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Abstract: Background: Several countries have documented the relationship between long-term
exposure to air pollutants and epidemiological indicators of the COVID-19 pandemic, such as
incidence and mortality. This study aims to explore the association between air pollutants, such as
PM2.5 and PM10, and the incidence and mortality rates of COVID-19 during 2020. Methods: The
incidence and mortality rates were estimated using the COVID-19 cases and deaths from the Chilean
Ministry of Science, and the population size was obtained from the Chilean Institute of Statistics. A
chemistry transport model was used to estimate the annual mean surface concentration of PM2.5 and
PM10 in a period before the current pandemic. Negative binomial regressions were used to associate
the epidemiological information with pollutant concentrations while considering demographic and
social confounders. Results: For each microgram per cubic meter, the incidence rate increased by
1.3% regarding PM2.5 and 0.9% regarding PM10. There was no statistically significant relationship
between the COVID-19 mortality rate and PM2.5 or PM10. Conclusions: The adjusted regression
models showed that the COVID-19 incidence rate was significantly associated with chronic exposure
to PM2.5 and PM10, even after adjusting for other variables.
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1. Background

Since the first COVID-19 case in Wuhan, China, the pandemic caused by SARS-CoV-2
has caused more than 162 million cases and 3.3 million deaths globally. According to official
records, the first case of COVID-19 in Chile was reported on 3 March 2020. Since then, by
May 2021, more than 1,500,000 cases and around 172,000 deaths occurred in Chile [1].

A wide variety of manifestations have been reported among people with COVID-19,
ranging from asymptomatic cases to mild symptoms and even severe illness and death [2].
Epidemiological indicators, such as incidence, mortality, or case fatality rate, vary among
countries [3]. This variability has motivated research on risk factors from the individual to
the environmental level.

As mentioned in previous studies, the risk factors for severe COVID-19 illness are:
age, sex (male), smoking, sedentariness, comorbidities such as diabetes and obesity, low
oxygen saturation at hospital admission, or receiving mechanical ventilation during hos-
pitalization [4–6]. These studies have pointed out that any condition that promotes an
inflammatory response could exacerbate the effects of the coronavirus. Exposure to air
pollutants increases the probability of contracting infectious diseases due to their oxidative
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effect, which alters the immune response and the permeability of cells to viral entry [7,8].
This increases the morbidity and mortality from respiratory and cardiovascular diseases in
places with high levels of pollution [9–11].

Regarding the COVID-19 pandemic, some ecological studies have shown a relation-
ship between air pollution and incidence and mortality rate [12,13]. In the USA, munici-
palities with greater chronic exposure to fine particulate matter (particular matter with a
diameter less than or equal to 2.5 µm, or PM2.5) had a 2 to 15% higher risk of dying from
COVID-19 for every microgram per cubic meter increase in this pollutant [14]. In London,
nitrogen oxides (NOX) were positively correlated with COVID-19 cases and deaths [15].
In 63 Chinese cities, the basic reproductive number was associated with the daily concen-
tration of nitrogen dioxide (NO2) [16]. In northern Italy, for every microgram per cubic
meter increase in chronic exposure (considered the annual average between 2015 and
2019) to PM2.5, the risk of death from COVID-19 increased by 9% [17]. A time-series study
conducted in India showed that pollutants such as sulfur dioxide (SO2), carbon monoxide
(CO), NO2, and PM2.5 were related to daily cases of COVID-19 [18]. In China, short-term
exposure (from 0 to 14 days) to air pollutants, such as particulate matter with a diameter
less than or equal to 10 µm (PM10), PM2.5, CO, NO2, and ozone (O3), was associated with a
larger number of confirmed COVID-19 cases [19].

Concerning other environmental factors and SARS-CoV-2 transmission, this novel
coronavirus seems to be easily transmissible in zones where temperatures oscillate be-
tween 5 and 15 ◦C [20]. No conclusive evidence exists to establish that relative humidity,
precipitation, or cloud cover are related to SARS-CoV-2 transmission [20]. The first study
conducted in Chile focused on COVID-19 and climate, and it divided Chile into seven
climatic zones with data from February to March 2020 [21] (Correa-Araneda et al., 2020).
The authors found that both mean temperature and relative humidity had a negative effect
on the absolute rate of COVID-19 infection. The authors have highlighted the relevance
of adding other variables (for instance, indicators of human behavior or indoor condi-
tions) to fully explain the transmission of COVID-19. In this context, social vulnerability,
represented by housing conditions, could also contribute to the variability of COVID-19
indicators. Indeed, the World Health Organization has pointed out that infrastructure, size,
and overcrowding are important variables to consider in the transmission of infectious
diseases such as COVID-19 [22].

