, one has to supply a T× N data
matrix Z, a N × N spatial weight matrix W, a T× (N ×m) covariate matrix X structured
as [X1, · · · , Xm], the number of covariates m, the autoregressive order p, the periods of
delay d, a logical value TRUE or FALSE indicating if X has the same effect across all sites
and the estimation method (either OLS or GLS). A GSTARX model can be fitted using the
function GSTARX. A sample code with N = 3, T = 10, p = 2, m = 2, d = (1, 2) and some
randomly generated Z and X is provided at the bottom of the R code provided in Online
Supplementary File S1.
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4. Results

The AIC and MSE values for some selected combinations of p and d0 using different
weight matrices are shown in Table 2. Results under all combinations of p and d0 can
be found in Tables S1–S9 in Online Supplementary File S2. A graphical representation is
provided in Figure 4. The effect of d0 on AIC and MSE was comparatively smaller than p.
Nevertheless, the most influential element appeared to be the choice of the spatial weight
matrix. It can be seen that the use of WU consistently provided the lowest AIC values. From
Table 2 and Figure 4, it can be observed that the AIC and MSE values of using WAU , WBU
and WABU are, in general, lower than that of using WA, WB and WAB but larger than that
of using WU . These results suggest that incorporating border or air travel information did
not provide better fits, compared to a simpler uniform weighting scheme, for our data.

Table 2. Selected list of AIC and MSE values under various combinations of p and d0 using different weight matrices. For
each value of d0, the values of p that resulted in the lowest three AIC values under WU are provided. The overall lowest
three values of AIC were indicated by boldface. Full results are provided in Online Supplementary File S2.

WA WB WU WAB WAU WBU WABU

d0 p AIC MSE AIC MSE AIC MSE AIC MSE AIC MSE AIC MSE AIC MSE

0 11 2530.2 0.249 2533.7 0.248 2416.2 0.231 2522.5 0.248 2479.0 0.242 2494.4 0.243 2499.6 0.245
12 2500.1 0.241 2536.6 0.245 2414.5 0.229 2519.0 0.243 2469.2 0.237 2496.5 0.239 2497.4 0.240
13 2514.9 0.240 2552.1 0.243 2424.2 0.226 2535.1 0.242 2481.8 0.236 2507.2 0.237 2511.2 0.239

1 9 2513.3 0.253 2514.0 0.251 2418.4 0.238 2508.0 0.251 2469.8 0.247 2478.8 0.247 2486.8 0.249
11 2523.1 0.250 2526.5 0.250 2410.7 0.231 2514.7 0.248 2474.6 0.242 2488.6 0.243 2493.6 0.244
12 2494.0 0.241 2530.2 0.245 2410.0 0.228 2511.9 0.243 2465.4 0.237 2491.1 0.239 2491.8 0.240

2 11 2518.0 0.248 2527.3 0.249 2407.1 0.230 2511.9 0.247 2469.3 0.240 2486.6 0.242 2489.9 0.244
12 2490.5 0.240 2530.9 0.245 2405.8 0.227 2509.6 0.242 2460.6 0.236 2489.0 0.239 2488.5 0.239
13 2505.6 0.239 2546.3 0.243 2414.8 0.225 2525.7 0.241 2473.1 0.234 2499.4 0.237 2502.1 0.238

3 9 2504.1 0.251 2510.1 0.251 2411.2 0.236 2499.6 0.246 2461.0 0.240 2472.6 0.242 2478.3 0.243
11 2509.0 0.249 2511.9 0.249 2404.4 0.230 2507.9 0.242 2466.6 0.235 2483.5 0.238 2486.4 0.239
12 2486.5 0.239 2527.7 0.244 2403.9 0.227 2505.0 0.240 2457.7 0.234 2485.9 0.236 2484.4 0.237

4 11 2512.7 0.246 2518.7 0.247 2400.4 0.229 2504.6 0.245 2463.3 0.239 2478.7 0.241 2482.6 0.242
12 2484.2 0.238 2522.5 0.243 2398.3 0.226 2501.6 0.241 2453.2 0.234 2480.6 0.237 2480.1 0.238
13 2499.2 0.238 2538.0 0.242 2406.7 0.223 2517.8 0.240 2465.1 0.233 2490.6 0.235 2493.5 0.236