This pandemic is expected to continue to be a significant challenge given its impact
in 2020 [23]. It is pertinent not only to identify clinical factors related to the disease in
individuals, but also to identify environmental factors related to the incidence and mortality
in the population. The objective of this research is to study the association between chronic
exposure to PM2.5 and PM10 and health indicators of COVID-19, such as the incidence and
mortality rate, at the communal level while taking into account the population, housing,
and climate characteristics of each commune. The study’s rationale is to provide local
evidence to health authorities, politicians, and society about the effects of air pollution on
the current pandemic.

2. Materials and Methods
2.1. Study Design and Population

Continental Chile is located on the southwestern coast of South America, extending
from 17◦ S to 56◦ S between the Andes Mountain range and the Pacific Ocean. Adminis-
tratively, Chile is divided into 16 regions and 346 communes. This study used data from
188 communes based on their availability: 6 communes from the northern macrozone
(Regions XV, I, II, III, IV); 113 from the central zone (Regions V, XIII, VI, VII); and 69 from
the southern zone (Regions XVI, VIII, IX, X, XIV, XI, XII). This study was an ecological
design as our units of analysis were defined geographically rather than by individuals,
comparing COVID-19 incidence and mortality rate among Chilean communes in 2020.
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2.2. Variables and Sources of Information
2.2.1. Health Variables

The confirmed COVID-19 cases and deaths were obtained at the commune level from
the website of the Chilean Ministry of Science [24]. A case of SARS-CoV-2 infection is
confirmed when a person returns a positive nucleic acid amplification test, or has a positive
SARS-CoV-2 antigen test and meets either the probable case definition or is asymptomatic
and had contact with a probable or confirmed case. The ICD codes used to define a
COVID-19 death were U07.1 and U07.2.

For each commune, the incidence and mortality rate were estimated from the con-
firmed cases and deaths that occurred in 2020 normalized by their population. The popu-
lation numbers were obtained from the National Statistics Institute of Chile based on the
2017 Census [25].

2.2.2. Air Pollution

The annual average concentration of PM2.5 and PM10 was estimated through the WRF-
CHIMERE modeling system for each commune [26]. It simulates the physical–chemical
processes of the different atmospheric pollutants based on emissions from the main anthro-
pogenic sectors: residential, transportation, industry, and energy. This modeling system
has been successfully applied to simulate the dispersion of atmospheric pollutants in
central and southern Chile as well as the exposure to particulate matter of public transport
users [27–29].

The PM2.5 and PM10 concentrations were estimated for the year 2016 along continental
Chile at a 10 km spatial grid that was then interpolated to a resolution of 2 km. Contrary
to the health data considered at the communal level, the annual averages for PM2.5 and
PM10 concentrations were considered at a city level. Communes are a minor and basic
administrative division of the whole territory; they are not restricted to urban limits and
are in general a combination of urban and rural areas. In communes with large rural
or unpopulated areas, large differences in concentrations exist between the communal
and city average (Figure 1, see case of Coyhaique II), with the latter being higher and
closer to the observations. Therefore, since using the communal average for this study
could potentially underestimate the exposure of the population to these pollutants and
consequently their health impact, and considering only 12.2% of the population lives in a
rural area at a national level according to the national 2017 Census, the city average was
used to calculate the concentration of particulate matter instead.

The annual average PM2.5 and PM10 concentration was estimated as the average of
daily concentrations for the year 2016 of all grid points corresponding to the city. The
impacts on anthropogenic emissions due to the restrictions applied during the COVID-19
pandemic have not yet been quantified and therefore the year 2020 could not be simulated
for the present study. Therefore, a different year needed to be used and the year 2016
represents the best compromise between available observations and the absence of large
emission events such as forest fires.

The Chilean air quality (AQ) monitoring network (https://sinca.mma.gob.cl, accessed
on 24 May 2021) has a total of 28 stations with PM2.5 and PM10 data available for the year
2016. The location of the stations varies from completely urban to small isolated cities, and
their latitudes range between 45◦ S and 33◦ S. The annual PM2.5 concentrations for the
available stations range from 11 to 67 µg/m3, being higher for the higher latitudes where
firewood heating is predominantly used and where maximum daily values can reach up
to 500 µg/m3. For PM10, the observed concentrations range from 20 to 87 µg/m3 and
maximum daily averages reach up to 530 µg/m3. Contrary to PM2.5 which, in general,
shows a gradient of increasing concentrations with increasing latitude, PM10 does not
present the same variability, suggesting different emission profiles among cities in central
and southern Chile.

https://sinca.mma.gob.cl
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based on stations. Yellow: simulated commune yearly average; gray: simulated city yearly average; orange: yearly average 
of simulated observation (closest point to the station); blue: yearly average of station measurements. 
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PM10 was conducted for a selected number of stations. This comparison reveals that the 
measured concentrations are, in general, reproduced when compared against the simu-
lated observation (Figure 1). However, except for Osorno, a persistent underestimation of 
the modeled city concentration against the stations’ observations can be noticed. We high-
light that the observed value corresponds to the measured concentration at a given point 
and therefore reflects the air quality at that given location and its surroundings, whereas 
the city average represents the average of simulated concentrations over an area. There-
fore, a persistent underestimation of the measured yearly average by the simulated city 
yearly average does not suggest difficulties of the model to reproduce the observations, 
but rather the fact that both have different spatial representativity. Despite this limitation, 
the model approach was chosen given that the AQ network has a limited number of sta-
tions in a select group of cities, thus providing only partial coverage of the air quality in 
the country. The model provides AQ information for communes not covered by the 

Figure 1. WRF-CHIMERE modeling system to estimate air pollutants. (A) Comparison between PM10 estimations based
on model and monitoring based on stations. (B) Comparison between PM2.5 estimations based on model and monitoring
based on stations. Yellow: simulated commune yearly average; gray: simulated city yearly average; orange: yearly average
of simulated observation (closest point to the station); blue: yearly average of station measurements.

To assess the performance of the model to simulate the observations, a comparison
between the measured and simulated yearly daily average concentrations of PM2.5 and
PM10 was conducted for a selected number of stations. This comparison reveals that the
measured concentrations are, in general, reproduced when compared against the simulated
observation (Figure 1). However, except for Osorno, a persistent underestimation of the
modeled city concentration against the stations’ observations can be noticed. We highlight
that the observed value corresponds to the measured concentration at a given point and
therefore reflects the air quality at that given location and its surroundings, whereas the
city average represents the average of simulated concentrations over an area. Therefore, a
persistent underestimation of the measured yearly average by the simulated city yearly
average does not suggest difficulties of the model to reproduce the observations, but rather
the fact that both have different spatial representativity. Despite this limitation, the model
approach was chosen given that the AQ network has a limited number of stations in a
select group of cities, thus providing only partial coverage of the air quality in the country.
The model provides AQ information for communes not covered by the Chilean monitoring
network, allowing the application of the study to a larger fraction of the Chilean population.

2.2.3. Confounders

For each commune, we considered potential confounders, such as:

• Temperature and humidity: The average annual air temperature and relative humidity
from 1980–2010 were obtained from ARClim, which is an open-source meteorological
dataset [30]. This dataset was chosen due to its official endorsement given by the Chilean
Ministry of Environment, and because its spatial resolution (5 × 5 km) provides data for
all 188 communes.

• Elderly index: Proportion of the elderly population (65 years old or more) for 2020
based on projections of the 2017 Census.

• Self-report of health: Proportion of the population that have declared absence of chronic
or acute diseases, based on the National Socioeconomic Characterization Survey [31].
The reported illnesses include hypertension, diabetes, myocardial infarction, stroke,
chronic obstructive pulmonary disease, asthma, thyroid disease, cancer, and lupus.

• Percentage of houses with moderate overcrowding: Number of houses with moderate
overcrowding out of the total number of houses in each commune. The overcrowding
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corresponds to the ratio of the number of people to the number of bedrooms. Moderate
overcrowding is defined as 2.5 to 4.9 people per bedroom [32].

• Percentage of houses built before 2000: Number of houses built before 2000 out of
each commune’s total number of houses. Homes built before 2000 were not subject
to the thermal standard considered in the first stage of regulations associated with
thermal insulation of housing [32].

• Mobility index: Sum of the internal and external mobility indexes. The internal index
is a measure of the number of trips that occur within a commune, whereas the latter
corresponds to the number of trips made outside of the commune. Both indexes were
summed and normalized by the population of the administrative unit [33].