5 11 2515.0 0.247 2525.8 0.248 2406.4 0.230 2509.1 0.246 2467.2 0.240 2485.7 0.242 2487.8 0.243
12 2486.4 0.239 2530.1 0.244 2404.0 0.227 2506.6 0.242 2457.2 0.235 2488.2 0.238 2486.0 0.239
13 2500.7 0.238 2544.8 0.243 2411.6 0.224 2521.8 0.240 2468.3 0.234 2497.3 0.236 2498.4 0.237

6 11 2518.9 0.248 2530.1 0.249 2411.9 0.231 2513.6 0.247 2472.1 0.241 2490.3 0.243 2492.4 0.244
12 2492.2 0.240 2534.9 0.245 2410.5 0.228 2512.3 0.243 2463.7 0.236 2493.5 0.239 2491.7 0.240
13 2507.1 0.239 2550.2 0.244 2418.0 0.225 2528.0 0.241 2474.8 0.235 2502.9 0.237 2504.4 0.238

7 11 2524.2 0.248 2537.5 0.249 2413.5 0.231 2520.0 0.248 2475.0 0.241 2495.2 0.243 2497.2 0.244
12 2497.7 0.240 2541.1 0.245 2410.6 0.228 2517.7 0.243 2465.2 0.236 2497.5 0.239 2495.3 0.240
13 2511.7 0.239 2555.0 0.243 2418.3 0.225 2532.5 0.242 2476.6 0.235 2506.6 0.237 2507.8 0.238

From Table 2, it can be observed that autoregressive orders 9, 11, 12 and 13 appear
to be the most suitable for the dataset considered. The lowest AIC value was achieved
when p = 12 and d0 = 4. The MSE of this model was only beaten by models with
more parameters (that is, p = 13), which is naturally expected as MSE tends to be lower
when more parameters are involved. Overall, it seems a balance between goodness-of-fit
and parsimony was attained using d0 = 4, p = 12 and W = WU . Table 3 shows the
AIC and MSE values when the periods of delay for G, E and B were varied between
3 and 5 days. It was found that a delay of 4 days for both G and E and a delay of
5 days for B yielded a slightly better fit (AIC = 2397.40, MSE = 0.226). Thus, we chose
GSTARX(12; 1; (4, 4, 4, 4, 4, 4, 5, 5, 5)) as the final model. The estimated parameters can be
found in Table 4, while the fitted models are demonstrated in Figure 5.
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Figure 4. Values of AIC (top panel) and MSE (bottom panel) against different weight matrices W
(horizontal axis) for d0 = 3, 4, 5, 6 and p = 10, 11, 12, 13.

Table 3. AIC and MSE values for different combinations of dG, dE and dB (periods of delay for G, E and B, respectively)
within d0 ± 1. Lowest values of AIC and MSE are indicated by boldface.

AIC

dG = 3 dG = 4 dG = 5

dE = 3 dE = 4 dE = 5 dE = 3 dE = 4 dE = 5 dE = 3 dE = 4 dE = 5

dB = 3 2403.9 2401.3 2401.5 2402.4 2399.5 2400.3 2408.2 2406.0 2406.2
dB = 4 2402.8 2400.4 2400.6 2400.9 2398.3 2398.9 2406.8 2405.0 2405.2
dB = 5 2401.8 2399.9 2399.7 2399.5 2397.4 2397.7 2405.3 2404.0 2404.0

MSE

dG = 3 dG = 4 dG = 5

dE = 3 dE = 4 dE = 5 dE = 3 dE = 4 dE = 5 dE = 3 dE = 4 dE = 5

dB = 3 0.2267 0.2263 0.2263 0.2265 0.2259 0.2260 0.2273 0.2270 0.2270
dB = 4 0.2267 0.2264 0.2264 0.2265 0.2259 0.2260 0.2274 0.2271 0.2271
dB = 5 0.2265 0.2262 0.2263 0.2262 0.2258 0.2258 0.2271 0.2269 0.2269

Clear spatial variations can be seen in Figure 5. This figure also depicts that the fitted
values matched well with the observed ones. The model was also able to capture the
second wave that hit Victoria (mainly within Melbourne) in July 2020, which signifies the
usefulness of the proposed method. Furthermore, it is interesting to observe that although
state-level implementation of policies may vary, the model has produced fairly consistent
results for all states except Tasmania, which showed somewhat a double peak between
April and May 2020.