2.3. Statistical Analyses

Mean, standard deviations, and range describing the health and socio-environmental
characteristics of the communes are illustrated in Figure 2 and Table 1. Incidence and mortal-
ity rate according to the level of exposure to PM2.5 and PM10 are depicted in Figures 3 and 4,
respectively. The effect of chronic exposure to PM2.5 and PM10 on COVID-19 incidence and
mortality rate was estimated using negative binomial regression, a generalization of Poisson
regression, which allows consideration of the overdispersion of incidence and mortality
rate data. In the following equation, µi represents the mean incidence (or mortality) rate in
a period of time ti, xk represents the k predictors included in the model, and ε represents
the overdispersion

ui = exp (ln(ti) + β1x1i + β2x2i + · · ·+ βkxk + ε

Therefore, to study the association between PM2.5 and PM10 on COVID-19 incidence
and mortality rate at the communal level, we estimated crude and adjusted models that
included potential confounders based on previous studies, such as aging of the population
(whose proxy is elderly index), the health status of the population (whose proxy is self-
reported health), degree of overcrowding in the commune (whose proxy is percentage of
houses with moderate overcrowding), ventilation (whose proxy is percentage of houses
built before 2000), mobility during the pandemic (whose proxy is mobility index in each
commune in 2020), and the long-term exposure to meteorological factors (average of
temperature and relative humidity).

Maps were made using ArcGIS 10.6 software and the statistical analyses using Stata
version 14 statistical software.
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Table 1. Health and socio-environmental statistics in 188 Chilean communes, 2020.

n Mean St. Deviation Min Max

Incidence × 100,000 inhabitants 188 4501 1423 1786 9071

Mortality × 100,000 inhabitants 188 71 56 0 250

Annual average PM2.5, µg/m3 188 16 10 2 65

Annual average PM10, µg/m3 188 24 18 3 81

Elderly index, % 188 13 3 4 23

Self-reported health, % 188 73 4 57 85

Houses with moderate overcrowding, % 188 6 2 1 12

Houses built before 2000, % 188 45 16 11 88

Mobility index 188 7 3 0 30

Average temperature, ◦C 188 13 2 5 16

Relative humidity, % 188 67 7 48 79
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3. Results

Nationally, the incidence and mortality rates in 2020 were 4574 cases per 100,000
habitants and 84 deaths per 100,000 habitants, respectively. Although the yearly PM2.5
and PM10 concentration averaged over all communes is below the Chilean and the World
Health Organization (WHO) air quality standards, the maximum annual concentration
for both pollutants revealed that there are communes that significantly exceed both air
quality standards (Table 1). Demographically, the Chilean population is old, with a high
percentage of elderly (above 10%). Socially, some communes have a high proportion of
houses with moderate overcrowding and without thermal standards (built before 2000).
Climatically, the temperature and humidity indicate that both warm and dry climates are
present throughout the studied territory (Table 1).

Most communes register incidences over 2875, but in the southern Araucanía Region,
some communes exceed 6200 infections per 100,000 inhabitants (Figure 2A), spatially
coinciding with the highest recorded mortality values (Figure 2B). Chronic exposure to
PM10 (Figure 2C) and PM2.5 (Figure 2D) varies throughout the Chilean territory. In both
cases, communes exceeding the maximum annual concentration value defined by the WHO
(PM10: annual average 20 µg/m3; PM2.5: 10 µg/m3) are shown in yellow, and those in red
also exceed the Chilean AQ standard (PM10: annual average 50 µg/m3; PM2.5: 20 µg/m3).
In general, there are high concentration values of particulate matter of both fractions and a
high incidence of COVID-19 in the central and south-central Chilean communes.

There is spatial coincidence between high average overcrowding (average 2.5 to
4.9 people per room—Figure 2I) and incidence and mortality due to COVID-19, particularly
in the south-central and the far northern Chilean communes. This spatial coincidence is
also present when looking at the proportion of houses built before 2000, that is, before the
implementation of the housing norm (Figure 2H); since they were built without thermal
insulation requirements, they are more exposed to the cold and therefore need more heating,
which in south and south-central Chile involves the use of firewood with the consequent
impact on indoor pollution.

Bivariate analysis between COVID-19 incidence and mortality rate and chronic expo-
sure to PM2.5 showed positive correlations, which means that those communes with the
highest levels of chronic exposure to PM2.5 showed the highest incidence and mortality
rates (Figure 3); the same tendencies were observed for incidence and mortality rates and
chronic exposure to PM10 (Figure 4).