Findings from Table 4 reveal that the number of new cases depended on the number
of cases in previous days recorded both in the same state or territory as well as in others.
The dependence can be traced back to as far as 12 days. Such a result agrees well with other
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results from the literature. For example, the authors of [53] reported that the latency period
of COVID-19 ranges from 1 to 14 days, while those of [54] reported a maximum median
incubation period of 12 days. In addition, the World Health Organization also uses the
history of travel or residence during the 14-day period prior to symptom onset to define a
person as a suspect case [55].

Table 4. Feasible GLS estimates of parameters and standard errors (in parentheses) of the fitted GSTARX(12;1;(4,4,4,4,4,4,5,5,5)).
p-values less than 0.01, 0.05 and 0.1 are indicated by three, two and one asterisk(s), respectively.

φk0

k ACT NSW NT QLD SA TAS VIC WA

1 0.364 *** 0.317 *** 0.099 0.228 *** 0.3 *** 0.141 ** 0.425 *** 0.201 ***
(0.064) (0.067) (0.066) (0.065) (0.067) (0.066) (0.066) (0.066)

2 0.138 ** 0.085 −0.072 0.166 ** 0.032 0.353 *** 0.06 0.132 *
(0.068) (0.071) (0.066) (0.067) (0.07) (0.066) (0.072) (0.067)

3 0.008 0.035 0.075 0.051 0.123 * 0.146 ** 0.396 *** 0.159 **
(0.068) (0.071) (0.067) (0.07) (0.069) (0.07) (0.072) (0.068)

4 0.135 ** 0.156 ** −0.221 *** 0.072 0.004 0.034 0.052 0.006
(0.068) (0.07) (0.064) (0.071) (0.067) (0.07) (0.076) (0.069)

5 0.096 0.158 ** 0.174 *** 0.138 * −0.067 −0.021 0.187 ** 0.141 **
(0.067) (0.07) (0.067) (0.071) (0.068) (0.069) (0.075) (0.07)

6 −0.007 0.028 0.028 0.086 0.117 * 0.052 −0.055 0.047
(0.067) (0.072) (0.066) (0.07) (0.067) (0.069) (0.076) (0.07)

7 −0.077 −0.002 0.264 *** 0.12 * 0.092 −0.06 −0.037 −0.076
(0.067) (0.16) (0.065) (0.071) (0.068) (0.069) (0.076) (0.071)

8 −0.234 *** 0.173 ** −0.039 0.098 −0.025 0.041 −0.102 −0.057
(0.067) (0.073) (0.067) (0.07) (0.069) (0.069) (0.075) (0.071)

9 −0.038 −0.145 ** −0.116 * 0.011 0.068 0.056 −0.19 ** −0.042
(0.065) (0.072) (0.066) (0.071) (0.069) (0.068) (0.074) (0.071)

10 0.16 ** 0.106 0.027 −0.088 0.07 −0.134 ** 0.071 0.066
(0.065) (0.071) (0.07) (0.072) (0.069) (0.068) (0.07) (0.07)

11 −0.093 −0.014 −0.071 0.028 −0.092 0.051 0.031 −0.011
(0.064) (0.07) (0.069) (0.071) (0.069) (0.064) (0.069) (0.07)

12 0.135 ** −0.044 −0.1 −0.105 0.025 0.031 0.097 −0.013
(0.06) (0.067) (0.069) (0.069) (0.065) (0.06) (0.064) (0.068)

φk1

k ACT NSW NT QLD SA TAS VIC WA

1 0.345 *** 0.345 ** −0.114 0.508 *** 0.352 *** 0.573 *** 0.018 0.374 **
(0.134) (0.14) (0.261) (0.142) (0.133) (0.128) (0.067) (0.162)

2 0.449 *** −0.253 0.434 −0.053 0.371 ** 0.161 0.068 −0.09
(0.152) (0.162) (0.315) (0.159) (0.149) (0.152) (0.077) (0.185)

3 −0.081 0.336 ** −0.124 −0.011 −0.02 0.04 −0.204 *** 0.079
(0.156) (0.166) (0.322) (0.161) (0.15) (0.154) (0.079) (0.189)

4 −0.682 *** −0.133 0.698 ** −0.09 −0.077 −0.621 *** 0.178 ** 0.158
(0.155) (0.158) (0.312) (0.154) (0.147) (0.145) (0.078) (0.183)

5 0.323 ** 0.038 −0.097 −0.06 0.329 ** 0.102 0.036 −0.103
(0.161) (0.159) (0.313) (0.155) (0.148) (0.151) (0.08) (0.187)

6 0.216 0.038 0.194 −0.245 −0.049 −0.043 0.059 0.193
(0.164) (0.073) (0.311) (0.158) (0.149) (0.151) (0.081) (0.19)

7 0.28 * 0.169 −0.495 0.273 * 0.04 −0.123 −0.004 0.014
(0.164) (0.159) (0.311) (0.159) (0.149) (0.15) (0.08) (0.189)

8 0.175 −0.019 0.835 *** −0.119 0.01 −0.306 ** 0.107 0.16
(0.163) (0.155) (0.308) (0.156) (0.146) (0.147) (0.079) (0.186)

9 −0.256 −0.43 *** −0.664 ** −0.062 −0.556 *** 0.085 −0.223 *** −0.159
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Table 4. Cont.

φk0

k ACT NSW NT QLD SA TAS VIC WA

(0.163) (0.154) (0.307) (0.154) (0.144) (0.148) (0.078) (0.181)
10 0.257 0.105 0.529 * 0.177 −0.227 0.094 0.12 0.203

(0.163) (0.164) (0.306) (0.159) (0.15) (0.154) (0.081) (0.186)
11 −0.315 * −0.174 −0.541 * 0.132 0.303 ** 0.406 *** 0.038 −0.259

(0.162) (0.161) (0.306) (0.156) (0.15) (0.153) (0.08) (0.184)
12 −0.366 ** 0.069 −0.178 −0.358 *** −0.179 0.061 −0.22 *** −0.159

(0.143) (0.141) (0.251) (0.136) (0.136) (0.141) (0.068) (0.158)

β

G1 G2 G3 E1 E2 E3 B1 B2 B3

0.136 ** 0.224 *** 0.344 *** −0.089 −0.11 −0.151 * −0.15 ** −0.129 * −0.125 **
(0.056) (0.056) (0.067) (0.07) (0.074) (0.084) (0.059) (0.074) (0.049)
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Figure 5. Observed (circle) and predicted (solid line) number of daily new cases in all states and
territories. All the numbers have been transformed back to the original scale.
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Regarding the interventions, both economic and border restrictions tended to lower
the number of new cases a couple of days after the implementations of the policies. Specifi-
cally, Level 3 economic restrictions (mandatory closure of non-essential businesses) reduced
the number of cases by 0.15 standard deviations of the transformed variable (the actual
numbers vary state by state). International border control (B1) provided a similar effect,
while interstate border control also helped in reducing the number of cases by approxi-
mately 0.13 standard deviations of the transformed variable.

On another note, the gathering restrictions, even the strictest level, resulted in positive
changes in the number of cases. While this may seem surprising in the first instance, it is
not illogical. First, although public gatherings were restricted, many people still went to
school or work, especially essential workers. Cancelling public gathering alone did not
fully stop social interactions. For example, people may still need to commute using public
transportation such as trains, which is considered as having a high transmission risk [56].
Second, compared to economic and border restrictions, gathering restrictions are more
challenging to enforce and rely on the awareness and discipline of the citizens.

5. Conclusions

To summarise, we have applied the GSTARX model with multiple interventions and
delay effects incorporated to evaluate the effectiveness of COVID-19 mitigation policies
implemented by Australian governments. The results showed that spatial and temporal
dependencies existed for the number of daily new cases. Economic and border restrictions
were found helpful in reducing the number of new cases a couple of days after implemen-
tation. It is worth emphasising that by no means all policies implemented were considered
in our study. Some of the effects attributed to a particular intervention in this study may be
merely due to some omitted variables.

A limitation of our approach lies in the use of a single weight matrix throughout the
whole period of study. As a result of border restrictions, the neighbourhoods of each state
or territory may change. In this regard, a time-varying model (see, e.g., in [57]) may be
more suitable. However, such an approach requires extensive theoretical development, and
we leave it as a direction for future research. In addition, note that the GSTARX model is
purposely built for continuous data. Given the discrete nature of the data (counts), transfor-
mations were applied in the current work to achieve approximate normality. Developing
models under the GSTARX framework that are specifically built for non-normal data can
be considered as another direction for future research. Finally, given that Victoria has
suffered from the second wave of COVID-19 outbreaks, our future research may also focus
on assessing the robustness of mitigation strategies by comparing the responses of state
and territory governments.
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