Crude models showed that the associations between COVID-19 incidence rate and
PM2.5 were statistically significant. Multivariate models confirmed these associations even
after adjusting by confounders. For each microgram per cubic meter, the incidence rate
increased by 1.2% regarding PM2.5 and 0.9% regarding PM10. Other variables were also
associated with the COVID-19 incidence rate. For example, the percentage of houses with
moderate overcrowding and relative humidity were directly associated with incidence,
whereas the elderly index was inversely associated with this outcome (Table 2).

Table 2. Crude and adjusted association between COVID-19 incidence rate and PM2.5 and PM10 in 188 Chilean communes
in 2020.

Crude Models Adjusted Models

IRR 95%CI p-Value IRR 95%CI p-Value

Annual average PM2.5, µg/m3 1.015 1.011–1.019 <0.001 1.012 1.008–1.017 <0.001
Elderly index, % 0.989 0.975–1.004 0.155

Self-reported health, % 1.007 0.998–1.016 0.115
Houses with moderate overcrowding, % 1.043 1.018–1.068 0.001

Houses built before 2000, % 1.000 0.998–1.003 0.769
Mobility index 0.997 0.982–1.012 0.666

Average temperature, ◦C 0.997 0.977–1.017 0.742
Relative humidity, % 1.012 1.006–1.018 <0.001
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Table 2. Cont.

Crude Models Adjusted Models

IRR 95%CI p-Value IRR 95%CI p-Value

Annual average PM10, µg/m3 1.009 1.006–1.011 <0.001 1.009 1.007–1.011 <0.001
Elderly index, % 0.985 0.972–0.999 0.041

Self-reported health, % 1.003 0.995–1.012 0.472
Houses with moderate overcrowding, % 1.038 1.015–1.063 0.001

Houses built before 2000, % 0.999 0.997–1.002 0.627
Mobility index 0.998 0.983–1.012 0.759

Average temperature, ◦C 0.988 0.969–1.007 0.224
Relative humidity, % 1.015 1.009 <0.001

IRR: incidence rate ratio; 95%CI: 95% confidence interval.

Even though crude models showed an association between air pollutants and mortality
rate, after adjusting by confounders, this association was no longer statistically significant
(Table 3).

Table 3. Crude and adjusted association between COVID-19 mortality rate and PM2.5 and PM10 in 188 Chilean communes
in 2020.

Crude Models Adjusted Models

IRR 95%CI p-Value IRR 95%CI p-Value

Annual average PM2.5, µg/m3 1.022 1.011–1.033 <0.001 1.004 0.996–1.011 0.361
Elderly index, % 0.984 0.956–1.013 0.271

Self-reported health, % 0.998 0.980–1.016 0.834
Houses with moderate overcrowding, % 1.035 0.986–1.086 0.161

Houses built before 2000, % 1.011 1.005–1.016 <0.001
Mobility index 1.004 0.969–1.039 0.842

Average temperature, ◦C 1.154 1.111–1.198 <0.001
Relative humidity, % 0.958 0.946–0.970 <0.001

Annual average PM10, µg/m3 1.018 1.012–1.023 <0.001 1.003 0.999–1.008 0.144
Elderly index, % 0.982 0.954–1.011 0.221

Self-reported health, % 0.997 0.979–1.015 0.707
Houses with moderate overcrowding, % 1.031 0.983–1.082 0.210

Houses built before 2000, % 1.010 1.005–1.016 <0.001
Mobility index 1.003 0.969–1.038 0.860

Average temperature, ◦C 1.149 1.106.1.194 <0.001
Relative humidity, % 0.959 0.947–0.970 <0.001

IRR: incidence rate ratio; 95%CI: 95% confidence interval.

4. Discussion

This study’s results are partially consistent with those shown in the US, Italy, and
China. In our data, the chronic exposure to particulate matter was associated with COVID-
19 incidence but not mortality rate. Previous studies, such as Wu’s article on counties
from the United States, revealed that the risk of dying from COVID-19 increased by 8%
for each additional unit of PM2.5 [14]; in Coke’s study conducted in northern Italian
communes, the risk increased by 9% [17]; and in Cole’s study in the Netherlands, for
each unit increase in PM2.5, 2.3 more deaths were recorded [34]. In our crude models, we
found an association between chronic exposures to particulate matter, coarse and fine, and
mortality rate. However, after adjusting by other covariates, this association was no longer
statistically significant. We hypothesize that a greater number of communes is required to
improve the statistical power to be able to confirm these results. Furthermore, the average
concentrations of PM2.5 and PM10 in this study were slightly lower than in the previously
mentioned studies, which could potentially explain our differences.
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Regarding the associations observed between PM2.5 and PM10 and the incidence rate
of COVID-19, despite the fact that our results have shown a higher incidence rate in those
territories with a higher average concentration of PM2.5 or PM10, the estimates were modest
compared to previous studies [13]. Some of the studies described in Bhaskar’s review have
mentioned an average exposure to air pollutants higher than ours; perhaps we could have
found association measures (i.e., incidence rate ratios) close to those studies if we had had
higher concentrations of air pollutants.

Within the several studies carried out during the epidemics of SARS in 2003 and H1N1
in 2017, chronic exposure to air pollutants was associated with health indicators such as
incidence and mortality. This consistency has been highlighted in the editorial letter of
Contini and Costabile [35], suggesting that chronic exposure to air pollution could shape
the results of the current pandemic.

Short-term exposure to air pollutants is also highlighted in other studies, showing a
positive correlation with incidence and mortality indicators [18,19]. As Bhaskar indicated
in his review [13], long- and short-term exposures to air pollutants induce oxidative stress
and decrease cellular immunity and chemical response. Additionally, the expression of the
angiotensin-2 converting enzyme, which is involved in the virus’s entry into lung cells, is
associated with chronic exposure to air pollutants [8,36].

In the present study, we found a direct association between COVID-19 incidence
rate and relative humidity, an inverse association between COVID-19 mortality rate and
relative humidity, and a direct association between COVID-19 mortality rate and tempera-
ture. On the other hand, Correa-Araneda’s study, which was carried out with data from
121 Chilean cities, showed an inverse association between the infection rate of COVID-19
and the mean temperature and relative humidity while taking into account wind speed [21].
Unfortunately, we do not have the wind speed available for all cities. If it were available,
comparisons with other studies would have been interesting to incorporate into this re-
search. In the study by Pramanik et al. in Russia, the humidity was not directly correlated
with COVID-19 cases; however, the authors pointed out that this relationship depends
on the climate type [37]. In India, Gupta’s study has emphasized that climatic factors do
not explain the variability of the number of infected people [38]. As can be seen, there
is no conclusive evidence regarding health indicators of COVID-19 and meteorological
factors yet.

Social distancing and masks are measures recommended by the WHO to reduce the
risk of spreading the virus. Our results are consistent with these measures, finding that the
average overcrowding in homes is a factor that determines higher incidences of COVID-19.
Patel’s article highlighted this issue, in which he describes the difficulty of adhering to
certain sanitary measures, such as quarantine, in cities that are highly populated and people
live in a way that they suffer the consequences of this pandemic with greater intensity [39].
Taking into account the growing evidence on the airborne transmission of SARS-CoV-2,
especially in closed spaces, the use of masks in overcrowded environments could be the
main way to avoid outbreaks [40].

Regarding our strengths and limitations, this is the first study in Chile that seeks to find
an association between COVID-19 and long-term exposure to pollution, while adjusting for
potential social and climatic confounders. Even when several confounders were included,
residual confounding was possible. Likewise, the data on climatic parameters correspond
to the 30-year average and likely differ from the specific conditions observed during 2020.
Like all ecological studies, these results do not establish relationships at the individual level.
Chile has 346 communes, and our analyses were based on 188; if we had data regarding
air pollutants for the total number of communes, perhaps we could have reduced random
error and the potential selection bias and achieved better statistical power.

5. Conclusions

Chronic exposure to PM2.5 and PM10 was associated with a higher risk of COVID-19
incidence at the communal level in Chile. It is noteworthy that variables such as household
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overcrowding, housing quality, humidity, and temperature also shaped our epidemiologi-
cal indicators.

From an environmental health perspective, our results strengthen the previously
published evidence regarding long-term exposure to air pollutants—such as particulate
matter—associated with worse COVID-19 epidemiological indicators. Therefore, policies
and other measures focused on air pollution mitigation will protect the population and aid
in overcoming future respiratory epidemics.

Futures studies need to go down to the individual level to consider the characteristics
of people as well as environmental factors.
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